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FOREWORD

The Editorial Board of Pakistan Journal of Statistics, in its meeting held in 

September, 2009 to collect papers on one topic and published in the form of Book. 

Each paper has been refereed by at least three experts actively engaged in “Ranked 

Set Sampling”. This book is the first in the series and we hope that in future, we 

shall be collecting papers and publishing in the form of books. 

MUNIR AHMAD
Editor-in-Chief PJS and

Rector, NCBA&E, Lahore, Pakistan
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PREFACE

Recently attention is being paid to the basic concepts of “Ranked Set Sampling” 

and there are a number of papers available in the literature. New techniques and 

approaches are being studied recently but there is no collection of papers that 

provide recent developments in the area. The motivation of this book is the amount 

of recent papers published by various authors on the topic of “Ranked Set 

Sampling” in Pakistan Journal of Statistics. 

Our main objective is to present before a wider audience on the work done on 

“Ranked Set Sampling” during the last decade and to motivate statisticians in this 

part of the world to work on some latest statistical technologies developed in 

various aspects of sampling. This book does not show any overlap with the current 

developments in the area, instead it has added new approaches to the area, instead 

it has added new approaches to the area. 

We are indebted to all the authors of the papers for their enormous hard work in 

preparation of the papers and their referees for the quality work they have done and 

to Mr. M. Imtiaz and Mr. M. Iftikhar for excellent job of reproduction / 

composition of papers and setting in the proper format.

Munir Ahmad
M. Hanif

Hassen A. Muttlak

NCBA&E
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CHAPTER ONE

Stratified Ranked Set Sample

Hani M. Samawi
Jiann-Ping Hsu College of Public Health, Biostatistics Center, PO Box 8015

Georgia Southern University, Statesboro, GA 30460, USA
E-mail: hsamawi@georgiasouthern.edu

ABSTRACT

Stratified simple random sampling (SSRS) is used in certain types of surveys 
because it combines the conceptual simplicity of simple random sample (SRS) 
with potentially significant gains in efficiency. It is a convenient technique to use 
whenever we wish to ensure that our sample is representative of the, population 
and also to obtain separate estimates for parameters of each subdomain of the 
population. If sampling units in a study can be easily ranked compared to 
quantification, McIntyre (1952) proposed to use the mean of n units based on a 
ranked set sample (RSS) to estimate the population mean, and observed that it 
provides an unbiased estimator with a smaller variance compared to SRS of the 
same size n.

In this paper we introduce the concept of stratified ranked set sample (SRSS) 
for estimating the population mean. SRSS combines the advantages of 
stratification and RSS to obtain an unbiased estimator for the population mean, 
with potentially significant gains in efficiency. 'The conclusion of this study is that 
by using SRSS the efficiency of the estimator relative to SSRS and SRS has strictly 
increased. Results from uniform distribution are given. Computer simulated results 
on other distributions are also given. An example using real data is presented to 
illustrate the computations.

KEY WORDS

Simple random sample, stratified random sample, ranked set sample, stratified 
ranked set sample, order statistics.

1. INTRODUCTION

Ranked set sampling (RSS) was introduced by McIntyre (1952) to estimate the 
pasture yield. RSS procedure involves randomly drawing n sets of n units each 
from the population for which the mean is to be estimated. It is assumed that the 
units in each set can be ranked visually. From the first set of n units, the unit 
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Stratıfıed Ranked Set Sample2

ranked lowest is measured. From the second set of n units, the unit ranked second 
lowest is measured. The process is continued until from the n – th set of n units the 
n – th ranked unit is measured. Talcahasi and Wakimoto (1968) warned that in 
practice the number of units which are easily ranked cannot be more than four.

A stratified simple random sample (SSRS), (for example see Hansen et al. 
1953) is a sampling plan in which a population is divided into L mutually exclusive 
and exhaustive strata, and a simple random sample (SRS) of hn elements is taken 

and quantified within each stratum h . The sampling is performed independently 
across the strata. In essence, we can think of a SSRS scheme as one consisting of 
L separate simple random samples.

A stratified ranked set sample (SRSS) is a sampling plan in which a population 
is divided into L mutually exclusive and exhaustive strata, and a ranked set 
sample (RSS) of hn elements is quantified within each stratum, h =1, 2, …, L. The 

sampling is performed independently across the strata. Therefore, we can think of a 
SRSS scheme as a collection of L separate ranked set samples.

In this paper, we introduce the concept of SRSS to estimate the population 
mean. This study showed that the estimator using SRSS is at least more efficient 
than the one using SSRS. In Section 2, we describe some sampling plans, discuss 
estimation of population mean using these plans, and give some useful definitions 
and general results and results for the uniform distribution. Simulation results from 
non-uniform distributions are given in Section 3. In Section 4, we illustrate the 
method using real data. The discussion is given in Section 5.

2. SAMPLES AND ESTIMATION OF POPULATION MEAN

Suppose that the population is divided into L mutually exclusive and 

exhaustive strata. Let * * * * * * * * *
11 12 1 21 22 2 1 2, ,..., ; , ,..., ;...; , ,...,

h h h h h hh h h n h h h n hn hn hn nX X X X X X X X X

be hn independent random samples of size hn each one is taken from each 

stratum  1, 2,...,h L . Assume that each element *
hijX in the sample has the same 

distribution function  hF x and density function  hf x with mean h and 

variance 2
h . For simplicity of notation, we will assume that hijX denotes the 

quantitative measure of the unit *
hijX .  Then, according to our description 

11 21 1, ,...,
hh h hnX X X could be considered as the SRS from the h – th stratum. Let 

     
* * *

1 2, ,...,
hhi hi hi nX X X be the ordered statistics of the i – th sample 
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Chapter One 3

 * * *
1 2, ,..., 1, 2,....

khi hi hin kX X X i n taken from the h – th stratum. Then, 

     1 1 1 2, ,...,
h hh h hn nX X X denotes the RSS for the h – th stratum. If 1 2, ,..., LN N N

represent the number of sampling units within respective strata, and 1 2, ,..., Ln n n

represent the number of sampling units measured within each stratum, then 

1

L

h
h

N N


  will be the total population size, and 
1

L

h
h

n n


  will be the total 

sample size.

2.1 Definitions, notations and some useful results
The following notations and results will be used throughout this paper. For all 

, 1,2,..., hi i n and 1,2,...,h L , let    2,h hij h hijE X Var X    ,      ,h i hi iE X 

    2
h i hi iVar X  , for all 1,2,..., hj n and let     hh i h iT    .

As in Dell and Clutter (1972), one can show easily that for a particular stratum 

 , 1 1, 2,...,h L ,

     
1

1 hn

h h i
ih

f x f x
n 

  ,

and hence  
1

,
hn

h hh i
i

n


    
1

0
hn

h i
i

T


 and    
2 2 2

1 1

h hn n

h hh i h i
i i

n T
 

    

The mean  of the variable X for the entire population is given by

1 1

1 L L

h h h h
h h

N W
N  

      (2.1.1)

where h
h

N
W

N
 .

If within a particular stratum, h , we suppose to have selected SRS of hn

elements from hN elements in the stratum and each sample element is measured 

with respect to some variable X , then the estimate of the mean ph using SRS of 
size hn is given by

1
1

1 hn

h hi
ih

X X
n 

  . (2.1.2)
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Stratıfıed Ranked Set Sample4

The mean and variance of hX are known to be  h hE X   and  
2
h

h
h

Var X
n




respectively, assuming hN ’s are large enough. The estimate of the population mean 

 using SSRS of size n is defined by

1 1

1 L L

SSRS h h h h
h h

X N X W X
N  

   (2.1.3)

The mean and the variance of SSRSX are known to be  SSRSE X   and 

 
2

2

1

L
h

SSRS h
h h

Var X W
n

 
   

 
 (2.1.4)

respectively, assuming hN ’s  are large enough.

If within a particular stratum h , we suppose to have selected RSS of hn

elements from hN elements in the stratum and each sample element is measured 

with respect to some variable X , then the estimate of the mean h using RSS of 

size h is given by

 
1

1 hn

h hi i
ih

X X
n 

  (2.1.5)

It can be shown that the mean and variance of  hh nX are   h hh nE X   and

    

2
2

2
1

1 h

h

n
h

h n h i
ih h

Var X T
n n 


   , (2.1.6)

respectively, assuming hN ’s are large enough. Therefore, the estimate of the 

population mean  using SRSS of size n is defined by 

   
1 1

1
h h

L L

SRSS h hh n h n
h h

X N X W X
N  

   . (2.1.7)

It can be shown straightforward algebra that the mean and the variance of 

SRSSX are  SRSSE X   (i.e., and unbiased estimator) and 
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   

2
2 2

2
1 1

1 hnL
h

SRSS h h i
h ih h

Var X W T
n n 

 
   

 
  , (2.1.8)

respectively, assuming hN ’s are large enough.

Therefore, the relative efficiency of the estimator of the population mean 
using SRSS with respect to the one using SRSS can be defined by 

 
 

   

2
2

2
1 1

1

1
1

h

SSRS

nLSRSS h
h i

h ihSSRS

Var X
RE

Var X W
T

nVar X  

 
          

 

(2.1.9)

2.2 Results for the uniform distribution
Assume that a population of size N , with a variable X has a uniform distribution 

 ,U U  . Suppose we can divide this population into L strata with respect to 

some characteristics in the population. If we let 1 2, ,..., LN N N represent the 

number of sampling units within respective strata, and 1 2, ,..., Ln n n represent the 

number of selected sampling units from respective strata, then 
1

L

h
h

N N


  and 

1

L

h
h

n n


  . Assume that the random variable hX has distribution  0, hU  . Thus, 

 
2
h

h hE X


   and  
2

2

12
h

h hVar X


   . Also, 
1 1

1 L L

h h h h
h h

N W
N  

      .

The mean and variance of the estimate SSRSX of the population mean  using 

SSRS of size n ware  
2SSRSE X


   and 

 
2

2

1 12

L
h

SSRS h
h h

Var X W
n

 
   

 
 (2.2.1)

respectively.

The mean and variance of the estimate SRSSX of the population mean  using 

SRSS of size n are  
2SRSSE X


   and
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Stratıfıed Ranked Set Sample6

   
2

2

1 6 1

L
h

SRSS h
h h h

Var X W
n n

 
    
 (2.2.2)

Also, if 2hn  then,

 
 

 

2
2

1

2
2

1

1

2
1

L
h

h
hSSRS h

L
SRSS h

h
h h h

W
Var X n

RE
Var X

W
n n





 
  
   

 
   





, (2.2.3)

which implies that SRSS gives a more efficient unbiased estimator for the uniform 
population mean compared to SSRS.

3. SIMULATION STUDY

The normal and exponential distributions are used in the simulation. Sample 
sizes 10,20N  and 30 and number of strata 3L  are considered. For each of 
the possible combination of distribution, sample size and different choice of 
parameter, 2000 data sets were generated. The relative efficiencies of the estimate 
of the population mean using SRSS with respect to SSRS, SRS and RSS are 
obtained. All computer programs were written in Borland TURBO BASIC.

3.1 Result of the Simulation Study
The values obtained by simulation are given in Table 1. Our simulation indicates 
that estimating the population means using. SRSS is more efficient than using 
SSRS or SRS. In some cases, when the underlying distribution is normal with 
( 1 1.0,  2 3.0,  3 5.0  ), the simulation indicates that estimating the 

population mean using SRSS is even more efficient than RSS.
NCBA&E
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Table 1
The relative efficiency of the simulation results

Distribution function n  ,SRSS SSRSRE X X  ,SRSS SRSRE X X  ,SRSS RSSRE X X

Normal 10 2.04 7.59 1.50

1 2 30.3, 0.3, 0.4,W W W   20 3.19 11.63 1.29

1 2 31.0, 3.0, 5.0      30 4.45 16.30 1.25

1 2 31.0, 1.0, 1.0     
Normal 10 2.08 3.48 0.72

1 2 30.3, 0.3, 0.4,W W W   20 3.19 5.70 0.65

1 2 31.0, 2.0, 3.0      30 4.42 7.57 0.67

1 2 31.0, 1.0, 1.0     
Normal 10 2.08 7.15 1.28

1 2 30.3, 0.3, 0.4,W W W   20 3.38 10.50 1.19

1 2 31.0, 3.0, 5.0      30 4.32 13.94 1.10

1 2 31.0, 1.1, 1.2     
Exponential 10 2.82 3.55 1.28

1 2 30.3, 0.3, 0.4,W W W   20 3.04 3.78 0.96

1 2 31.0, 3.0, 5.0      30 3.50 4.17 0.86
Exponential 10 1.95 2.15 0.73

1 2 30.3, 0.3, 0.4,W W W   20 2.85 3.25 0.71

1 2 35.0, 10.0, 15.0      30 3.53 4.15 0.74

4. EXAMPLE: Body Mass Index Data

In Table 2 we present three sample of size 7 each, from baseline interview data 
for the Iowa 65+ Rural Health Study (RHS), which is a longitudinal cohort study 
of 3,673 individuals (1,420 men arid 2,253 women) ages 65 or older living in 
Washington and Iowa countries of the State of Iowa in 1982. This study is one of 
four supported by the National Institute on Aging and collectively referred to as 
EPESE, (Established Populations for Epidemiologic Studies of the Elderly), 
National Institute on Aging, 1986.

In the Iowa 65+ RHS there were 33 diabetic women aged 80 to 85, of whom 14 
reported urinary incontinence. The question of interest is to estimate the mean 
body mass index (BMI) of diabetic women. The BMI is the ratio of the subject’s 
weight (kilograms) divided by height (meters) squared. Note that, the BMI may be 
different for women with or without urinary incontinence. Thus, here is a situation 
where stratification might work well. The 33 women were divided into two strata, 
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Stratıfıed Ranked Set Sample8

the first consists of those women without urinary incontinence and the second con-
sists of those 14 women with urinary incontinence. Four samples of size  7n 
each were drawn from those women using SSRS, SRSS, RSS and SRS. Note that 
in case of SRSS and RSS the selecting samples are drawn with replacement. The 
calculated values of BMI are given in Table 2. These calculations indicate the same 
pattern of conclusions that were obtained earlier, and illustrate the method 
described in Section 2.

Table 2
Body Mass Index Samples of Diabetic Women Aged 80 to 85 Years

with and without Urinary Incontinence
SRS RSS SSRS SRSS
18.88 18.88

Stratum 1
23.45 23.45

19.76 22.88 28.95 23.46
20.57 23.45 30.17 30.10
25.66 24.38

Stratum 2
19.61 19.61

26.01 26.30 24.07 24.38
28.95 27.31 27.49 31.31
33.52 36.65 33.52 31.95

Estimated Mean 24.77 25.69 26.95 26.15
Standard Error 2.03 2.06 1.72 1.67

5. DISCUSSION

The BMI data is a good example where we need stratification to find an 
unbiased estimator for the population mean of those diabetic women aged 80 to 85 
years. Since the 33 women were divided into two strata, the first consists of those 
women without urinary incontinence and the second consists of those women with 
urinary incontinence. It is clear that the mean of the BMI in each stratum will be 
different. Also, women can be ranked visually according to their BMI. In this 
situation we recommend using SRSS to estimate the mean BMI of those women. 
SRSS will give an unbiased and more efficient estimate of the BMI mean. 
Moreover, SRSS can provide an unbiased and more efficient estimate for the mean 
of each stratum.

Remark: We could not find a closed form for optimal allocation of units and also 
for optimal allocation of resources for hn using SRSS. However, the near optimal 

allocation can be obtained from the formulae obtained by using SSRS, for example 
see, Hansen et al. 1953.
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CHAPTER TWO

Using Ranked Set Sampling for Hypothesis Tests on the Scale 
Parameter of the Exponential and Uniform Distributions

Walid Abu-Dayyeh1 and Hassan A. Muttlak2

1 Department of Statistics, Faculty of Economics, 
University of UAE, P.O. Box 17555, Al-Ain, UAE.

2 School of Computing & Mathematics, Deakin University, 
Geelong Campus, Geelong, Vectoria 3217, Australia.

ABSTRACT

The concept of ranked set sampling (RSS) was suggested by McIntyre (1952). 
Many authors including Takahasi and Wakimoto (1968). Stokes (1980) and 
Muttlak and McDonald (1990) have used RSS in estimation.

In this paper we will obtain the uniformly most powerful test (UMPT) and the 
likelihood ratio test (LRT) in case of exponential distribution and the UMPT in case 
of uniform distribution, using simple random sample (SRS) and then we will adapt 
the statistics of these tests to construct new tests using RSS. It turns out that the use 
of RSS gives much better results in terms of the power function compared to SRS.

KEY WORDS

Ranked set sampling; simple random sample; power of the test, UMPT and 
LRT.

1. INTRODUCTION

In many applications it is very difficult or expensive to measure the sampling 
units, but the units can be ranked with out any cost. It turns out that in such cases
the use of RSS gives better estimate of the population mean compared to the SRS. 
In agricultural and environmental studies, it is possible to rank the sampling units 
without actually measuring them. For some such applications see Cobby et al. 
(1985), Muttlak and McDonald (1992), Johnson et al. (1993) and Patil and Taillie 
(1993). For the sampling method of RSS see Stokes (1986). 

Many other uses of RSS have been studied in the literature. Takahasi and
Wakimoto (1968) independently suggested the same method that was considered 
by McIntyre (1952). They proved that the mean of RSS is an unbiased estimator of 
the population mean with smaller variance than the variance of the sample mean of 
a SRS with the same sample size. Stokes (1980) discussed the estimation of the 
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variance based on RSS. Muttlak and McDonald (1990a, 1990b) developed RSS 
theory when the sampling units are selected with size based probability of 
selection.

The object of this paper is to obtain the UMPT for the one sided alternative and 
the LRT for the two sided alternative in case of the exponential distribution and the 
UMPT for the two sided alternative in case of uniform distribution using SRS and 
will adapt these tests to RSS data. It turns out that the tests based on RSS have 
higher power than the corresponding tests based on the SRS.

2. EXPONENTIAL DISTRIBUTION

Let 1 2, ,..., nX X X be a random sample from the exponential distribution with 

pdf 

 
/1 if 0

0 Otherwise

xe x
f x

 




  


We are interested in testing the hypotheses

0 0:H    vs. 0:H    (1)

It is well known that the UMPT of size  for testing (1) is given by 

n
i=11 if 

0 otherwise
iX C

UMPT    


 (2)

Without lost of generality we may take 0 1  . Then 
2
2 ,1

2
nc 




 , where 2
m

is the chi-square distribution with m degrees of freedom. The power of the test (2) 
is given by

  2 2
2 ,1 2 ,1

1

1 1

2

n

UMPT i n n
i

P X P W    


               
 ,

where W is distributed 2
2n

To obtain the test using RSS let 11 12 1, ,..., nX X X ; 21 22 2, ,..., nX X X ;……; 

1 2, ,...,n n nnX X X be the n groups of n independent random variables all with the 

same cumulative distribution function  F x . Let      1 2, ,...,i i i nX X X be the order

statistics of the variables 1 2, ,...,i i inX X X in the i-th group  1,2,...,i n Then 
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       1 1 2 2, ,..., ,...,i i n nX X X X denotes the ranked set sample, where  i iX is the i-th 

order statistic in the i-th group. To simplify the notation,  i iX will be denoted by 

iY through out this paper.

To test the same hypothesis (1) using the RSS we propose the following test

n
i=1

1
1 if 

0 otherwise
iY d   



 (3)

where d is determined so that the test 1 has size  . To obtain the value of d , we 

need the distribution of n
i=1 iY under 0H . For this purpose we consider the 

following transformation: n
1 1 2 1 2 3 1 2 3 i=1, , ,..., n iZ Y Z Y Y Z Y Y Y Z Y        . 

We know that 1 2, ,...., nY Y Y , are independent random variables with joint pdf:

 
   

 

1/! 1
1 1 ! !

n
1 2 i=1

1

, ,..., 1 / , 0, 1,....,

0 Otherwise

i
n

iyn n
i i n i

n i i

e e

g y y y n i y y i n

 
   



            








(4)

Then the joint pdf of 1 2, ,..., nZ Z Z is given by 

   2 1 2 1 3 2 1, ,..., , , ,...,n n n nh z z z g z z z z z z z      ,

which implies that the pdf of nZ is:

        1

1 2 1
1 2 1 3 2 1 ...0 0 0... , , ,...,n n n

z n

z z z
n n z z dk z g z z z z z z d d

       (5)

Therefore the power function of the test (3) is given by

   
1

1
n

n

i n zd
i

P Y d k z d
  



     
 
  ,

To find d , we need to solve

   
1 11

nn zd k z d
      (6)
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It is not easy to find d for general n and  . Therefore we will find d for 
3,4,n  and 5 and 0.05  . For 3n  , the pdf of 3z is 

   3 3 33 / 2 / 2 /
3

27
16 4

2
z z zk z e e e   

   


 3 3

3

3 / /2 2
3 33

27
13 10 8 2

2
z z

ze ez e z        


(7)

For 0.05  and 3n  we found that 5.532d  , using a computer 
mathematical program. Therefore, the power of this test is given by

   
1

3

3 35.532
1

i
i

P Y d k z dz
  



      
 
  , (8)

Similarly, the power function can be written for 4n  and 5. Table (1) shows 
the results for 0.05  and 4n  and 5 and different values of  . 

It appears from Table (1) that the power of the tests UMPT and 1 increases 

as  increases and also as n increases and that the power of 1 is larger than the 

power of UMPT i.e. using RSS gives higher power of the test compared to SRS.

Table (1)
Values of  UMPT  and  

1
  for different values

of  and sample sizes 3,4n  and 5 and 0.05 

  UMPT   
1

 

n = 3 4n  5n  3n  4n  5n 
1.10 0.076 0.079 0.083 0.080 0.087 0.094
1.25 0.122 0.134 0.146 0.138 0.164 0.191
1.50 0.211 0.242 0.258 0.327 0.402 0.402
2.00 0.391 0.458 0.518 0.503 0.642 0.762
3.00 0.650 0.739 0.807 0.807 0.924 0.977
4.00 0.790 0.868 0.918 0.924 0.984 0.998
5.00 0.866 0.928 0.961 0.967 0.996 0.999
10.0 0.974 0.992 0.998 0.999 0.999 0.999

Next we will consider the LRT for testing the hypothesis 

0 : 1H   vs. : 1H   . (9)

It is well known that the LRT of size a is given by
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2 2
2 , / 2 2 ,1 / 2n

i=12 2
0 if 

1 Otherwise

n n

i
LRT

X      




which implies that its power function is given by

 
2 2
2 , / 2 2 ,1 / 2

2 2
2 , / 2 2 ,1 / 2

n
i=12 2

1

1

n n

n n

UMPT iP X

P W

 

 

 
 

 
  

       
 
    
 



where n
i=1 iW X  is distributed as 2

2n .

To test the same hypothesis using the RSS, the following test is proposed:

n
1 i=1 2

2
0 if 

1 Otherwise
ik Y k    





The power function of the test 2 is

   2

2 1
1 2

1
1 1

n k
i n nK

i
P k Y K k z dz  



         
 

  ,

where  nk z is defined in (5). To obtain the test of size  we need to find 1k

and 2k to satisfy

   2

2 1
11 1

n

k
n zk k z d       .

We will take  1
101 / 2k

n nk z dz   and  2
101 1 / 2k

n nk z dz   . To 

compare the two tests LRT and 2 , we take 0.05  and 3,4n  and 5. Table 

(2) shows the power for both tests for n = 3,4 and 5 and a = 0.05.

Considering Table (2) we conclude that the power of the tests LRT and 2
increases as  moves away from 1 in both directions and as n increases and the 
power of 2 is higher than LRT i.e. using RSS will increase the power of the test. 

Also, we notice that LRT appears to be unbiased test while 2 is an unbiased test.
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Table (2)
Values of  LRT  and  

2
  for different values

of  and sample sizes 3,4n  and 5 and 0.05 

  LRT   
2 

3n  4n  5n  3n  4n  5n 
0.05 0.999 0.999 0.999 0.999 0.999 0.999
0.10 0.946 0.995 0.999 0.999 0.999 0.999
0.25 0.450 0.633 0.776 0.822 0.969 0.996
0.50 0.129 0.1768 0.228 0.263 0.437 0.612
0.75 0.055 0.063 0.071 0.079 0.109 0.146
0.90 0.046 0.047 0.048 0.051 0.056 0.061
1.00 0.050 0.050 0.050 0.050 0.050 0.050
1.10 0.061 0.062 0.063 0.070 0.062 0.064
1.25 0.087 0.093 0.100 0.092 0.105 0.122
1.50 0.150 0.172 0.194 0.177 0.229 0.289
2.00 0.305 0.365 0.421 0.395 0.530 0.661
3.00 0.569 0.665 0.742 0.731 0.878 0.960
4.00 0.730 0.821 0.883 0.884 0.970 0.995
5.00 0.823 0.899 0.943 0.947 0.992 0.999
10.0 0.963 0.988 0.996 0.997 0.999 0.999

3. UNIFORM DISTRIBUTION

Let 1 2, ,..., nX X X be a random sample from the uniform distribution with 

probability density function

 
1 0

0 otherwise

x
f x 


    


We want to test

0 0:H    vs. 0:H    . (11)

As was done in case of the exponential distribution we assume that 0 1 
w.l.o.g. Since the UMPT test for (11) exists there is no need to consider the LRT. 
The UMPT of side  is given by

   1 if 1 or

0 otherwise

n nX X n


     


(12)
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where  nX is the largest ordered statistic. Then the power function of this test is

 
1

1 if 

if 1

1 if 1

n

n

n

n



 




   
     

  

To test the same hypothesis using the RSS we propose the following test

   
3

1 if max or max 1

0 otherwise
i iY c Y    



To find the value of c we must solve the equation

     1 1
1

max
n

i i
i

a P Y c P Y c 


   

which can be written as

   

1 1

0
1

! 1
1

1 ! !

i nn c i i
i

i

y yn
dy

i n i

 



                   
 

Then the power of this test can be written as

   
   

2 1

1 1

1 if 

if c 1

1 1 if 1

n
i i

n n
i i i i

c

P Y c

P Y c P Y

  

   

  
     


     



 

To compare the two tests  and 3 we take 0.05  and 3,4n  and 5.  

Table (3) shows the results for 3,4n and 5 and 0.05  with different values of  .

Considering Table (3) we see that the power of the tests  and 3 increases 

as  moves away from 1 in both directions and as n increases and the power of 

3 is larger than  , i.e. using RSS will increase the power of the test.
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Table (3)
Values of  


  and  

3
  for different values

of  and sample sizes 3,4n  and 5 and 0.05 

     
2 

3n  4n  5n  3n  4n  5n 
0.25 0.999 0.999 0.999 0.999 0.999 0.999
0.50 0.400 0.800 0.999 0.946 0.999 0.999
0.60 0.232 0.386 0.643 0.497 0.999 0.999
0.75 0.119 0.158 0.211 0.194 0.330 0.528
0.90 0.069 0.076 0.085 0.084 0.104 0.129
1.00 0.050 0.050 0.053 0.050 0.053 0.050
1.10 0.286 0.351 0.410 0.298 0.374 0.445
1.25 0.514 0.611 0.689 0.561 0.683 0.779
1.50 0.719 0.812 0.875 0.795 0.899 0.955
2.00 0.881 0.941 0.970 0.947 0.988 0.998
3.00 0.965 0.988 0.996 0.993 0.999 0.999
4.00 0.985 0.997 0.999 0.999 0.999 0.999
5.00 0.992 0.999 0.999 0.999 0.999 0.999
10.0 0.999 0.999 0.999 0.999 0.999 0.999
10.0 0.963 0.988 0.996 0.997 0.999 0.999
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CHAPTER THREE
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ABSTRACT

Ranked set sampling (RSS) as suggested by McIntyre (1952) and Takahasi and 
Wakimoto (1968) mar be used in Bayesian estimation to reduce the Bayes risk. 
Bayesian estimation based on a ranked set sample (RSS) is investigated for 
exponential and normal distributions. We examine the Bayes risk of the Bayes 
estimator using RSS. It appears that as expected, the Bayes risk of the Bayes 
estimator using RSS is smaller than that of the corresponding Bayes estimator 
using simple random sample (SRS) of the same sample size.

KEYW ORDS

Order Statistics; Ranked Set Sampling; Bayes Estimators, Bayes Risk

1. INTRDOUCTION

Ranked set sampling (RSS) was first suggested by McIntyre (1952) who noted 
that RSS is highly beneficial and is much superior to the standard simple random 
sampling (SRS) for the estimation of the population mean. In many studies, it is 
possible to rank the sampling units rather cheaply without actually measuring 
them. See Halls and Dell (1966) and Muttlak and McDonald (1992) for some
examples.

McIntyre (1952) gave no mathematical theory to support his suggestion. 
Takahasi and Wakimoto (1968) supplied the necessary mathematical theory. They 
proved that the sample mean of the RSS is an unbiased estimator of the population 
mean with smaller variance than the sample mean of a simple random sample 
(SRS) with the same sample size.

McIntyre (1952) and Takahasi and Wakimoto (1968) assumed perfect ranking 
of the elements. Dell and Clutter (1972) studied the case in which the ranking may 
not be perfect. Stokes (1980) proved that the estimator of the variance based on 
RSS data is an asymptotically unbiased estimator of the population variance and 
for large sample size, it is more efficient than the usual estimator based on SRS 
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data with the same sample size. Muttlak and McDonald (1990a and 1990b) 
developed the RSS theory when the experimental units are selected with size-
biased probability of selection. Sinha et al. (1992) considered estimating the mean 
and variance of the normal distribution and the mean of the exponential 
distribution. Lam et at. (1993) studied the parameters estimation of a two-
parameter exponential distribution using RSS. Stokes (1995) considered estimation 

of and a for a family of random variables with cdfs of the form 
x

F
 

  
.

In this this paper, Bayes estimation of the normal and exponential means using 
RSS is compared to that using SRS and it is shown that the former has smaller 
Bayes risk than the latter.

2. BAYESIAN ESTIMATION

Let 11 12 1, ,..., nX X X ; 21 22 2 2 1 2, ,..., ,..., ,..., ,...,n n n n nnX X X X X X X be n sets of n

independent random variable all having the cdf  |F x  . Let      1 2, ,...,i i i nX X X

denote the order statistics of  1 2, ,..., 1,2,...,i i inX X X i n . To simplify the 

notation we will use iY to denote the thi order statistics of 

 1 2, ,..., 1,2,...,i i inX X X i n . Then 1 2, ,..., nY Y Y , known as to ranked set sample, 

are independent random variables with densities

       11
| | 1 | | , 1, 2,...,

1

i n i
i i i i i

n
g y n F y F y f y i n

i

  
               

   (1)

If  has a prior density    , then the posterior distribution of  given 

1 1 2 2, ,...., n nY y Y y Y y   is given by 

 
   

   
1

1 2

1

|
| , ,...,

|

n

i i
i

n n

i i
i

g y
y y y

g y d





  
  

      




Thus

 
       

       

1

1 1
1 2

1

1 1

| 1 | |

| , ,...,

| 1 | |

n ni n i
i i i

i i
n n ni n i

i i i
i i

F y F y f y

y y y

F y F y f y d

 

 

 

 

                   
                  

 

 
(2)
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Assume that 1 2, ,..., nX X X are independent random variables all having the 

same cdf  |F x  . Then the posterior distribution of  given 

1 1 2 2, ,..., n nX x X x X x   can be written as

 
   

   
* 1

1 2

1

|
| , ,...,

|

n

i
i

n n

i
i

f x
x x x

f x d





  
  

      




(3)

Let  be an estimator of  and suppose that the loss function is  ,L   . Then 

the risk function of  is 

    , ,fR E L     (4)

where the expectation is taken with respect of f. The Bayes risk is defined as 

  ,E R   where the expectation is taken with respect of  . Denote the bayes 

risk  ,r   . If the Bayed risk is finite for some  , then the Bayed estmator of 

is the estimator(s) that minimize the Bayes risk  ,r   . See Berger (1985). 

3. EXAMPLES

3.1 Exponential Distribution

Let 1 2, ,..., nX X X be iid with pdf   /1
| ; 0xf x e x  


. Let  has the prior 

pdf  
 

1/
1

1
1 ; 0

r
e

r
 


   

 
, i.e.  has an inverse gamma distribution with 

a r and 1  . The density of this distribution will be denoted by  ,IG   . 

Then the posterior distribution of  given the SRS 1 2, ,..., nx x x is 

1
,

1i

IG n r
x

 
 

 
.

The SRS Bayes estimator with respect to squared error loss is 

 1 2
1ˆ | , ,..., ; 1 0
1

i
SRS n

x
E x x x n r

n r


      

 


.
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The risk of ˆ
SRS is 

         
 

22
2 1 1 2 1 1ˆ ˆ ˆ,

1SRS SRS SRS

n r
R Var bias

n r

      
      

 

The Bayes risk of ˆ
SRS can be shown to be

      
1ˆ , ; 2

1 1 2SRSr r
n r r r

   
   

(5)

Let 1 2, ,..., nY Y Y be the RSS. The posterior distribution of  given 1 2, ,..., ny y y

is

   
 

1

1
1 11/

1 2 1
1

1
| , ,..., 1

n

i
ii

n i yn iy
n n r

i
y y y e e 

 
        

 


      
  

 

 (6)

For 2n  ,

     1 2 1 2

1 1
1 2 1 2

1 2 3

1
| ,

y y y y

r
y y e e

    
 



 
    

   

Thus

 
1 2 1 2

1 2
1 2

1 2 1 2

1 1
| , 2, 2,

1 2 1 2y y y y

C C
y y IG r IG r

C C C C 

   
        
         

where

 
 

 
 1 2 1 2

1 22 2

2 2
 and 

1 2 1 2
r r

y y y y

r r
C C

 
 

   
 

 

The Bayed estimator of  with respect to squared error loss based on RSS is 

1 2 1 21 2

1 2 1 2

2 1 2 1ˆ
1 1

y y y y
SRS

C C

C C r C C r
  

  
   

which can be simplified to 
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       

       
1 2 1 2

1 2 1 2

1 1

2 2

2 1 2 11ˆ
1 2 1 2 1

r r

y y y y
SRS r r

y y y y
r

   
 

   
 

  
 

   

For 3n  and using (6)

 
     1 1
1 3 2 1 3 2 2 1 3 3 21 2 3 1 2 3 1 2 3

1 2 3 4

1
| , , 2 2

y y y y y y y y y

r
y y y e e e

           
  




    

 
     1 1 1
1 3 2 3 1 3 3 1 3 3 31 2 3 1 2 3 1 2 3y y y y y y y y y

e e e
           
   

   


Thus

 1 2 3 1
1 2 3

1
| , , 3,

1 3 2 2
y y y C IG r

y y y

  
     

    

2 3
1 2 3 1 2 3

1 1
2 3, 2 3,

1 3 2 2 1 3 3 2
C IG r C IG r

y y y y y y

   
      

        

4 5
1 2 3 1 2 3

1 1
3, 3,

1 3 2 3 1 3 3
C IG r C IG r

y y y y y y

   
      

        

6 1 2 3 4 5 6
1 2 3

1
3, 2 2

1 3 3 3
C IG r C C C C C C

y y y

 
              

where

 
 

 
 

1 23 3
1 2 3 1 2 3

3 3
, ,

1 3 2 1 3 2 2
r r

r r
C C

y y y y y y
 

   
 

     

 
 

 
 

3 43 3
1 2 3 1 2 3

3 3
, ,

1 3 3 2 1 3 2 3
r r

r r
C C

y y y y y y
 

   
 

     

 
 

 
 

5 63 3
1 2 3 1 2 3

3 3
,

1 3 3 1 3 3 3
r r

r r
C C

y y y y y y
 

   
 

     

Therefore, the Bayes estimator based on RSS is given by 
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1 2 3
1

1 3 2ˆ
2RSS

y y y
C

r

         

1 2 3 1 2 3
2 3

1 3 2 2 1 3 3 2
2 2

2 2

y y y y y y
C C

r r

        
        

1 2 3 1 2 3
4 5

1 3 2 3 1 3 3

2 2

y y y y y y
C C

r r

        
        

1 2 3
6 1 2 3 4 5 6

1 3 3 3
2 2

2

y y y
C C C C C C C

r

             

To compare the SRS with the RSS for this example we need to find the Bayes 

risk ˆ ,RSSr     for the RSS which can be wrtten for 2n  as 

         
2

1 2 1 2
0 0 0

ˆ ˆ, ,RSS RSSr g y g y dy dy d
  

         

where

     1

1

n i
i i i

n
g y n F y f y

i

 
     

;   /1
iy

if y e 


,   /1 , 1,2iy
iF y e i   

and  
 

1/
1

1
r

e
r

 


  
 

.

Similarly, the Bayes risk can be written for larger n . To evaluate the above 
integral, we use the IMSL computer program. Table 1 shows the efficiency of RSS 
with respect to SRS for n = 2, 3, 4 and 5 with different values of r. Considering 
Table (1), it can be seen that the use of RSS reduces the Bayes risk by about 6 
times when n = r = 4. Relative precision is also reported for estimating the 

population mean using  *ˆ RSSSS  and  SRSSRS X . The relative precision for the 

MLE estimators using RSS and SRS is also reported.

3.2 Normal Distribution

Let 1 2, ,..., nX X X be iid with pdf,    2
/ 21

|
2

xf x e  


; x    . 

Let  has the prior pdf,  
2 / 21

2
e  


;      , i.e. has a standard 

normal distribution.
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Assume that the loss function is the squared error loss function then the Bayes 
estimator is

 ˆ | x d



     .

The following method will be used to find the Bayes risk with respect to SRS 
and RSS

1. Pick a random value of  from    call it 1 , where    is our prior 

pdf.
2. Select 1 2, ,..., nz z z from  1|f z  .

3. Calculate the integral  | z d   and call it 1̂ .

4. Repeat steps 2 and 3, L times (L is relatively large) and find 1 2
ˆ ˆ ˆ, ,...., L   .

5. Approximate the risk of 1̂ as    21 1 1
1ˆ ˆ,

L

i I
R

L 
    

6. Repeat steps 1 to 5 in times for different values of  say 2 3, ,..., m   .

7. The Bayes risk of  can be 'approximate as    
1

1ˆ ˆ, ,
m

i
i

r R
m 

     .

Table (2) shows the efficiency of RSS with respect to SRS for n = 2, 3, 4 and 5 
and it is also compared to other methods of estimation. We can see that the RSS 
reduces the Bayes risk by about 3 times when n = 4.
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Table 1

Bayes relative efficiency (BRE) of ˆ
RSS with respect of ˆ

SRS and 

relative precision (PR) of RSS to SRS using other type of estimations 
for the exponential distribution1,2

n
2 3 4 5

 ˆ ˆ, ; 3RSS SRSBRE r   1.51 1.60 1.72 2.27

 ˆ ˆ, ; 3.5RSS SRSBRE r   2.52 2.97 3.76 4.33

 ˆ ˆ, ; 4RSS SRSBRE r   4.19 4.96 5397 6.81

 *ˆ ,RSS SRSRP X 1.33 1.64 1.92 2.14

 *ˆ ˆlim ,ML ML
m

  1.40 1.81 2.21 2.62

1) Values of RP in the fourth line are from Dell andClutter (1972)
2) The asymptotic RP in the last line represent the limiting RP of MLE 

using RSS w.r.t the MLE using SRS as reported by Stokes (1995). 

Table 2

Bayes relative efficiency (BRE) of ˆ
RSS with respect of ˆ

SRS and 

relative precision (PR) of RSS to SRS using other type of estimations 
for the normal distribution1,2

n
2 3 4 5

 ˆ ˆ,RSS SRSBRE   1.73 2.35 2.81 3.29

 *ˆ ,RSS SRSRP X 1.47 1.91 2.35 2.77

 *ˆ ˆlim ,ML ML
m

  1.48 1.96 2.44 2.92

1) Values of RP in the fourth line are from Dell andClutter (1972)
2) The asymptotic RP in the last line represent the limiting RP of MLE 

using RSS w.r.t the MLE using SRS as reported by Stokes (1995). 
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CHAPTER FOUR
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ABSTRACT

Considering situations where units are expensive to measure but can be ordered 
relatively cheaply or at no cost without actual measurements of the units under 
investigation. McIntyre (1952) pioneered the study of the method ranked set 
sampling (RSS). Considerable attention has been paid to this sampling method in 
the statistics literature for the last ten to fifteen years. In this paper we will review 
the recent developments in area of RSS, concentrating mainly on the last five to six 
years. 

1. INTRODUCTION

McIntyre (1952) was the first to propose the method of ranked set sampling 
(RSS) to estimate population mean. Takahasi and Wakimoto (1968) independently 
described the same sampling method and presented the mathematical theory, which 
supports McIntyre’s intuitive assertion. Dell and Clutter (1972) showed that errors 
in ranking reduce the efficiency of the RSS mean relative to the SRS mean. 
However, the RSS mean remains unbiased and more efficient than the SRS mean 
unless the ranking is so poor as to yield a random sample, in this case the RSS 
estimator performs just as well as the SRS mean.

The RSS method can be summarized as follows: From a population of interest,
n random sets each of size n are selected. The members of each random set are 
ranked with respect to the variable of interest by a cost free method e.g. eyeballs. 
From the first ordered set, the smallest unit is selected for measurement. From the 
second ordered set the second smallest unit is selected for measurement. This 
continues until the largest element from the last ordered set is measured. This 
process may be repeated r times (i.e. r cycles or replications) to yield a sample of 
size rn. These rn units form the RSS data.

Let X1, X2, …, Xn be a random set with probability density function f (x) with 
a finite mean  and variance 2. Let X11, X12,..., X1n; X21, X22, ..., X2n; ...; 
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Xn1, Xn2, ..., Xnn be independent random variables all with the same cumulative 
distribution function F(x). Let Xi(1), Xi(2), ..., Xi(n) be the order statistics of Xi1, Xi2, 
..., Xin (i = 1, 2, ..., n). Let X (i:n) denote the ith order statistic from the ith set of size 
n. If the cycle is repeated r times, let X(i:n)j denotes the ith order statistic from the ith 

set of size n in the jth cycle. We will refer to this sampling method, which is due to 
McIntyre (1952), and Takahasi and Wakimoto (1968) as MTW RSS. The unbiased 
estimator of the population mean (see Takahasi and Wakimoto, 1968) is defined as


 


n

i

r

j
jniRSS X

nr
X

1 1
):(

1
. (1)

In this paper we review the recent developments in the area of ranked set 
sampling in the last five to six years. In Section 2, we review the recent 
developments in the nonparametric statistics methods using RSS data. In Section 3, 
we consider the latest developments in the area of parametric statistics including 
parameters estimation and testing hypotheses. The modifications of the MTW RSS 
methods are discussed in Section 4. The use of RSS in the regression estimation 
and Bayesian statistics are considered in Sections 5 and 6 respectively. The other 
works, which cannot fit under any of the previous sections, are discussed in the last 
section. For classified and extensively reviewed work in the area of RSS from 1952 
to 1994 see Patil et al. (1994) and Kaur et al. (1995). Patil et al. (1999) presented a 
bibliographic list in most of the work published in the area of RSS up to the end of 
the twentieth century. 

2. NONPARAMETRIC STATISTICS USING 
RANKED SET SAMPLING 

Stokes and Sager (1988) were the first to consider a nonparametric setting 
using RSS data. They developed the properties of the empirical distribution 
function based on RSS and compared these properties to the usual empirical 
distribution function using simple random sample (SRS) data. Bohn and Wolfe 
(1992, 1994) developed the Mann-Whitney-Wilcoxon statistic using RSS for both 
perfect and imperfect ranking. Kvam and Samaniego (1993, 1994) developed the 
estimation of the population distribution function and population mean using 
unbalanced RSS data, i.e. the size of the ith set need not to be the same for all sets 
and the various order statistics need not to be represented an equal number of time. 
Bohn (1994) and Hettmansperger (1995) considered the one ranked-set sample 
problem. They considered procedures called sign-rank and sign statistics 
respectively for RSS data. For a review for the early nonparametric work in the 
area of RSS see Bohn (1996).

1) Koti and Babu (1996) derived the exact distribution of the RSS sign test 
under the null hypothesis i.e. the exact null distribution. They compared 
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the power of the sign test based on RSS with the usual SRS sign test for 
the double exponential, Cauchy and contaminated normal distributions. 
They showed that the RSS sign test is superior to the SRS sign test. 
Finally they discussed the problem of imperfect ranking. 

2) Huang (1997) considered the asymptotic properties of the nonparametric 
maximum likelihood estimator (NPMLE) of a distribution function using 
RSS. He showed that the NPMLE of a distribution function based on RSS 
is consistent and converges weakly to normal process. He also developed 
the covariance function of the limiting process. Finally he showed that the 
NPMLE of a distribution function based on RSS is asymptotically 
efficient compared to the usual NPMLE based on SRS.

3) The Neyman’s optimal allocation requires the sample size corresponding 
to each rank to be proportional to its standard deviation, but in most 
applications the standard deviation is unknown. The performances of RSS 
methods are affected by the allocation of order statistics in the sample. 
Kaur, Patil, and Taillie (1997) considered the effects of unequal allocation 
for RSS with skew distributions on the estimation of the population mean. 
They considered two models of unequal allocation of skew distributions. 
The first model is the t-model where the largest order statistics is 
quantified t ( 1) times more than the rest of order statistics. The second 
model is the (s, t)-mode where the two largest order statistics are 
quantified more than the rest by factors of (s, t), 1 s t, respectively. The 
Neyman’s optimal allocation is performs better than the (s, t)-model, 
while the (s, t)-model perform better than the t-model. Finally the t-model 
performs better than the equal allocation model. 

4) The RSS procedure that we described in Section 1 is called the balanced 
RSS procedure (i.e. in the ith set we observe  :i nX the ith order statistics 

in the ith set of size n). But under the generalized version of RSS we 
observe  ;i ir nX , so the data set is      1 1 2 2: : :( , , ..., )

k kr n r n r nX X X . Kim 

and Arnold (1997) considered estimating the distribution function F under 
both balanced and unbalanced RSS. They start with a Dirichlet process as 
a prior for F. The estimate of distribution function F is updated (the 
posterior distribution function is again a Dirichlet process) based on a 
completed data. These two steps are repeated until the estimate of F is 
stabilized.

5) Barabesi (1998) developed a simple and fast method to calculate the exact 
distribution of the RSS sign test statistic based on the probability 
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generating function. He developed his method using the Mathematica 
package. 

6) Chen (1999) was the first to use RSS data to estimate the density function 
using the kernel method of density estimation. He studied the properties 
of the RSS density estimation and found that the bias of the RSS density 
estimate is the same as the SRS estimate of the same size and the variance 
of the RSS estimate as a function of the set size decreases as the set size 
increases. The mean integrated square error of the pdf ( )f x is defined by 

2ˆ ˆ( ) [ ( ) ( )]MISE f E f x f x  , where ˆ ( )f x is the density estimation of ( )f x . 

The MISE of the RSS estimate of ( )f x is found to be smaller than the 

SRS estimate whether or not there are errors in ranking. Finally some 
simulation studies were carried to find out how much MISE can be 
reduced by using RSS using the normal, gamma and extreme value 
distributions. 

7) Aragon, Patil and Taillie (1999) reviewed the work of Stokes and Sager 
(1988) on the empirical distribution function using RSS and Bohn (1992) 
on the Mann-Whitney-Wilcoxon test based on RSS. They proposed a 
model for ranking error probability matrix, which can be use for 
evaluating RSS-based statistical methods. 

8) Hartlaub and Wolfe (1999) generalized the one- and two-sample location 
problems considered in the previous nonparametric work in the area of 
RSS to m-sample location problem. They developed the RSS procedures 
for the m-sample location setting under the restriction that the treatment 
effect parameters follow a restricted umbrella pattern. They developed 
distribution-free test statistics for both cases where the peak of the 
umbrella is known and when it is unknown. They studied the properties of 
the null-distribution in the case of known peak of the umbrella. Finally 
they discussed finding the critical values for the test statistics for both 
cases of known and unknown umbrella peak. 

9) The problem of estimating ( )p X c   using RSS is addressed by Li, 

Sinha and Chuiv (1999). They showed that the use of RSS instead of SRS 
improves the estimation of  when the distribution is unspecified i.e. 
distribution free. They compared the performances of different estimators 
of  using SRS and RSS methods and concluded that if the underlying 
distribution is normal, RSS estimators will outperform the SRS 
estimators.
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10) Statistical inference using RSS depends on the location of measured 
observations. Özturk (1999a) suggested and used a selective design that 
determines the location of the measured observations in RSS. The 
sampling procedure may be summarized as follows: Select a set of k 
elements from a population with a cdf F(x), rank them with respect to the 
variable of interest and measure only  1;d kX , where  1;d kX is the d1-st 

order statistic in the set. Return the remaining observations to the 
population. Then select another set of size k and measure  2 ;d kX and 

again return the remaining observations to the population. Repeat this 
process r times to get      1 2; ; ;, ,...,

rd k i d k i d k iX , for i = 1, 2, …, n. This is 

called a selective RSS. The measured      1 2; ; ;, ,...,
rd k i d k i d k iX are a cycle 

in the selective RSS. If r = k then a cycle in a selective RSS is the same as 
a cycle in usual RSS. The set  1 2, , ..., ;rD d d d k is called s design, 

where 1 2, , ..., rd d d determine the locations of the measured 

observation in a set of size k. He considered the one and two-sample sign 
test based on selective RSS and compared it to that based on MTW RSS. 
He showed that the selective RSS has higher Pitman efficiency than the 
MTW RSS of the same size when the design measured only the middle 
observations.

11) Özturk (1999b) developed a two-sample test using RSS. He showed that 
the test is a distribution free test and there is substantial increase in the 
efficiency of the test even with error in ranking. But the probability of 
type I error is inflated in the presence of errors in ranking. Finally he 
showed that the newly developed test is superior comparing to the two-
sample Mann-Whitney-Wilcoxon RSS test if the underlying distribution 
has a heavy and long tail distribution and the number of observations in 
each cycle is small. 

12) Presnell and Bohn (1999) developed the U-statistics using RSS data for 
one and two sample cases. They showed that their statistics are 
asymptotically efficient compared to their counterpart the SRS U-
statistics, whether or not there are errors in ranking. They pointed out 
some errors in ranked set sampling literatures. Finally they came up with 
counterexamples to show that it is not necessary that perfect ranking will 
lead to more efficient estimators than imperfect ranking. 

13) Chen (2000) investigated the properties of the sample quantiles of RSS. 
He showed that the RSS quantiles are strongly consistent estimator for 
any set size and obtained the asymptotic normality for a large sample size. 
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He also obtained the Bahadur representation of the RSS quantiles. The 
confidence interval and testing of hypotheses for the population quantiles 
were developed using RSS data. The newly developed RSS quantiles 
were compared with the usual SRS quantiles via their relative efficiency. 
The gain in efficiency by using RSS was shown to be very large, the 
largest being when the inference is on the median. Finally it was noticed 
that the gain in efficiency is decreases if we move away from the median 
to the extreme quantiles. 

14) Özturk and Wolfe (2000) investigated the effect of different RSS 
protocols on sign test statistic. These RSS protocols are sequential, mid-
range and fixed RSS designs. He showed that the sequential and mid-
range RSS are optimal if only one observation from each set is measured. 
The fixed RSS design is optimal if only the middle-order statistic is 
measured. The sequential RSS protocol can be summarized as follows: 
Randomly selects cn units from an infinite population and partitions these 
units into c set each of size n units. In each set, rank the units with respect 
to a variable of interest. From the first set measure the 
observations (1) ( ), ..., tX X , where t = n/c is an integer. From the second 

set, the observations ( 1) (2 ), ...,t tX X are measured. This process 

continues until the observations ( 1) ( ), ...,n t nX X  are measured from the 

last set. The cycle may be repeated r times. For the mid-range RSS 
protocol, the observations at equal distance from the middle rank are 
measured in each set. Finally in fixed RSS protocol the same order 
statistics in each set are measured. For an integer  1, ...,t n , let 

 1, ...,t tD d d be the set of order statistics to be measured from each 

set of size n units. 

3. PARAMETRIC STATISTICS BASED ON 
RANKED SET SAMPLING 

3.1 Parameter Estimation using RSS
Even though RSS method is nonparametric in nature several authors considered 

using RSS data to estimate the parameters of well-known distributions. Lam et al. 
(1994) considered the estimation of the parameters of two-parameter exponential 
distribution. Ni Chuiv et al. (1994) studied the estimation of the location parameter 
of the Cauchy Distribution. Fei et al. (1994) explored the estimation of the 
parameters for the two-parameter weibull and extreme-value distributions using 
RSS. Sinha et al. (1994) considered the estimation of a gamma mean based on RSS 
Lam et al. (1995) considered the estimation of the location and scale parameter of 
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the logistic distribution using RSS. See Ni Chuiv and Sinha (1998) for a review of 
some development in the parametric estimation using RSS. 

1) Stokes (1995) studied the maximum likelihood estimators under RSS of 
the parameters of the location-scale family having cumulative distribution 
function (cdf) of the form  ( ) /F x   with F known. Stokes (1995) 

considered several examples and demonstrated the dominance of the 
mle’s under RSS over other estimators. The best linear unbiased 
estimators (BLUEs) of the location and scale parameters were proposed in 
the same study and shown to do nearly as well as their maximum 
likelihood counterparts in most cases. 

2) Bhoj and Ahsanullah (1996) considered estimation of the parameters of 
the generalized geometric distribution using RSS. They obtained the 
minimum variance linear unbiased estimators (MVUE) of the parameters 
 and  for the generalized geometric distribution of the form 

  11( ) ( ) /
ppf x p b x a
     , ( )a x b a         based on 

RSS. The MVUE of  and  based on RSS were shown to be more 
efficient than the MVUE based on n ordered statistics given by Downton 
(1954). Further the MVUE of the population mean  based on RSS is 
more efficient than the usual RSS estimator of the population mean. 

3) Sinha, B., Sinha, A. and Purkayastha (1996) proposed some best linear 
unbiased estimators (BLUEs) of the parameters of the normal and 
exponential distributions under RSS and some modifications of it. They 
first addressed the issue of how best to use the RSS, namely 

 ; , 1, ...,i nX i n to estimate  and came up with a BLUE of  which is 

given by ( ; )
1 1

ˆ 1/
n n

blue i n i i
i i

X
 

      
  , where i is the variance of the 

ith order statistics in a sample of size n from a standard normal population. 
They derived the BLUE of  based on a partial RSS, namely 

 ; , 1, ...,i nX i l , where l n . Also, they considered selecting the 

median of the ith sample in estimating . To estimate the variance of the 
normal distribution they proposed several estimators using RSS and some 
of its modifications. Most of the newly proposed estimators are more 
efficient than SRS estimators. But ˆ blue and the estimator based on the 

median of the ith sample are more efficient than the mean based on the 
MTW RSS. They proposed several estimators for the exponential 
parameter , the first being BLUE for  based on the RSS, which is more 
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efficient than MTW RSS estimator for . The other estimators are based 
on partial RSS.

4) Barnett and Moore (1997) extended the work of Stokes (1995) and Sinha 
et al. (1996) to come up with an optimal ranked-set of the location and 
scale parameters when the nuisance parameter is unknown and the 
distribution need not to be symmetric. They showed that their estimators 
are more efficient than the estimators suggested by Stokes (1995) and 
Sinha et al. (1996) in the case of perfect ranking for the normal and 
exponential distributions. Unlike Stokes (1995) and Sinha et al. (1996) 
they considered the case of imperfect ranking and came up with BLUEs 
for the parameters. 

5) Bhoj (1997a) obtained the minimum variance unbiased estimator 
(MVUE) of the location and scale parameters of the extreme value 
distribution using RSS. He compared these estimators with the ordered 
least squared estimates given by Lieblein and Zelen (1956). The MVUE 
turned out to dominate their order least squared counterparts. He also 
introduced an unbiased estimator for the population mean and showed it 
be more efficient than the MTW RSS. Finally he used a modification of 
RSS to come up with a more efficient estimator for the scale parameter in 
case of small sample size.

6) Li and Ni (1997) discussed the efficiency of using RSS to estimate the 
parameters of the normal, exponential two-parameter exponential and 
Cauchy distributions compared to the usual estimators using SRS. They 
established that using the right modifications of RSS would often result in 
a more efficient estimator for some parameters of those distributions.

7) As we saw many authors used the BLUE based on RSS to estimate the 
population mean and other parameters of interest instead of the MTW 
RSS estimator. However, the underlying distribution should be known to 
use the BLUE method. Tam, Yu, and Fung (1998) investigated the 
sensitivity of the BLUE to the misspecification of the underling 
distribution. They considered several distributions and compared their 
performance under both the usual RSS and the BLUE based on RSS. It 
truned out that in general the sensitivity of the BLUE depend on the 
kurtosis of the underling distribution. 

8) The exponential distribution is very widely used in modeling real life 
problem. Bhoj (1999a) discussed estimating the exponential distribution 
parameter using three RSS methods. These methods are MTW RSS, 
NRSS suggested by Bhoj (1997c) and MRSS introduced by Bhoj (1999b). 
He compared these estimators among themselves and with the estimator 
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based on the ordered least squares. He found that the estimator based on 
NRSS is the most efficient one. 

9) Bhoj (1999a) considers the estimation of the scale parameter of the 
Rayleigh distribution. He used the MTW RSS, NRSS suggested by Bhoj 
(1997b) and other modification of RSS method to estimate the parameter 
of interest. The newly suggested estimators were compared to the least 
squares estimator based on order observations. And found to be more 
efficient. 

10) Chen (2000) generalized Stokes’s (1995) results for multi-parameter 
families. He proved that the Fisher information matrix under RSS is equal 
to the Fisher information matrix under SRS minus an additional positive 
definite matrix. This showed that the maximum likelihood estimators 
under RSS are always more efficient than their counterparts based on 
SRS. He studied the effect of the errors in ranking and considered 
different models. Finally the effect of the underlying distribution is 
considered. 

Many aspects of RSS have been considered in the literature. Most of the work 
has been devoted to estimation of the population mean , very little has been done 
in the estimation of the population variance 2. Stokes (1980) treated this problem 
and suggested an estimator for 2 which asymptotically unbiased and more 
efficient than the usual SRS unbiased estimator for 2. 

Yu, Lam, and Sinha (1999) addressed the issue of variance estimation using 
RSS for the normal distribution. They suggested several unbiased estimators for 2

based on the balanced and unbalanced RSS data. They proposed several estimators 
for 2 based on single cycle and compared these estimators to Stokes’s (1980) 
estimator. The new estimators truned out to be more efficient. In the case of more 
than one cycle they combined information from different cycles in different ways 
and proposed several unbiased estimators for 2. Finally they considered the 
problem of unequal replications (unbalanced RSS) and came up with suitable 
unbiased estimator for 2. 

3.2 Testing Hypotheses using RSS
We now consider the work that has been done in the area of hypothesis testing 

using RSS. 

1) In Abu-Dayyeh and Muttlak (1996) some hypothesis testing for the 
exponential and uniform distributions are considered. For the exponential 

distribution with pdf 1 /( ) xf x e  
   , they considered testing the 
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hypothesis :o oH    vs. :a oH    . They proposed a test based on 

RSS and compared it with the uniformly most powerful test (UMPT) of 
size  based on SRS. It truned out that their suggested test is more 
powerful than the UMPT. Also, they derived the likelihood ratio test 
(LRT) for the hypothesis : 1oH   vs. : 1aH   based on RSS data and 

found it to be more powerful than SRS test. For the uniform distribution 

with the pdf 1( ) , 0f x x
      , they considered the following 

hypothesis is :o oH    vs. :a oH    . In comparison with the UMPT 

based on SRS, they found their proposed test to be more powerful. 

2) Muttlak and Abu-Dayyeh (1998) considered testing some hypotheses 
about the population mean  and variance 2 of the normal distribution. 
For the population mean, they considered the case of 2 is known and 
unknown, in testing the hypothesis :o oH    vs. :o oH    . They 

proposed test statistics based on RSS for both cases. They showed their 
proposed test statistics are more powerful than the SRS UMPT. A similar 
conclusion was reached when they compared their proposed test of the 

hypothesis 2 2:o oH    vs. 2 2:a oH    with the SRS UMPT he test 

based on RSS UMPT of the same hypothesis. 

3) Shen and Yuan (1996) proposed a test for the normal mean based on 
modified partial ranked set sample when the variance is known. They 
showed that this test has more power as compared to the traditional 
normal test. This test is similar to the test derived by Shen (1994). Both 
tests are found to be more powerful than the usual normal test using SRS. 

4. MODIFIED RANKED SET SAMPLING METHODS

Several modifications of the RSS method have been proposed. These 
modifications were found to be necessary because RSS is often difficult to apply in 
the field. It is also subject t errors in ranking, which reduce its efficiency. Thus the 
proposed modifications are aimed at remedying these problems. And some times 
only to increase the efficiency of the estimators of the parameters under 
consideration. 

1) Muttlak (1996c) suggested a modification for RSS called pair RSS, which 
may be summarized as follows: In the case of even set size select k = n/2 
sets of size n units and rank the units within each set with respect to a 
variable of interest. From the first set select the smallest and the largest 
for measurement. From the second set select the second smallest and the 
second largest for measurement. Continue until the units with the kth
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smallest and (k+1)th largest from the kth set are chosen for measurement. 
For the case of odd set size select L = (n+1)/2 random sets of size n units. 
From L-1 sets and repeat the above procedure. From one set select for 
measurement the median of the set. He used the proposed pair RSS to 
estimate the population mean, showed it to be unbiased, and has smaller 
variance the usual SRS mean. 

2) Samawi, Ahmed, and Abu-Dayyeh (1996) studied the properties of the 
extreme ranked set sampling (ERSS) in estimating the population mean. 
The ERSS procedure can be summarized as follows: Select n random sets 
of size n units from the population and rank the units within each set with 
respect to a variable of interest by visual inspection. If the set size n is 
even, select from n/2 sets the smallest unit and from the other n/2 sets the 
largest unit for actual measurement. If the set size is odd, select from 
(n-1)/2 sets the smallest unit, from the other (n-1)/2, the largest unit, and 
from one set the median of the sample for actual measurement. The cycle 
may be repeated r times to get nr units. These nr units form the ERSS 
data. Let Xi (1) and Xi (n) be the smallest and the largest of the ith set 
respectively (i = 1, 2,..., n). If the cycle is repeated r times, the estimator 
of the population mean using ERSS is defined in the case of an even set 
size as 

1erssX = (1) ( )
1 1 1

1 r L n

i j i n j
j i i L

X X
nr    

  
 

   ,

where L = n/2. In the case of an odd set size, the estimator of the 
population mean is defined as

2erssX = 
1

1

(1) ( ) (( 1) / 2)
1 1 2

1 Lr n

i j i n j i n j
j i i L

X X X
nr 

   

 
   

 
   ,

where L1= (n-1)/2 and Xi ((n+1)/2) is the median of set i = (n+1)/2. They 
showed that the ERSS estimators are more efficient than usual SRS mean 
and unbiased if the underlying distribution is symmetric. Also, it is more 
efficient than RSS estimator for some probability distribution functions, e. 
g. uniform distribution. 

3) Bhoj (1997b) proposed a modification to the MTW RSS called it new 
ranked set sampling (NRSS). The method is simply select n sets of size 
2m units where n=2m. The 2m units of each set are ranked among 
themselves by visual inspection or any cost free method. Select from each 
ordered set two units for actual measurement. The choice of the two units 
from each set depended on the underlying distribution and the 
parameter(s) to be estimated. He used this method estimate the location 
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and scale parameters of the rectangular and logistic distributions. The new 
method improved the efficiency of the estimators considered with respect 
to the MTW RSS method. 

4) Bhoj (1997c) proposed another modification to the MTW RSS, called 
modified ranked set sampling (MRSS). In this sampling method we select 
only two order statistics instead of n as we do in the MTW RSS. We 
select n/2 jth order statistics and n/2 kth order statistics. The choice of the 
jth and kth order statistics depend on the underlying distribution and the 
parameter(s) to be estimated. He used this method estimate the parameter 
of the uniform and logistic distributions. Again using the MRSS method 
improved the efficiency of the estimators considered in this study. 

5) Muttlak (1997) suggested using the median ranked set sampling (MRSS) 
to estimate the population mean. The MRSS method can be summarized 
as follows: Select n random sets of size n units from the population under 
study and rank the units within each set with respect to a variable of 
interest. If the set size n is odd, from each sample select for measurement 
the ((n + 1)/2)th smallest rank (the median of the sample). If the set size is 
even, select for measurement from each of the first n/2 sets, the (n/2) th 

smallest unit and from the second n/2 sets the ((n +2)/2) th smallest unit. 
The cycle may be repeated r times to get nr units. These nr units form the 
MRSS data. If the set size is odd, let Xi((n+1)/2) be the median of the 
ith sample (i = 1, 2, ..., n) i.e. the ((n+1)/2)th order statistic of the ith set. If 
the set size is even let Xi(n/2) be the (n/2)th order statistic of the ith set 
(i = 1, 2, ..., L= n/2) and Xi((n+2)/2) be the ((n+2)/2)th order statistic of the ith

set (i = L+1, L+2, ..., n). The estimator of the population mean based on 
MRSS is defined in the case of an odd set size by

X mrss1= (( 1)/2)
1 1

1 r n

i n j
j i

X
nr 

 
  ,

and in the case of an even set size, it is defined as

X mrss2= ( /2) (( 2)/2)
1 1 1

1 r L n

i n j i n j
j i i L

X X
nr 

   

  
 

  

where L = n/2. He showed MRSS estimators are unbiased for the 
population mean and more efficient than the RSS estimator is if the 
underlying distribution is symmetric. 

6) The MTW RSS is an equal allocation scheme in the sense that all of the n 
order statistics are replicated equal number of times, namely, r number of 
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times. But it is quite possible that the ith order statistic is replicated ri 
number of times, i = 1, 2,…, n. Yu, Lam and Sinha (1997) considered 
estimation of the population mean under the above sampling procedure. 
They proposed an estimator for the population mean as: 

( : )
1 1

1
ˆ /

imn

RSS i n j i
i j

X r
n  

    with its variance 2
( : )2

1

1
ˆvar( ) /

n

RSS i n i
i

r
n 

   . 

It is not difficult to see that ˆvar( ) var( )RSS SRSX  for the possible 

location of ri.

7) Muttlak (1999a and 1999b) considered two phase sampling, in the first 
phase, units are selected with probability proportional to their size. In the 
second phase unites are selected using MRSS or ERSS to increase the 
efficiency of the estimators relative to SRS. In both papers he considered 
estimating the population mean and the population size using MRSS and 
ERSS. 

8) Al-Saleh and Al-kadiri (1999) investigated a double ranked set sampling 
(DRSS) approach to RSS. This approach simply consists of applying the 
RSS technique to the resulting RSS samples. For example if the set size 
n = 2, then to obtain a DRSS of size 2, 8 randomly selected elements are 
divided into 4 sets of size 2 each. Applying the RSS procedure to this 
gives obtain 2 RSS of size 2 each. Applying the procedure again to the 
two sets gives one set of size 2, which is called Double RSS sample. It 
turns out that all identities that are valid for RSS continue to be valid in 
the case of DRSS. The efficiency of the method in estimating the 
population mean is higher than that of RSS. For example, for the uniform 
distribution with n =3, the efficiency of DRSS is 3.03 while it is 2.0 for 
RSS; for n = 4 it is 4.71 while it is 2.5 for RSS. The difficulty in ranking 
in the second stage is also investigated. It was shown using the concept of 
“Level of Distinguishability” that the ranking in the second stage is much 
easier than in the second stage; thus no extra effort is needed. That makes 
the method of practical use.

9) Al-Saleh and Al-Omari (1999) considered the multistage version of RSS 
and introduced the concept of steady state RSS and steady state 
efficiency, which is simply the limit of the efficiency as the number of 
stages gets large. The usefulness of this concept in Monte Carlo 
simulation was explored. The new technique was illustrated here by 
considering the yield of olive trees. The data, which was collected by the 
second Author, represents a useful application of RSS since ranking of the 
variable of interest is much easier than the actual measurement of this 
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variable. The chosen ranker judged visually, the smallest and the largest 
olive yields of two contiguous randomly selected trees in a field of trees 
in West Jordan. The process was repeated by the same ranker until he got 
multi stage ranked set sample (MSRSS) with 3 stages (i.e. s = 3) of size 
n = 2. The whole cycle was repeated r = 4 times, to give 4 MSRSS of size 
2 each. The exact olive yield of each of the 64 trees used for the study was 
then exactly quantified. Hence it was possible to obtain the accuracy of 
the judgment ranking. This method turned out to be very useful in this 
application. 

10) Hossain and Muttlak (1999) proposed another modification for RSS 
called paired ranked set sampling (PRSS). In the PRSS procedure, select 
two sets each of size n units and rank the units within each set by visual 
inspection. Select for actual measurements the kth smallest units from the 
first set, where 1 k  n is pre-determined. From the second set select the 
(n-k+1)th smallest unit for actual measurement. The cycle may be 
repeated r times to obtain a sample of size 2n units. They used PRSS 
procedure to come up with MVUE for the population mean and standard 
deviation. They compared the PRSS estimators to the SRS and the usual 
RSS estimators for population mean and variance using various 
distributions namely the rectangular, normal, logistic, double exponential 
and exponential distributions. They showed that the PRSS estimators are 
more efficient than the SRS estimators and most of the RSS estimators for 
the distributions considered. 

11) In the MTW RSS procedure we select n sets of size n units each, order the 
units within each set by visual inspection, and select the ith smallest unit 
from the ith set for actual measurement. Li, Sinha and Perron (1999) 
proposed to select r < n order statistics, independently from r sets with 

distinct indices 1, ..., rk k denoted by kwhere k is a subset of (1, …, n). 

For example for a given r first select r indices ( 1, ..., rk k ) from (1, …, n) 

at random without replacement, and then select 
1(1 )kX from random set of 

size n (as if from the first set) and select 
2(2 )kX form another random set 

of size n (as if from the second set) and so on. Select ( )rrkX from the rth 

random set (as if from the rth set). They study the properties of the 
estimators of  and 2 based on the new random selection sample 
(

1(1 ) ( ), ...,
rk rkX X ). They study both the parametric and nonparametric 

properties of the newly developed estimators for  and 2 for the normal, 
exponential and logistic distributions. 
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5. REGRESSION ESTIMATION USING 
RAKED SET SAMPLING 

RSS utilizes cost free auxiliary information to rank randomly selected units 
with respect to a variable of interest before measuring a subset of these units. 
These measured units are chosen, on the basis of the ranking information, this 
makes the RSS estimator of the population mean more efficient than the SRS 
estimator with the same sample size. Patil et al. (1993) were the first to compare 
RSS estimator to the SRS regression estimator of the population mean and showed 
that it is more efficient unless the correlation coefficient between the variable of 
interest and the auxiliary variable is high i.e. 0.85  . They assumed that 

variable of interest and the auxiliary variable jointly following the bivariate normal 
distribution. 

1) Muttlak (1995) presents a RSS method to simple linear regression line. In 
that method, a sample of n pairs of observations 1 1(1) 2 2(2)( , ), ( , ),x y x y

( )( , )n n nx y are obtained where the ( )i iy is the ith smallest value measured 

of the dependent variable in a potential sample size n and ix the 

corresponding observed values of the independent variable, i = 1, …, n. 
He proposed estimators of the slope and intercept. The estimation of the 
parameters of the one-way design of experiment lay-out and multiple 
regression models using RSS are considered by Muttlak (1996a, 1996b) 
respectively. He showed that estimators of the parameters of interest 
based on RSS are more efficient than their counterpart SRS estimators. He 
used real data to illustrate the computations. 

2) Samawi and Muttlak (1996) used the RSS to estimate the ratio of two 
population means. They showed that using RSS would increase the 
efficiency of the ratio estimator of RSS data as compared to the SRS ratio 
estimator.

3) Yu and Lam (1997) considered the case when the variable of interest Y is 
difficult to rank and measure, but there is a concomitant variable X that 
can be used to estimate the rank of Y. They proposed regression-type RSS 
estimators of the mean of the population for variable Y when the 
population mean of X is known and when it is unknown. Under the 
assumption that Y and X are jointly following the bivariate normal 
distribution, they showed that their estimators are more efficient than the 
RSS and SRS estimators unless 0.40  . Finally they considered the 

case when the normality assumption does not hold and pointed out that 
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the results still hold if the shape of variable X only slightly departs from 
symmetry.

4) Following the footsteps of Patil et al. (1993), Muttlak (1998) compared 
the median RSS estimator to the SRS regression and RSS estimators of 
the population mean. He showed that the median RSS estimator is more 
efficient than SRS regression estimator is unless is 0.90  . Also, the 

median RSS estimator dominates the RSS estimator under the assumption 
that the main and auxiliary variables are jointly following the bivariate 
normal distribution.

5) Barreto and Barnett (1999) considered a different approach from the one 
considered by Muttlak (1995) to estimate the slope and the intercept of the 
simple linear regression line. They considered im samples of size im at 

each value of the independent variable ix , from which they choose and 

measure the RSS , 1(1) , 2(2) , ( ), , ...,
i ii i i m my y y , i =1, …, n. Clearly they 

finish up with n RSS samples one at each value of the independent 
variable. The best linear unbiased estimators for the slope and intercept 
are proposed based on the RSS data and shown to be more efficient for 
normal data than the usual simple linear regression estimators. 

6. BAYESIAN STATISTICS WITH RANKED SET SAMPLING 

1) Al-Saleh and Muttlak (1998) were the first to consider the Bayesian estimation 
using RSS. In this study the Bayesian estimation based on RSS was 
investigated for exponential and normal distribution. Given a RSS from the 
exponential distribution and using the inverse gamma prior for the mean of the 
distribution, the Bayes estimator was derived. The Bayes risk of this estimator 
was compared to the Bayes risk of the corresponding estimator using SRS. It 
turned out that the Bayes estimator with ranked set sampling is more efficient 
than that with SRS. Depending on the parameters of the prior and the set size, 
the efficiency can be as large as 6.8 for set size 5 and as low as 1.5 for set size 
2. Similar results are obtained for the normal distribution. The Authors 
realized the complication of the close form of the Bayes estimate. For 
example, for the estimation of the exponential mean  , when the prior is 
inverse gamma with , 1r    , the closed form of the Bayes estimator for a 

RSS sample of size 2 takes the form

( 1) ( 1)
1 2 1 2

( 2) ( 2)
1 2 1 2

(2 1) (2 2 1)1ˆ
1 (2 1) (2 2 1)

r r

r r

y y y y

r y y y y

   

   

    
 

     
.
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2) Kim and Arnold (1999) considered a generalized version of RSS, Bayesian 
parameter estimation of some specified parameters under both balanced and 
generalized RSS was accomplished using the Gibbs sampler. An algorithm 
was provided. The Authors considered the case of the exponential mean with 
gamma prior. Their numerical results show that the RSS is superior to the 
SRS.

3) Kvam and Tiwari (1999) considered the Bayes estimation of the distribution 
function from RSS data. They used the Singular ordered Dirichlet distribution 
as a prior. They derived the Bayes estimator of the distribution function as 
well as the generalized MLE, using the mean squared error loss function. No 
close form was provided in either case. The Authors used the Gibbs sampling 
technique to approximate the estimators. The methods were illustrated with 
data from the Natural environmental Research council of Great Britain, 
representing water discharge of food on the Nidd River in Yorkshire, England.

4) Lavine (1999) examined the RSS procedure from a Bayesian point of view. He 
determined whether RSS provides advantages over simple random sampling, 
and explored some optimality questions. The following is a summary of the 
main results of the paper:

Let X be the data from an experiment with density f and let ( )p  be the 

prior density of  then the quantity 

( | )
( ( | )) ( ) ( | ) log

( )

f x
E I X p p f x dx

f x


  

is used to measure the expected utility of a sample. The author stated and 
proved the following theorem: 

For any prior p and sample size 0n  , there exists a collection of ranks 

1 2, , , nr r r such that the expected information in a RSS 
1 2
, , ,

nr r rY Y Y is 

greater than or equal to the expected information in a simple random sample of 
size n. The author provided an example to show that it is not necessarily true 
for arbitrarily selected ranks, that RSS sampling is more informative than SRS.

5) Al-Saleh, Al-Shrafat, and Muttlak (2000) considered the Bayesian estimation 
based on RSS. They showed that the Bayes risk of the Bayes estimator based 

on SRS is the average Bayes risk of all possible nn RSS plans plus a positive 
quantity. So, it was concluded that there exists at least one RSS plan, for 
which the Bayes estimator dominates the Bayes estimator based on SRS. i.e., 
the Bayes risk of the Bayes estimator with respect to RSS is smaller than the 
Bayes risk of the Bayes estimator with respect to SRS for at least one RSS 
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plan. If f belongs to the exponential family then a dominant RSS plan is the 
balanced one. Milk yields of 403 sheep was collected and used to evaluate 
RSS and Bayesian RSS.

6) It was noted by Al-Saleh and AbuHawwas (2000) that the RSS Bayes 
estimators have very complicated closed forms even for small sample sizes. 
Their computations in the simple exponential case for sample sizes of 2 and 3 
demonstrated this fact. This is due to the fact that the likelihood equation 
becomes very complicated, thus making the posterior also complicated no 
matter how simple the prior may be. These complications are due to the fact 
that there is no minimal sufficient statistic of lower dimension than the 
dimension of the data itself. This lower dimension minimal sufficient statistic 
usually exists in the case of SRS. In this paper the Authors used the concept of 
multiple imputation proposed by Rubin (1987), to obtain a formula that relates 
the posterior of the parameter using RSS to that using the full data. This 
formula facilitates the study of some of the theoretical properties of Bayes 
estimators and also provides clues for approximating the complicated exact 
forms.

7. OTHER WORKS BASED ON RANKED SET SAMPLING 

Almost all the RSS works reviewed so far assume that we are sampling from an 
infinite population. 

1) Patil, Sinha and Taillie (1995) were first to consider RSS and sampling from a 

finite population. They showed that RSS sampling mean ( : )
1 1

1
ˆ

n r

RSS i n j
i j

X
nr  

   

from a finite population is an unbiased estimator for the population . They 
derived more than one expression for the variance of ˆ RSS . The final 

expression is given by 

21 1
ˆvar( )

1RSS
N nr

nr N

       
 

,

where, N is the population size, 
!( 1)!

( 1)...( 2 1)

n n

N N N n


  

  
, and  = (x - )

(x - ). The entries of the matrix NxN are functions of the population size N 
and the size of the set n, but do not depend on the population values x. When 
the population follows a linear or quadratic trend, they derived an explicit form 
for ˆvar( )RSS . Finally they noticed that the efficiency of the RSS depends on 

the number cycles r unlike the infinite population case. 

NCBA&E



Chapter Four 49

2) Let X1, …, Xn and Y1, …, Ym be a SRS without replacement from a finite 
population. Takahasi and Futatsuya (1998) showed that the joint distribution 
of ( )iX and ( )jX is positively likelihood ratio dependent and ( )jY is negatively 

regression dependent on ( )iX , where ( )iX , ( )jX and ( )jY are the ith and jth order 

statistics. They used these results to show that when sampling without 
replacement from a finite population the efficiency of RSS estimator of the 
population mean with respect to SRS estimator is bounded below by one. 

3) Barnett (1999) investigated the use of RSS method in estimating parameters of 
environmental variables. He considered various RSS estimators for the 

population mean. These estimators are the sample mean of SRS ( X ), the 

mean of MTW RSS ( RSSX ), the estimator proposed by Kaur et al. (1997) rX

and the estimator suggested by Barnett and Moore (1997) *
X . He explored 

the various properties of the above estimators using the lognormal and extreme 

value distributions. In all case he showed that *
X achieved highest efficiency. 

The amount of gain over X and rX depend on the underlying distribution. 

4) Mode, Conquest and Marker (1999) investigated the conditions under which 
the RSS method will be a cost-efficient sampling method for environmental 
and ecological filed studies compare to SRS. They assumed that the ranking of 
the units is not cost free, but it will cost money. They present the ratios of 
measuring to ranking cost for the normal and exponential distributions with 
and without errors in ranking. They also presented the ratio of measuring to 
ranking cost for real life problem. 

5) Samawi (1999) is the first to use RSS in the area of simulation. He showed 
that the efficiency of Monte Carlo methods of integral estimation could be 
substantially improved by using ranked simulated samples (RSIS) in place of 
uniform simulated samples (USIS). The author considered the integral of the 

form 
1

0

( )k u du   . Note that  is simply ( ( )E k U , where ~ (0, 1)U U . Usual 

Monte Carlo methods simulate n values 1 2, , , nu u u from (0, 1)U and 

approximate  by the average of these values. In this paper instead, a RSS 
sample (1) (2) ( ), , nu u u is simulated from the uniform distribution. This can be 

done by taking ( )iU from if , where if is the density of the ith order statistics 

of a sample of size n from the uniform distribution. if is actually the density 

of a beta random variable with parameters & 1i n i  . It turns that the 
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average of these RSS values is a more efficient estimator than the usual 
estimator. Different Monte Carlo methods such as Crude, Antithetic, Control 
Variate and Importance sampling methods are investigated and found to 
benefit from this new sampling scheme.

6) Al-Saleh and Samawi (2000) used the idea of MSRSS and Steady state RSS 
introduced by Al-Saleh and Al-Omari (1999) to approximate integrals via 
Monte Carlo methods. This method provides substantial improvement over the 
usual Monte Carlo methods. The suggested procedure for estimating 

1

0

( )k u du   consists of generating an independent sample, say

2, ,i mU U U  
 from ( )

1
,

( )
0 , . .

i

i i
m x

f x m m
o w


   



This sample is called a steady state simulated sample (SRSIS). The average of 
this sample is used to estimate the above integral instead of a sample from the 
standard uniform distribution (USIS). The generation of SRSIS costs no extra 
computer time. It is shown that the estimator of  using SRSIS is unbiased with 
variance strictly less than that using USIS, and hence is more efficient. The 

efficiency for evaluating the quantity 
1

2

0

exp( )u du ranges from 1348 for n=50 to 

33719 for n=300. This actually shows how powerful and time saving this method is 
in approximating complicated integrals. Different Monte Carlo methods such as 
Crude, Antithetic, Control Variate, and Importance sampling methods were 
investigated and found to benefit from this new sampling scheme.
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CHAPTER FIVE

Random Ranked Set Samples 

1I. Rahimov and H.A. Muttlak
Department of Mathematical Sciences, 

King Fahd University of Petroleum & Minerals
Dhahran 31261, Saudi Arabia.

ABSTRACT

Ranked set sampling (RSS) as suggested by McIntyre (1952) uses fixed set size 
and number of cycles (or replications). In real life however, we may encounter 
problems that requiring random set size or number of cycles or both. In dealing 
with such problems we suggest several unbiased estimators of the population mean
using random ranked set sampling (RRSS) method. The efficiencies of the 
estimators of the population mean under RRSS and RSS are compared. The results 
show, under certain conditions, the efficiency of estimators is improved by using 
RRSS. The asymptotic properties of the newly suggested estimators are also 
considered. 

KEY WORDS

Asymptotic properties; discrete uniform distribution; efficiency; random 
number of replications; random set size; ranked set sampling. 

1. INTRODUCTION

The ranked set sampling (RSS) has attracted number of authors as an efficient 
sampling method, particularly in the area of environmental and ecological 
investigations. The RSS proposed by McIntyre (1952) is a sampling method 
proven to be more efficient when units are difficult and costly to measure, but are 
easy and cheap to rank with respect to a variable of interest without actual 
measurement. One can often tell which tree is the tallest without measuring all the 
trees. The RSS method can be summarized as follows: From a population of 
interest, k random sets each of size k are selected. The members of each random set 
are ranked with respect to the variable of interest by a cost free method e.g. eye 

                                                
1 I. Rahimov is Professor of Probability and Statistics and H.A. Muttlak is Associate 
Professor of Statistics, Department of Mathematical Sciences, King Fahd University of 
Petroleum & Minerals, Dhahran 31261, Saudi Arabia. The authors are indebted to King 
Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, for excellent research 
facilities.
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inspection. From the first ordered set, the smallest unit is selected for 
measurement. From the second ordered set, the second smallest unit is selected for 
measurement. This continues until the largest element from the last ordered set is 
measured. This process may be repeated r times (i.e. r cycles or replications) to 
yield a sample of size rk.

The RSS is based on fixed set sizes and number of replications. But in some 
applications we might be faced with problems where k, r, or both cannot be fixed. 
The example considered by Muttlak and McDonald (1992) demonstrates the need 
for at least r to be random. The line intercept (transect) is a widely used sampling 
method in ecological and environmental studies. Units are plants, animal species 
and etc. The RSS method will apply after the units are sampled using the line 
transect in the first phase. We know that the number of units n1 (say) that are 
intercepted by the line can not be fixed. Muttlak and McDonald (1992) assumed 

that 2
1n k r . Obviously, this assumption will be violated in most applications and 

hence we cannot use RSS. As we can see, this situation can be handled easily using 
the random ranked set sampling (RRSS) method by letting either r or k to be 
random. 

Takahasi and Wakimoto (1968) supplied mathematical theory to support 
McIntyre’s (1952) suggestion. Stokes and Sager (1988) developed the properties of 
the empirical distribution function based on RSS and compared these properties to 
the usual empirical distribution function using simple random sample (SRS) data. 
Bohn and Wolfe (1992, 1994) developed the Mann-Whitney-Wilcoxon statistic 
using RSS for both perfect ranking and ranking with errors. Kvam and Samaniego 
(1993, 1994) developed the estimation of the population distribution function and 
population mean using unbalanced RSS data i.e. the size of the ith set need not be 
the same for all sets and the various order statistics need not be represented an 
equal number of time. Koti and Babu (1996) derived the exact null distribution of 
the RSS sign test. Huang (1997) considers the asymptotic properties of the 
nonparametric maximum likelihood estimator (NPMLE) of a distribution function 
using RSS. Kim and Arnold (1999a, 1999b) considered estimating the distribution 
function F and Bayesian parameter estimation for specified parameter under both 
balanced and unbalanced RSS. Hartlaub and Wolfe (1999) generalized the one-
and two-sample location problems considered in the previous nonparametric work 
in the area of RSS to m-sample location problem. Presnell and Bohn (1999) 
developed the U-statistics using RSS data for one and two sample cases. Özturk 
(2000) investigated the effect of different RSS protocols on sign test statistic. 

Several authors considered some modifications of the RSS method either to 
improve the efficiency of the estimators or (and) to make the RSS method easier to 
implement in the field. Samawi et al. (1996) studied the properties of the extreme 
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ranked set sampling (ERSS) in estimating the population mean. Muttlak (1997) 
suggested the use of median ranked ret sampling (MRSS) to estimate the 
population mean. 

Li et al. (1999) introduced the notion of random selection of m sets out of 
k sets, m < k, where k is the set size in the usual RSS method. They studied the 
properties of the estimators of the population mean and variance based on the new 
randomly selected sample. 

For classified and extensively reviewed work in the area of RSS from 1952 to 
1994 see Patil et al. (1994) and Kaur et al. (1995). Finally for bibliography in the 
area of RSS see Patil et al. (1999). 

In this paper we provided a new direction of RSS via the notion of random 
ranked set sampling (RRSS). In Section 2 the idea of RRSS is introduced in the 
case of one replication i.e. single cycle. The cases of r replications with random set 
size and fixed set size with random number of replications are discussed in 
Sections 3 and 4 respectively. The general case of RRSS with random set sizes and 
replications is considered in Section 5. The asymptotic properties of the estimator 
of the population mean suggested for the general case of RRSS is established in 
Section 6. In Section 7 we calculate the efficiency of the newly suggested 
estimators for specific probability distributions and compare these to the RSS. 
Some concluding remarks are given in the last Section. 

2. SINGLE CYCLE WITH RANDOM SET SIZE

We consider the following family of random variables 

11 12 1 21 22 2 1 2 1 2, ,..., ; , ,..., ;....; , ,..., ;...; , ,...,i i iX X X X X X X X X X X X      where 

, , 1,2,...; {2,3,...}ijX i j    are independent and identically distributed 

random variables with cdf F(x), pdf f(x), mean  and variance 2. Let  be a 

random variable taking values from  2,3,...  . Let ( ) ( ) ( )
(1) (2) ( ), , ...,i i iX X X  

 be the 

order statistics of 1 2, ,..., , 1, 2,...,i i iX X X i   . To simplify the notations for any 

 , we will use ( )( )
( ) , 1, 2, ...,i i iy X i 

 . It is easy to see that 

( ) , 1,2,...,iy i 
 are independent but not identically distributed random variables. 

We propose 

( )
( )

1

1
i

i
y y









 (1)
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as an estimator of the population mean . Assume from now on that the random 

variable  and the family of random variables ( )
ijX  are independent. We denote 

also the cdf, pdf, mean and variance of ( )
iy  by ( )iF x , ( )if x , i , and 2

i
respectively. It follows from the definition of ( )

iy  for any  that

1

1
( ) ( )i

i
f x f x


 






. (2)

The properties of the estimator ( )y  are:

(a) ( )y  is an unbiased estimator of population mean  with a variance 

(b) 2
( ) ( )

1
( )V y E 

    
, where 2 2

( )
1

1
i

i
  



 


.

We can easily proof (i) by using the total probability formula and equation (2). 
For any we have 

( )

1 1 1

1 1 1
[ ] ( ) ( )i i i

i i i
E y xf x dx x f x dx

 

   
      

  


 
  

,

then 

( ) ( )
( )

1 1 1

1 1
( ) { [ ]} [ ] ( )i i

i i
E y E E y E y P

 



  

      

  









. (3)

This shows that ( )y  is an unbiased estimator of population mean  for any 

random variable . Now we consider the proof of (ii). Again by using the total 
probability formula we can write

( ) 2
( )

1 1

1
( ) {[ ] } ( )i

i
V y E y P

 



 

     


 


 

= ( ) ( ) 2

1 1

1
{ [ ( )]} ( )i i

i
E y E y P



 
   


 






,

then ( )( )V y  = 2
2

1

1
[ ]i

i
E







  . If denote 2 2

( )
1

1
i

i
  



 


, then we get

2
( ) ( )

1
( )V y E 

    
. (4)

Let us consider particular cases of the formula (4) for given distributions of . 
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Example 1: Assume that  has geometric distribution truncated at one with a 
parameter p. In this case we obtain ( )( )V y  in equation (4) as 

2 2
( ) ( )

2

1
( )V y p q







  


 
, (5)

where q = 1– p. 

Example 2: Let  have a binomial distribution truncated at zero and one with 
parameters n and p i.e. ( ) ( 1) , 2,3,...,P k P k k n        where  is a 

binomial random variable of the same parameters. In this case the variance of 

( )( )V y  is 

2
( ) ( )1

2

! 1
( )

!( )!1

n n

n n

q n p
V y

n qq npq
 



 
     





   

. (6)

Example 3: Let us assume that  has a uniform distribution on the set {2, 3,…, N}. 
In this case the variance ( )( )V y  is given by 

2
( ) ( )

2

1 1
( )

1

N
V y

N


 


 
 

. (7)

To compare the proposed estimator ( )y  to the RSS estimator, ( ) ( )
1

1 k

k i
i

y y
k 

  , 

where ( )iy is the ith order statistic from the ith set of fixed size k, k =2, 3,…, N, it is 

easy to see that 2
( ) ( )

1
( )k kV y

k
  , where 2 2

( )
1

1 k

k ki
ik 

   . As shown by Takahasi 

and Wakimoto (1968), 2 2
( ) ( 1)k k   and consequently 2

( )
1

kk
 is also decreasing on 

k. Using these results and equation (7) we may state the following proposition.

Proposition 1: There exist 2 N   such that ( ) ( )( ) ( )kV y V y  for k   and 

( ) ( )( ) ( )kV y V y  for k N   .

It is clear that the number  depends on the form of the initial density function 
f(x). In Section 7 we will consider different concrete distributions to obtain the 
value . 
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3. FIXED NUMBER OF CYCLES WITH RANDOM SET SIZE

Let 1 2, , ..., m   are independent and identically distributed random 

variables taking values from  . If the process of Section 2 is repeated m times, i.e. 
we replicate the cycle m times with set sizes ,i where i = 1, 2,…, m, we will 

obtain a sequence of estimators 
1 21 2, ,...,

mv my y y  . It is clear that , 1
iv iy i  are 

independent and identically distributed with the following mean and variance 
respectively 

( )
iv iE y   , 2

( )
1

( ) , 1, 2,...,
i iv i

i

V y E i m
 

    
(8)

Also, they have the common characteristic function

( ) v ii
ity

t E e     
= ( )

1
( )

i
i

j
j

E t






 
 

 
 , (9)

for 1i  , where ( ) ( )i
j t is the characteristic function of ( )i

jy  , the jth order statistic 

with set size i . We proposed as an estimator for the population mean  as

( )
1

1
i

m

m i
i

y y
m 


  .     (10)

It is not difficult to show that ( )my is an unbiased estimator for the population 

mean  with a variance

2
( ) ( )

1 1
( )

im
i

V y E
m 

 
   

.     (11)

To compare the proposed estimator ( )my with a similar estimator in the usual 

RSS case where 1 2 ... m k       , we have again to make comparison 

between 2
( )

1
i

i

E 
 

  
and 2

( )k . For example, this comparison may use Proposition 

1 in the case when the random variables , 1i i  have common discrete uniform 

distribution.

NCBA&E



Chapter Five 63

4. RANDOM NUMBER OF CYCLES WITH FIXED SET SIZE

Assume now that the set size is fixed and equal to k. From the usual (fixed set 
size) RSS, we have that ( )ky is an unbiased estimator of the population mean . 

Let the number of replications  be a random variable taking values from  and 
independent of ( )ky . We consider 

( ) ( )
1

1
k k i

i
y y






     (12)

as an estimator for . Since  and iky )( are independent it is easy to show that 

( )ky is an unbiased estimator for  with variance 

2
( )

( )
1

( ) k
kV y E

k

     
.     (13)

Example 4: Let us assume that  has a uniform distribution on the set

{2, 3,…, m}. Then the variance of ( )( )kV y is given by

2
( )

( )
2

1
( )

( 1)

mk
k

j
V y

k m j





 .     (14)

Let ( )ry denote the estimator of the RSS method with r replications. Then the 

variance of ( )ry is given 
2
( )

( )( ) k
rV y

kr


 .  We can compare the variance of ( )ky , 

which is given in equation (14) with the variance of ( )ry . We can see that the 

proposed estimator has smaller variance if 
2

1 1 1

1

m

jm j r



 . 

5. RANDOM NUMBER OF CYCLES WITH RANDOM SET SIZE

Let  be a random variable independent of , 1
iv iy i  and taking values from  . 

Then we propose 

( )
1

1
ii

i
y y



 




 ,     (15)

as an estimator for . Since  and 
iv iy are independent we can show that 
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( )
1

1
ii

i
E y E E y



 


            


1

1
ii

i
E E y






       
 , 

i.e. ( )y  is an unbiased estimator for . To find the variance of ( )y  we again use 

the total probability formula and obtain 

2

( )
1

1
( ) ( )

iv i
i

V y E E y





              
 = 

2
, 1

1
( )( )

i jv i v j
i j

E E y y




        
 .

Since [ ] [ ]
i jv i jE y E y   , we have 

2
( ) ( )

1 1
( )

i
i

V y E E 
         

    (16)

Example 5: Let  be a random variable having a Poisson distribution with 
parameter >0 truncated at zero and one, i.e. ( ) ( 1), 2P m P m m        , 

where  is a Poisson random variable of the parameter . In this case we obtain that 

2

1 1
( ), ( )

!1

j

j
E T T

j je






         
 .

Using the fact that 
1

( ) ( 1 )T e    


, we obtain the variance as

2
( ) ( )

0

1 1 1
( )

1i

u

i

e u
V y E du

ue



  

   
     

 .

Example 6: Let  have a uniform distribution on the set {2, 3,…, m}. In this case 
we have 

2
( ) ( )

2

1 1 1
( )

1 i

m

j i

V y E
m j 



 
    

 .

If in addition, the random variables , 1i i  also have a common uniform 

distribution on the set {2, 3, …, N} as in example 3, we obtain 

( )( ) m NV y A B  ,     (17)
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where 
2

1 1

1

m

m
j

A
m j




 and 2
( )

2

1 1

1

N

NB
N 

 


 
 

.

For comparison we consider the RSS unbiased estimator ( )ry with fixed set size 

k, 2  k  N and number of replication r, 2  r  m. The variance of ( )ry is given by 

2
( )

( )( ) k
rV y

kr


 . Thus we have to compare Am with 1/r and BN with 

2
( )k

k


. In the 

latter case the comparison is based on Proposition 1. The following proposition is 
helpful in comparing the RRSS with the usual RSS method

Proposition 2: Let 1, 2,3,...,r mA r r m    , then 

(a) 0r  for 
2

2 1

m m
r

m





;

(b) 0r  for 
3 22 2 1 2 1

2

m m m
r

m

   



.

To prove the proposition we consider the sum 

1 2
2 1

( 1)
r m

r
j j r

r j r j
m I I

jr jr  

 
       .

It is not difficult to see that 

1 2
1

1 1
( )

2

r

j
I r j

r 
   , and 2

1

2 ( 1)

r m
I

r r

 



.

If we use the opposite inequalities, then we obtain

1 4

r
I  , and 2

1
( )

2

r m
I m r

mr

 
  .

Using the bound for I1 and I2 in the previous equality we can obtain bounds 
for r. 

The efficiency of the random ranked set sampling (RRSS) with random set size 
and number of replications with respect to RSS with set size k and r replications 
may be defined as 

2 2
( ) ( )

2 2
( ) ( )

/
( , )

/

k m N k m N

k k

rk A B rkA B
k r

rk

   
  

 
.
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Evaluation of function ( , )k r for different probability distributions will be 

considered in Section 7.

6. ASYMPTOTIC PROPERTIES

In this section we will prove that under the very natural assumptions the 

estimator ( )y  is asymptotically normal. Recall that ( )
1

1
ii

i
y y



 




 and 

( )

1

1 i
i

ii j
ji

y y









 . As mentioned before , 1
iv iy i  are independent and identically 

distributed random variables such that [ ]
iv iE y   , 2 2

( )
1

( ) [ ]
i ii

i

B V y E   


and 

have characteristic function given in equation (9). Since 2 2
( ) ( 1)n n   , n 1 and i

are random variables taking values from  , we find that 2 2 2 2
( ) (1)i

B E       . 

Thus, if the initial distribution of ( )
ijX  has a finite variance, then 2B   .

Theorem: If 2   and    in probability then 

   21 /2
( )

1

2

x
tP B y x e dt 




   



Proof. Let 1
( )( )W B y

    , then by total probability formula we have 

1 1
exp ( ) ( )

i

itw
i

i

it
E e E y P

B





 

               
 








=
t

E
B

       
    

,

where   ( ) exp
ii

t E it y     . Since 2B   , we can write following 

representation for ( )t :

 
2 2

2( ) 1 ( )
2ii

t B
t itE y t t       ,     (18)

where ( ) 0t  as 0t  . Then if  in probability, then 1/ 2( ) 0   in 

probability. In fact for any  >0 there is a to > 0 such that ( )t   when ot t . 

Thus 
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        1/ 1/ ,1/ 1/ ,1/o oP P t P t               .  (19)

It is easy to see that the first probability on the right side of equation (19) is 

equal to zero and the second is less than  1/ op t  which tends to zero when 

p . Using equation (18) and the simple formula ln( ) 1 ( 1)o       , 

1  , we obtain that
2

ln ( )
2

t t

B

 
       

 

where ( ) 0P   as p . Consequently

2 /2p tt
e

B


  

   
  

,     (20)

as p . Since 1
t

B

 
  

 
, by the dominated convergence theorem (see 

Shiryaev, (1996), Theorem 3, p 187 and remark on p 258). We conclude from (20) 
that 

2 /2tt
E e

B


  

   
  

i.e. 1 ( )B y
  is asymptotically normal as p . 

7. EXAMPLES

In this section we will consider comparing the RRSS with the RSS for 
estimating the population mean  if the parent distribution is known to be normal, 
exponential, double exponential or logistic. Also, we are assuming that the set size 
 is a uniform random variable defined on the set [2, 3, …, N] and the number of 
replications  is following a uniform distribution on the set [2, 3, …, m].

We calculate the value of , 2 N   as suggested by Proposition 1, which 
will give ( ) ( )( ) ( )kV y V y  for different parent distributions. Table 1 shows the 

values of with the corresponding ( )( )V y  as if  = N with the values of 

NCBA&E



Random Ranked Set Samples68

( )( )kV y for set size k = 2, 3, 4, 5 for the above probability distributions. It is clear 

that the RRSS will do better than the RSS with set size k=3, for example if  = 5 
for most of the distributions considered in this study.

Table 1
The value of the random set size  along the corresponding variance 

( )( )V y  of RRSS as if N =  and the RSS variance ( )( )kV y

for different set size k and different probability distributions

Distribution
k

2 3 4 5

Normal

 ( )kV y 0.3408 0.1742 0.1065 0.0722

 3 5 9 14

 ( )V y  0.2575 0.1734 0.1053 0.0708

Exponential

 ( )kV y 0.3750 0.2037 0.1303 0.0913

 3 5 9 13

 ( )V y  0.2894 0.2001 0.1248 0.0911

Logistic

 ( )kV y 0.3480 0.1814 0.1128 0.0776

 3 4 9 14

 ( )V y  0.2647 0.2141 0.1104 0.0748

Double Exponential

 ( )kV y 0.7368 0.3854 0.2453 0.1719

 3 5 9 14

 ( )V y  0.5611 0.3848 0.2385 0.1630

The value of the efficiency ( , )k r of RRSS with respect to RSS is evaluated 

for k = 3, 5, r =3, 5, N =10, 15 and m = 10, 20. Table 2 shows different values 
( , )k r for the normal, exponential, double exponential and logistic distributions. 

We observe that the RRSS improves the efficiency of estimating the population 
mean if the values of N and m are moderately large. For example, if N = m =10 
and r = k = 3, the RRSS is about 66% more efficient than the RSS.
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Table 2
The efficiency of the RRSS ( , )k r with respect to 

RSS for different probability distributions

N m

k
3 5

r
3 5 3 5

Normal

10
10 0.655 0.410 0.146 - 0.423

20 0.774 0.624 0.455 0.092

15
10 0.755 0.591 0.408 0.014

20 0.844 0.739 0.623 0.371

Exponential

10
10 0.640 0.399 0.196 - 0.340

20 0.770 0.618 0.487 0.145

15
10 0.746 0.577 0.435 0.058

20 0.838 0.730 0.639 0.399

Logistic

10
10 0.643 0.404 0.165 - 0.392

20 0.772 0.620 0.467 0.112

15
10 0.751 0.585 0.418 0.029

20 0.841 0.735 0.628 0.381

Double Exponential

10
10 0.636 0.394 0.184 - 0.361

20 0.768 0.613 0.479 0.132

15
10 0.744 0.574 0.426 0.044

20 0.837 0.728 0.634 0.390

8. CONCLUDING COMMENTS

In this paper we have considered the case of random set size and/or random 
number of replications. The reason for considering such a method is to resolve the 
problem of unfixed number of units that we might come cross in real life problems 
like the line intercept (transect) example given in Section 1. It has been shown that 
under certain conditions the efficiency of the estimator of the population mean may 
be improved by using RRSS instead of RSS. The following conclusions are drawn: 
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1. In the case of single cycle with random set size we might be able to
improve the efficiency of the estimator of the population mean by using 
RRSS instead of RSS by choosing the suitable distribution for the set size. 
The result of Table 1 confirms this fact in the case of choosing the discrete 
uniform distribution.

2. If the set size is fixed and the number of replications is random we can 
easily show that the RRSS is more efficient than RSS, if the number of 
replications are following the discrete uniform distribution.

3. The results of Table 2 show that in the case of random set size  and 
number of cycles , the efficiency is substantially increased if the 
underlying for both  and  is discrete uniform. 

The final recommendation is to use RRSS to handle some practical problems 
and/or to increase the efficiency of the estimator of the population mean. 
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CHAPTER SIX

Extreme ranked set sampling: A comparison with
regression and ranked set sampling estimators
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Dhahran 31261, Saudi Arabia

ABSTRACT

Ranked set sampling (RSS), as suggested by McIntyre (1952), assumed perfect 
ranking i.e. there will be no errors in ranking the units with respect to the variable 
of interest. In fact, for most practical applications, it is not easy to rank the units 
without errors in ranking. As pointed out by Dell and Clutter (1972) there will be a 
loss in efficiency, i.e. RSS will give a larger variance due to the errors in ranking 
the units. To reduce the errors in ranking in estimating the population mean, the 
extreme ranked set sampling (ERSS) procedure is used and compared to its 
counterpart RSS and regression estimators. The regression estimator uses an 
auxiliary variable to estimate the population mean. Turns out that the ERSS 
estimator is more efficient than the regression estimator for most cases considered 
in this study unless the correlation between the variable of interest and the 
auxiliary is more than 0.80. In addition, the ERSS and RSS estimators are 
comparable if the ranking of the variable of interest is done using a concomitant 
variable. ERSS is used to estimate the population mean of a variable of interest 
when the ranking of this variable is acquired through a concomitant variable. 
Finally, ERSS is used to estimate the population mean of the variable of interest in 
the presence of errors in ranking and compared with RSS and simple random 
sampling (SRS) estimators. 

KEYWORDS

Auxiliary variable; concomitant variable; efficiency; errors in ranking; simple 
random sampling. 

1. INTRODUCTION

Ranked set sampling (RSS) was suggested by McIntyre (1952) without the 
mathematical theory to support his suggestion. Takahasi and Wakimoto (1968) 
supplied the mathematical theory. They proved that the sample mean of the ranked 
set sample (RSS) is an unbiased estimator of the population mean. In addition, it is 
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more efficient than the sample mean of a simple random sample (SRS) with the 
same sample size.

Dell and Clutter (1972) studied the case in which the ranking may not be 
perfect i.e. there are errors in ranking the units with respect to the variable of 
interest. They showed that the mean of the RSS is an unbiased estimator of the 
population mean, whether or not there are errors in ranking, but there will be a loss 
in efficiency due to these errors.

Stokes (1977) considered the case when the variable of interest X is difficult to 
measure and order, but there is a concomitant variable Y which is correlated with 
X that can be used to judge the order of the variable Y.

Patil, Sinha, and Taillie (1993) showed the estimator of the population mean 
using RSS is considerably more efficient than the SRS regression estimator unless 
the correlation between the variable of interest and the concomitant variable is 
more than 0.85.

Samawi, Abu-Dayyeh and Ahmed (1996) suggested using extreme ranked set 
sampling (ERSS) to estimate the population mean of the variable of interest. They 
showed that the ERSS estimator is an unbiased estimator of the population mean if 
the underlying distribution is symmetric and that it is more efficient than the SRS 
estimator.

In this paper, the performance of the ERSS procedure for estimating the 
population mean is compared to the regression and the RSS estimators. If the 
variable of interest and the auxiliary variable follow a bivariate normal distribution, 
it has been found that the ERSS estimator is more efficient than the regression 
estimator unless the correlation between the two variables > 0.8. In addition, if 
the units are ranked using a concomitant variable and the cycle is repeated once the 
RSS and the ERSS estimators are more efficient than the regression estimator 
provided that< 0.80. Nevertheless, if the cycle is repeated more than once and 
 < 0.80, the three methods are comparable. ERSS is used to estimate the 
population mean of a variable of interest when it is difficult to measure or rank, but 
there is a concomitant variable available which can be used to rank the variable of 
interest. We assumed that the variable of interest and the auxiliary follow a 
bivariate normal distribution since the regression and ERSS estimators are 
unbiased under bivariate normality and to simplify the calculations. Computer 
simulation results are given to compare the efficiency of ERSS estimator of the 
population mean with its counterparts SRS and RSS in the presence of errors in 
raking the variable of interest for some probability distributions. 
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2. SAMPLING METHODS

2.1 Ranked set sampling 
The ranked set sampling (RSS) method can be summarized as follows: Select n 

random samples of size n units and rank the units within each sample with respect 
to a variable of interest by a visual inspection. Then select for actual measurement 
the smallest unit from the first sample. From the second sample, select for actual 
measurement the second smallest unit. The procedure is continued until the largest 
from the nth sample is selected for measurement. In this way, we obtain a total of n 
measured units, one from each sample. The cycle may be repeated r times until nr 
units have been measured. These nr units form the RSS data. 

Let X1, X2, …, Xn be a random sample with probability density function f (x) 
with a finite mean  and variance 2. Let X11, X12, ..., X1n; X21, X22, ..., X2n; ...; Xn1, 
Xn2, ..., Xnn be independent random variables all with the same cumulative 
distribution function F(x). Let X (i:n) denote the ith order statistic from the ith sample 
of size n (i =1, 2…, n) and let X(i:n) j denote the ith order statistic from the ith sample 
of size n in the jth cycle (j = 1, 2, …, r). The unbiased estimator of the population 
mean is defined as

( : )
1 1

1 n r
rss i n j

i j
X X

nr  
   .

The variance of Xrss is given by 

2
( : )2

1

1
var( )

n
rss i n

i
X

n r 
  ,

where 2 2
( : ) ( : ) ( : )[ ( )]i n i n i nE X E X   .

2.2 Ranked set sampling with concomitant variable 
Suppose that the variable of interest X is difficult to measure and to order, but 

there is available a concomitant variable Y, which is correlated with X. We may 
use the variable Y to estimate the rank of X variable as follows: Select n samples 
of size n bivariate units from the population and rank each sample with respect to 
the variable Y by visual inspection. Select for actual measurement, from the first 
sample of size n the X associated with the smallest Y. From the second sample of 
size n, select for actual measurement the X associated with the second smallest Y. 
We continue this way until the X associated with the largest Y from the nth sample 
is selected for actual measurement. The cycle may be repeated r times until nr X’s 
are selected for actual measurement. Note that ranking of the variable X will be 

NCBA&E



Extreme ranked set sampling: A comparison with 
regression and ranked set sampling estimators

76

with errors in ranking i.e. X [i:n]j is the ith judgment order statistic from the ith

sample of size n in the jth cycle. 

Assume that (X, Y) has a bivariate normal and the regression of X on Y is 
linear. Following Stokes (1977), we can write 

 [ : ] ( : )
x

i n j x i n j y ij
y

X Y


     


, (1)

where Y (i: n) j is the ith order statistic of the ith sample of size n units assuming the 
ranking of the units with respect to the variable Y is perfect in the jth cycle and ij

is the error term with mean equal to zero. The mean of the variable of interest X 
with ranking based on the concomitant variable Y can be written as

[ : ]
1 1

1 n r
rssc i n j

i j
X X

nr  
   . (2)

The variance of Xrssc is given by 

   
2 2

2 2 2
( : )2 2

1

1
var 1

n
x

rssc x y i n
iy

X n
n r 

  
     

  
 . (3)

2.3 Extreme ranked set sampling 
RSS as suggested by McIntyre (1952) and Takahasi and Wakimoto (1968) can 

be modified to introduce a new sampling method called extreme ranked set 
sampling (ERSS). In the ERSS procedure, select n random samples of size n units 
from the population and rank the units within each sample with respect to a 
variable of interest by visual inspection. If the sample size n is even, select from 
n/2 samples the smallest unit and from the other n/2 samples the largest unit for 
actual measurement. If the sample size is odd, select from (n-1)/2 samples the 
smallest unit, from the other (n-1)/2 the largest unit and from one sample the 
median of the sample for actual measurement. The cycle may be repeated r times 
to get nr units. These nr units form the ERSS data. 

We can note that the ERSS can be performed in practical applications with less 
errors in ranking the units since all we have to do is to find the largest or the 
smallest of the sample and measure it, comparing to its counterpart RSS. The 
ERSS method is very easy to apply in the field and will save time in performing 
the ranking of the units with respect to the variable of interest. In addition, this 
method will reduce the errors in ranking and hence increase the efficiency of the 
ERSS method. 
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Let Xi (1), Xi (2), …, Xi (n) be the order statistics of Xi1, Xi2,..., Xin (i = 1, 2, ..., n). 
If the cycle is repeated once, let Xi (1) and Xi (n) be the smallest and the largest of the 
ith sample respectively (i = 1, 2, ..., n). The estimator of the population mean using 
ERSS with r cycles can be defined in the case of an even sample size as 

1erssX = 
1

1

(1) ( )
1 1 1 1

1 L r n r

i j i n j
i j i L j

X X
nr     

 
  

 
    , 

where L1 = n/2. In the case of an odd sample size, the estimator of the population 
mean can be defined as

2erssX = 
2

2

(1) ( ) (( 1) / 2)
1 1 2 1 1

1 L r n r r

i j i n j i n j
i j i L j j

X X X
nr 

     

 
   

 
     , 

where L2= (n-1)/2 and Xi ((n+1)/2) is the median of sample i = (n+1)/2 if the sample 
size is odd. To simplify the notation, let X (i: e), j denote the smallest of the ith sample 
(i = 1, 2,…, L1) and the largest of the ith sample (i = L1+1, L1+2, …, n) in the jth

cycle (j = 1, 2, …, r) if the sample size n is even. Also denote the smallest of the ith

sample (i = 1, 2, …, L2), the median of the ith sample (i = (n+1)/2) and the largest 
of the ith sample (i = L2+2, L2+3, …, n) in the jth cycle if the sample size n is odd. 
The estimator of the population mean then can be written as

( : )
1 1

1 n r
erss i e j

i j
X X

nr  
   . 

The variance of erssX can be written as 

  2
( : )2

1

1
var

n

erss i e
i

X
n r 

  ,

where   2
2
( : ) ( : ) ( : )i n i e i eE X E X    

It can be shown that erssX is an unbiased estimator of the population mean if 
the underline distribution is symmetric. In addition, it is more efficient than the 

sample mean  srsX of simple random sample (SRS) with the same sample size. 

The analogues of equation (1), (2) and (3) are 

 [ : ] ( : )
x

i e j x i e j y ij
y

X Y


     


, 
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[ : ],
1 1

1 n r
erssc i e j

i j
X X

nr  
  

and

   
2 2

2 2 2
( : )2 2

1

1
var 1

n
x

erssc x y i e
iy

X n
n r 

  
     

  
 .

Finally, the ERSS estimator for the population mean will not necessarily be 
unbiased if the judgment ranking is not perfect. 

3. COMPARISON OF THE ERSS ESTIMATOR WITH THE 
REGRESSION AND RSS ESTIMATORS 

Suppose that (X, Y) follow a bivariate normal distribution and if the mean of an 
auxiliary variable Y is known. The linear regression of the variable X on the 
variable Y is defined

0 1 , 1, 2, ..., ,i i iX Y i nr    

where 0 and 1 are the intercept and the slope of the regression line respectively 
and i is the random error component with expected value of zero. The linear 
regression estimator of the population mean (x) of the variable of interest X is

1
ˆ ( ),lr yX X Y   

where X and Y are the sample means of the variable of interest X and the 

auxiliary variable Y respectively, based on sample size nr. In addition, y is the 

population mean of the auxiliary Y and ̂ 1 is the least square estimator of 1. 

In most applications, the population mean of the auxiliary variable is unknown 
and we usually estimate it using the method of double sampling. To estimate the 
population mean y of the auxiliary variable Y, we need to select a large random 
sample of size n2r (say). In addition, we need a random sample of size nr units to 
study the variable of interest X. The regression estimator of the population mean 
(x) of the variable of interest X can be defined using the double sampling method 
to estimate the mean (y) of the auxiliary Y as

 1
ˆ ,lrd dX X Y Y  

where dY is an unbiased estimator of the population mean of the auxiliary variable 

Y (y). Sukhatme and Sukhatme (1970, p. 221) showed that lrdX is an unbiased 

estimator of the population mean (x) of the variable of interest X with variance 

NCBA&E



Chapter Six 79

   
2

2 2
2 2

1 1 1
var 1 1

3
x

lrd xX
nr nrn r n r

           
,

if (X, Y) follows a bivariate normal distribution.

Let us assume that the ranking on the variable of interest is perfect. The relative 

efficiency for rssX with respect to lrdX can be found as 

 
 2

1
2
( : )

1

1 1 1
1 1

var( ) 3
,

1var( )

lrd
lrd rss n

rss
z i n

i

n
X n nr n

eff eff X X
X

n 

          


.

The relative efficiency for errsX with respect to lrdX can easily be shown to be 

 
 2

2
2

( : )
1

1 1 1
1 1

var( ) 3
,

1var( )

lrd
lrd erss n

erss
z i e

i

n
X n nr n

eff eff X X
X

n 

          


.

The values of 1eff and 2eff are summarized in Table 1 for both RSS and 

ERSS. Calculations were done using sample sizes of n = 4, 5, 6 and 7, cycles r = 1, 
2, 4, 5,  and with values of 0.25, 0.5, 0.75, 0.90      . 

Table 1
Summary of the relative efficiency values, for estimating the population mean 

using RSS and ERSS methods with respect to the regression estimator 
if the population mean of the auxiliary is unknown

RSS ERSS
1 2 3 5  1 2 3 5 

eff1 eff2

 = ± 0.25
4 3.89 2.57 2.42 2.34 2.23 3.37 2.22 2.09 2.02 1.94
5 3.37 2.93 2.80 2.72 2.63 3.19 2.55 2.44 2.37 2.29
6 3.68 3.30 3.19 3.11 3.02 2.91 2.49 2.40 2.33 2.28
7 4.12 3.65 3.56 3.49 3.40 3.13 2.79 2.71 2.65 2.59

 = ± 0.50
4 3.23 2.17 2.05 1.98 1.91 2.79 1.88 1.78 1.72 1.65
5 3.05 2.45 2.35 2.29 2.22 2.65 2.13 2.05 1.99 1.93
6 3.19 2.74 2.65 2.60 2.52 2.40 2.07 2.00 1.95 1.90
7 3.40 3.03 2.95 2.89 2.82 2.59 2.31 2.24 2.20 2.15
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Table 1 (continued)
RSS ERSS

1 2 3 5  1 2 3 5 
eff1 eff2

 = ± 0.75
4 2.13 1.51 1.44 1.40 1.36 1.84 1.31 1.25 1.21 1.18
5 2.01 1.66 1.60 1.57 1.52 1.75 1.44 1.39 1.36 1.32
6 2.08 1.82 1.77 1.74 1.69 1.57 1.38 1.34 1.31 1.28
7 2.20 1.98 1.94 1.90 1.86 1.67 1.51 1.47 1.45 1.41

 = ± 0.90
4 1.26 0.99 0.96 0.94 0.93 1.09 0.86 0.83 0.81 0.80
5 1.19 1.04 1.01 0.99 0.98 1.03 0.90 0.88 0.86 0.85
6 1.20 1.09 1.07 1.05 1.04 0.91 0.82 0.81 0.79 0.78
7 1.24 1.15 1.13 1.12 1.10 0.95 0.88 0.86 0.85 0.84

Considering Table 1 we can see that a gain in efficiency is obtained by using 
ERSS instead of the regression estimator for different values of n and r. For 
example, for n = 6, r =1 and  = ± 0.25, the relative efficiency is 2.91.

Finally, if the ranking of the variable of interest X is done using the 

concomitant variable Y, the relative efficiency of rsscX with respect to lrdX can 

be found as

 

 

2

3 2
2 2

( : )
1

1 1 1
1 1

var( ) 3

var( )
1

lrd

nrssc
z i n

i

n
X n nr n

eff
X

n 

         


  
.

The relative efficiency of errscX with respect to lrdX can be found as

 

 

2

4 2
2 2

( : )
1

1 1 1
1 1

var( ) 3

var( )
1

lrd

nerssc
z i e

i

n
X n nr n

eff
X

n 

         


  
.

Results of eff3 and eff4 are summarised in Table 2 for both ERSS and RSS. 
Again, calculations were done using sample sizes of n = 4, 5, 6 and 7, cycles r = 1, 
2, 3, 4, 5,  and with values of 0.25, 0.5, 0.75, 0.80      . A gain in 

efficiency is obtained by using ERSS with ranking done using a concomitant 
variable for different values of n, r = 1, and for < 0.80. For example, if n = 6, 
r =1 and  = ± 0.25, the relative efficiency is 1.25. 
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Table 2
Summary of the relative efficiency values, for estimating the population mean 

using RSS and ERSS methods with respect to the regression estimator 
if the population mean of the auxiliary is unknown.

RSS ERSS
1 2 3 5  1 2 3 5 

eff1 eff2

 = ± 0.25
4 1.72 1.13 1.07 1.03 0.99 1.71 1.13 1.06 1.03 0.98
5 1.38 1.10 1.05 1.03 0.99 1.37 1.10 1.05 1.03 0.98
6 1.26 1.08 1.04 1.02 0.99 1.25 1.07 1.04 1.01 0.98
7 1.20 1.07 1.04 1.02 0.99 1.19 1.06 1.03 1.02 0.98

 = ± 0.50
4 1.61 1.08 1.02 0.99 0.95 1.58 1.06 1.01 0.97 0.93
5 1.31 1.05 1.01 0.98 0.95 1.29 1.04 1.02 0.98 0.94
6 1.21 1.05 1.01 0.98 0.96 1.17 1.02 0.99 0.95 0.93
7 1.15 1.03 1.00 0.98 0.96 1.12 1.00 0.98 0.96 0.93

 = ± 0.75
4 1.34 0.95 0.91 0.88 0.85 1.27 0.90 0.86 0.84 0.81
5 1.13 0.94 0.90 0.88 0.86 1.08 0.89 0.86 0.84 0.82

6 1.06 0.93 0.91 0.89 0.87 0.97 0.85 0.83 0.81 0.79
7 1.03 0.93 0.91 0.89 0.87 0.95 0.86 0.84 0.82 0.80

 = ± 0.80
4 1.25 0.91 0.87 0.85 0.83 1.17 0.85 0.82 0.79 0.77
5 1.07 0.90 0.87 0.85 0.83 1.01 0.84 0.82 0.80 0.78
6 1.01 0.89 0.87 0.85 0.83 0.91 0.80 0.78 0.76 0.75
7 0.98 0.89 0.87 0.85 0.83 0.89 0.81 0.79 0.78 0.76

4. ERSS ESTIMATOR WITH CONCOMITANT VARIABLES

To compare the two estimators rsscX and ersscX with respect to srsX , it is 
assumed that the two variables X and Y follow the bivariate normal distribution. 
The benefit of using the concomitant variables will depend upon the correlation 
between the variable of interest X and the concomitant variable Y. If X and Y are 

independent the estimators rsscX and ersscX will have the same variance as srsX . 

The relative efficiency of rsscX with respect to srsX can be defined as
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 

2

2 2
2 2 2

( : )2 2
1

/var( )

var( ) 1
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srs x
rssc

nrssc
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x y i n
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nrX
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X
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n r 


 

  
    

  


.

This can be simplified to

2
2 2

( : )
1

1

(1 )
rssc n

z i n
i

eff

n 


  

.

The relative efficiency of ersscX with respect to srsX can be found as

 
2

2 2
( : )

1

var( ) 1

var( )
1

srs
erssc nerssc

z i e
i

X
eff

X
n 

 


  
.

Results of rssceff and errsceff are summarized in Table 3 for both RSS and 

ERSS. Calculations were done with sample sizes n = 3, 4, 5, 6 and 7 and with 
values of 0.25, 0.5, 0.75, 0.90      . 

Table 3
Summary of the relative efficiency values, for estimating the population mean 

using RSS and ERSS methods with concomitant variables.

n
 = ± 0.25  = ± 0.50  = ± 0.75  = ± 0.90

rssceff erssceff rssceff erssceff rssceff erssceff rssceff erssceff

3 1.025 1.025 1.109 1.109 1.287 1.287 1.631 1.631
4 1.037 1.033 1.168 1.146 1.477 1.400 1.873 1.699
5 1.042 1.038 1.190 1.171 1.561 1.489 2.073 1.899
6 1.045 1.038 1.207 1.171 1.628 1.489 2.251 1.897
7 1.047 1.041 1.220 1.188 1.684 1.554 2.410 2.056

A gain in efficiency is obtained by using ERSS with a concomitant variable to 
estimate the population mean for different values of n. For example, if n = 6 and 
 = ± 0.90, the relative efficiency of the ERSS estimator is 1.897.

5. ERSS WITH ERRORS IN RANKING

Ranked set sampling with errors in ranking (RSSE) is considered by Dell and 
Clutter (1972); that is the quantified observation from the ith sample in the jth cycle 
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may not be the ith order statistic but rather the ith “judgment order statistic”. Let X [i: 

n] j be the ith judgment order statistic from the ith sample of size n in the jth cycle (to 
distinguish it from the actual order statistic X (i:n)j). Assuming the cycle is repeated 
once, the unbiased estimator of the population mean using RSSE is defined as 
follows

[ : ]
1

1 n

rsse i n
i

X X
n 

  , 

Dell and Clutter (1972) showed that rsseX is an unbiased estimator of the 

population mean with smaller variance than srsX the sample mean of SRS with the 

same size. 

Let 

[ : ]
1

1 n

ersse i e
i

X X
n 

  ,

be an estimator of the population mean based on ERSS with errors in ranking. The 

properties of ersseX are 

(a) ersseX is unbiased estimator of the population mean if the distribution is 

symmetric about the population mean  and the error in ranking following a 

normal with mean 0 and variance 2
e and

(b)  ersseVar X is less than  srsVar X .

It is easy to prove (i) and (ii) using results by and Takahasi and Wakimoto 
(1968), Dell and Clutter (1972) and Samawi et al. (1996).

The ERSS and RSS with errors in ranking were simulated in computer trials. 
Four probability distributions were considered for the population: normal, gamma, 
uniform, and weibull. Five Thousand random numbers were generated. For each 
computer simulation trials were run with n = 4, 6 and 8. The model for these 
simulations was the same as the model considered by Dell and Clutter (1972); the 
elements are ranked on the basis of elements that are equal to true values generated 
from the above probability distributions plus random error components assumed to 

be distributed normally with mean 0 and variance 2
e .

A sample of size n elements was generated from a normal distribution with 

mean 0 and standard deviation e , and added to the n elements generated from the 

parent distribution. When this had been accomplished the ERSS and RSS methods 
were used to rank the units. Estimates for the mean, variance and mean square 
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errors (MSE) were found for the ERSS and RSS data after 5,000 elements had 
been compute. 

The efficiency of estimating the population mean using ERSS with errors in 
ranking with respect to SRS is defined as follows

   
 

,
srs

erss srs ersse
ersse

Var X
eff eff X X

Var X
 


 


,

if the distribution is symmetric, otherwise i.e. if the distribution is not symmetric 

   
 

,
srs

erss srs ersse
ersse

Var X
eff eff X X

MSE X
 


 


.

The efficiency of RSS with errors in ranking with respect to SRS is defined as

   
 

,
srs

rss srs rsse
rsse

Var X
eff eff X X

Var X
 


 


,

were rsseX is the sample of RSS with errors in ranking data with only one cycle.

Results of these simulations are summarised in Table 4 for both ERSS and 
RSS. For each population simulations were run with sample of sizes n = 4, 6 and 8 
and with values of e  0.0, 0.25, 0.5, 1 and 1.5. 
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Table 4
Summary of efficiency values from computer simulation 

for four distributions, for estimating the mean of the population 
using ERSS and RSS with errors in ranking

e
ERSS RSS

Sample Size Sample Size
4 6 8 4 6 8

Uniform (0, 4)
0.00 3.13 5.45 8.44 2.50 3.50 4.50
0.25 2.98 5.27 7.67 2.40 3.20 3.65
0.50 1.90 2.34 2.89 1.53 1.66 1.78
0.75 1.23 1.31 1.37 1.17 1.18 1.19
1.00 1.06 1.08 1.09 1.02 1.06 1.04
1.50 1.00 1.02 1.03 1.00 1.01 1.02

Normal (2, 1)
0.00 2.10 2.34 2.66 2.35 3.18 3.98
0.25 2.01 2.32 2.52 2.27 3.06 3.87
0.50 1.98 2.26 2.38 2.12 2.79 3.33
0.75 1.68 1.73 1.92 1.75 2.04 2.23
1.00 1.40 1.47 1.51 1.42 1.46 1.57
1.50 1.12 1.18 1.21 1.14 1.08 1.13

Gamma (3)
0.00 1.62 1.30 0.88 2.19 3.08 3.42
0.25 1.49 1.22 0.86 2.12 2.82 3.50
0.50 1.55 1.20 0.82 2.09 2.80 3.33
0.75 1.41 1.18 0.77 1.88 2.58 2.77
1.00 1.26 1.03 0.75 1.62 1.98 2.15
1.50 1.07 0.99 0.71 1.25 1.31 1.35

Weibull (2, 3)
0.00 2.05 2.17 1.82 2.38 3.31 3.93
0.25 2.04 2.15 1.80 2.27 3.17 3.81
0.50 1.92 2.00 1.77 2.20 2.82 3.56
0.75 1.72 1.76 1.49 1.93 2.40 2.67
1.00 1.46 1.47 1.28 1.57 1.72 1.83
1.50 1.15 1.22 1.16 1.16 1.25 1.22
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6. RESULTS AND DISCUSSION

In this paper, the bivariate normal distribution is considered, because it is the 
most widely use in the regression models. Additionally this assumption makes the 
calculations of the relative efficiency much easier. 

Considering the results in Tables 1 and 2 the following conclusions are made: 
The relative efficiency obtained using ERSS to estimate the population mean of the 
variable of interest depends upon the sample size n, the number of cycles r and the 
value of the correlation coefficient  between the variable of interest and the 
auxiliary variable. If the ranking of the variable of interest is perfect (Table 1) the 
ERSS estimator is superior to its counterpart, the regression estimator, unless the 
value of > 0.80. If the ranking of the variable of interest is done using a 
concomitant variable (Tables 2) and the number of cycles is 1, the ERSS estimator 
is more efficient (unless the value of > 0.80 then the regression estimator is 
more efficient). But if r > 1 and the value of < 0.80 there is not much 
difference between the two estimators. Finally, if > 0.80 and r > 1 the 
regression estimator is superior.

In the basis of Table 3 we could conclude that: The relative efficiency obtained 
using ERSS increases as and /or n increases. The relative efficiency obtained 
using ERSS with a concomitant variable is very close to that of RSS if < 0.8 
and /or n < 6. 

Considering Table 4 the following conclusions can be made: A gain efficiency 
obtained using ERSS with errors in ranking if the underline distribution is 
symmetric around . For example, for n = 6 and e = 0.5, the efficiency of the 

ERRS 2.34 for estimating the population mean of a uniform distribution. The 
efficiency of ERSS decreases as the value of e is increases. If the parent 

distribution is uniform the gain in efficiency using ERSS with or without errors in 
raking is much higher than its counterpart RSS. 

As we know, in real life applications it is not easy or sometimes impossible to 
rank the units without errors in ranking, especially if the sample size is more than 5 
or 6 units. The recommendation is to use the ERSS with an even sample size if it is 
difficult to rank the units using RSS. Since it is very easy to find the largest or the 
smallest of the ith sample with minimum errors in ranking. 
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ABSTRACT

The ranked set sampling (RSS) has been shown as an efficient method in 
estimating the population mean and other parameters of interest of certain 
probability distributions. Very little, has however been done in estimating the 
population variance using RSS. In this paper, several unbiased estimators of the 
population variance are proposed for the location-scale family distributions using 
RSS and some its modifications. The proposed estimators are compared to the 
usual simple random sampling (SRS) estimators for several probability 
distributions. Most of these proposed estimators are proven to be more efficient 
then the usual SRS estimators. 

KEY WORDS

Median ranked set sampling; order statistic; relative precision and simple 
random sampling. 

1. INTRODUCTION

The ranked sample sampling (RSS) method as suggested by McIntyre (1952) 
and used to estimate mean pasture yield can be summarized as follows: Select m 
random samples of size m units and rank the units within each sample with respect 
to a variable of interest by a visual inspection or any other cost free method. Then 
select for actual measurement the smallest unit from the first sample. From the 
second sample, select for actual measurement the second smallest unit. The 
procedure is continued until the largest unit from the mth sample is selected for 
measurement. In this way, we obtain a total of m measured units, one from each 
sample. The cycle may be repeated r times until mr units have been measured. 
These mr units form the RSS data. 
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Various authors have studied many aspects of RSS. For more details see Patil 
et al. (1995) and Sinha, et al. (1996). Most of the work done on the RSS is devoted
to estimate the population mean . Little has been done in estimating the 

population variance 2 using RSS. 

Stoke (1980) showed that the estimator of 2 based on RSS data is 

asymptotically unbiased estimator of 2 . Further, if mr is large enough it is more 
efficient than the usual estimator based on simple random sample (SRS). 

Stokes (1995) considered estimation of  and  for the family of random 

variables with probability distribution function of the form 
1 x

f
 

   
using the 

maximum likelihood method. 

Finally, Yu et al. (1999) considered estimating the variance of a normal 

population using RSS. They proposed several estimators for 2 and compared the 
performances of these estimators.

In this paper, we consider estimating the population variance 2 of the 
location-scale family having a probability distribution function of the form 

 ( , , )  g (x- ) / /f x       . Estimating 2 is considered when the location 

parameter  known and when it is unknown. Under both cases, we proposed 
several unbiased estimators using RSS and some of its modifications. These 
estimators are then compared with the usual SRS estimators via their variances 
when the underlying distributions are normal, logistic, and student t and double 
exponential to the usual estimators using SRS. It turns out that most of the newly 
suggested estimators are more efficient than the usual estimators based on SRS. 

2. VARIANCE ESTIMATION IN CASE OF KNOWN 
LOCATION PARAMETER

Let X1, X2, …, Xn, where n = mr be a random sample with distribution function

( , , )  g((x- ) / ) /f x       , (2.1)

where  is a location parameter,  is a scale parameter and g is a probability 
distribution. Suppose without lost of generality that the value of the location 
parameter  is zero. The well-known method of moment estimator for the 
population variance is 

2 2
01

1

1
ˆ

n

i
i

X
n 

   , (2.2)
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with variance 

     22 4 2
01

1
ˆ i iV E X E X

n
     

.

Let X1, X2,..., Xm be a SRS of size m with probability distribution function f(x) 
with finite mean and variance. Let X11, X12,..., X1m; X21, X22, ..., X2m; ...; Xm1, 
Xm2,..., Xmm be independent random variables all with the same cumulative 
distribution function F(x). Let ( )i jX denotes the ith order statistic from the ith

sample of size m (i = 1,2,..., m) in the jth cycle (j = 1,2,…, r). Takahasi and 
Wakimoto (1968) defined the unbiased estimator of the population mean using 
RSS to be 

( )
j 1 1

1
ˆ

r m

i j
i

X
mr  

    ,

with variance 

2
( )2

1

1
ˆ( )

m

i
i

V
m r 

   ,

where   2
2
( ) ( ) ( )i i iE X E X     .

We propose the following unbiased estimator of 2 which is based on RSS 
data from a population with probability distribution as defined in equation (2.1) 
with  = 0

2 2
02 ( )

1 1

1
ˆ

r m

i j
j i

X
rm  

    (2.3)

with variance 

 2 2
02 ( )2

1 1

1
ˆ( )

( )

r m

i j
j i

V V X
rm  

        24 2
( ) ( )2

1 1

1

( )

r m

i j i j
j i

E X E X
rm  

 
  

 
  ,

where ( )i jX is the ith order statistic of a SRS of size m of the jth cycle from the 

above population.

We now consider some modifications of RSS. The smallest, largest or the 
median of the ith sample i = 1,2,…, m, will be selected for measurement instead of 
selecting the ith smallest of the ith sample as we have done for the usual RSS. 
Again we replicate the selection procedure r times to get a sample of size n = rm 
units. 

We propose the following unbiased estimator of 2 , which is based on the 
smallest order statistic ( (1)kX , k = 1,2, …, n =mr) of a SRS of size m with r cycles
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2
2 20
03 (1)2

11:

ˆ
 ( )

n

k
km

X
n E M 


   , (2.4)

with variance 

 
  

    
4 2

2 4 20
03 (1) (1)2

2
1:

ˆ k k

m

V E X E X
n E M

  
   

 
,

where 2 2 2
0 V(X)      , X ( , , )f x   , 2

0 ( )V M  , ~ ( ,0,1)M f x and :i mM

is the ith order statistic of a SRS of size m from ( ,0,1)f x . Finally, note that 

 24 V(X)  and  24
0 ( )V M  .

Now using the largest order statistic of a SRS of size m with r cycles the 

following unbiased estimator for the population variance 2 is proposed 

2
2 20
04 ( )2

1:

ˆ
( )

n

m k
km m

X
nE M 


   , (2.5)

with variance 

 
  

    
4 2

2 4 20
04 ( ) ( )2

2
:

ˆ m k m k

m m

V E X E X
n E M

  
   

 
.

The median ranked set sampling MRSS can be summarized as follows: Select 
m random samples of size m units from the population and rank the units within 
each sample with respect to a variable of interest. If the sample size m is odd, from 
each sample select for measurement the ((m + 1)/2)th smallest rank (the median of 
the sample). If the sample size is even, select for measurement from the first m/2 
sample the (m/2)th smallest rank and from the second m/2 sample the ((m +2)/2)th 

smallest rank. The cycle may be repeated r times to get mr units. Let 

( ) 1

2

, 1,2,...,med k m
k

X X k n mr 
 
 

   denote the median of the ith sample from the 

jth cycle if the sample size m is odd. If the sample size is even let 

( )
k

2

med k mX X  
 
 

 m/2 times and ( )
1 k

2

med k mX X   
 

 m/2 times for the jth cycle. The 

unbiased estimator for 2 using MRSS if the probability distribution is symmetric 
in the case of even sample size can be defined as following:
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 
2

2 2
05 ( )2 1:

ˆ
n

o
med k

kmed m

X
n E M 


   (2.6)

with variance 

  
    

4 2
2 4 20
05 ( ) ( )2

2
:

ˆ( ) med k med k

med m

V E X E X
n E M

  
   

 
.

We will use the variances to compare the estimators given in equations 
(2.2–2.6) by the relative precision of 2 to 1 , which is defined as follows:

  1
2 1

2

( )
,  

( )

V
RP

V


  


.

The relative precision of the estimators using RSS and some modification of 
RSS equations (2.3–2.6) with respect to SRS estimator equation (2.2) is calculated 
for the distributions: logistic, normal, student t and double exponential. Table 1 
shows the relative precision for sample size m = 2, 3, 4, 5, 6 and replication r = 5 
and 10. 

From Table 1, we can see that the estimators of the population variance using 
RSS or some of its modification will improve the relative precision for most of the 

cases considered in this study. For example for m = 4 and r = 5, the 2 2
03 01ˆ ˆ( , )RP  

values for the logistic, normal, student t and double exponential distributions are 
1.572, 1.614, 1.632 and 1.477, respectively. Considering Table 1 the following 
remarks can be made:

1. Using RSS or some of its modification will improved the efficiency of the 
newly suggested estimators over the SRS estimator for the distribution 
considered with the exception of using the median for the normal 
distribution.

2. Increasing the sample size m will increase the relative precision for almost 
all the cases considered.

3. Increasing the number of cycle r more than 5 will not increase the relative 
precision. 

3. VARIANCE ESTIMATION IN CASE OF UNKNOWN 
LOCATION PARAMETER

Let X1, X2, ..., Xn, where n = rm be a random sample with probability 
distribution function as defined in equation (2.1). The sample variance is used to 

estimate the population variance 2 using SRS, which is 
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 22
11

1

1
ˆ

1

n

i
i

X X
n 

  


 (3.1)

with a variance (Stuart and Ord, 1994, P. 370) 

   2 43
11 4 1

1
ˆ ,n

n
V

n



      

where 4 is the population 4th central moment. 

Now we will consider unbiased estimators based on RSS. The first estimator 
we call the McIntyre modified estimator is defined as follows: 

2 2
12 ( )

1 12
:

1

1
ˆ ˆ( )

( 1) 1
( 1)

r m

i jm j i
i m

i

X
r

mr M
m rm

 



  
 

   

 


(3.2)

with variance 
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 

   

2m m m
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j 1i 1s 1 j 1i 1

4 2( 1) ( 1)
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i j s j i j
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where      2
( ) ( ) ( ) ( ) ( ) ( ) ( ) , E  , 

k

k i j i j i j i j i j i j i jE X X V X       .

The following two unbiased estimators are based on the smallest and the largest 
order statistic of sample of size m with r cycles. First, let consider the estimator 
based on the smallest order statistic 

 
2 22 0

(1)13 (1)
11:m

ˆ
(n-1)V

n

k
k

X X



   , (3.3) 

with variance 

 
4

2 20 3
13 4 1:12

1:

ˆ( )   m
mm

m

V V
nV




       ,
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where (1) (1)
1

1 n

k
k

X X
n 

  ,  1: (1)m kV V M , 4 is the population 4th central 

moment and the other terms are as defined is Section 2. Now for the largest order 
statistic, we propose the estimator 

 
2 22 0

( )14 ( )
1m:m

ˆ
(n-1)V

n
mm k

k
X X




   , (3.4)

with variance 

 
4 n

2 20 3
14 4 :12

k 1:

ˆ( )   m
m mm

m m

V V
nV






       ,

where ( ) ( )
1

1 n
m m k

k
X X

n 
  ,  : ( )m m m kV V M and the other terms as defined 

before.

Finally, using MRSS and assuming that the underlining distribution is 
symmetric when the sample size is even we propose the following unbiased 
estimator: 

 
2 22 0

( )15 ( )
1med:m

ˆ
( 1)V

n
medmed k

k
X X

n 


  


 , (3.5)

with variance 

 
4

2 20 3
15 4 :12

:

ˆ( ) m
med mm

med m

V V
nV




       ,

where ( ) ( )
1

1 n
med med k

k
X X

n 
  ,  : ( )med m med kV V M and other terms as defined 

before.

As was done in Section 2, we use the variances to compare the estimators given 
in equations (3.1–3.5). The relative precision of the estimators using RSS and some 
its modifications equations (3.2–3.5) with respect to SRS estimator equation (3.1) 
is calculated for the distributions: logistic, normal, student t and double 
exponential. Table 2 shows the relative precision for sample size m = 2, 3, 4, 5, 6 
and replication r = 5 and 10. 

From Table 2, we can see that the estimators of the population variance using 
RSS will improve the relative precision for all the cases considered in this study. 

For example for m =5 and r = 5, the 2 2
12 11ˆ ˆ( , )RP   values for the logistic, normal, 
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double exponential and student t distributions are 1.367, 1.311, 8.313 and 1.120, 
respectively. In addition, the median estimator is more efficient than the SRS 
estimator for all the distributions considered except for the normal distribution. 
However, the other estimators based on the smallest and largest order statistics are 
not doing well as compared to the estimator based on SRS. 

4. CONCLUSIONS

RSS method is very efficient and widely used method in estimating the 
population mean. However, little has been done for estimating the population 
variance. The question is if we collect our data using RSS method to estimate the 
population mean or some other parameters of interest can we use this data to 
estimate the population variance. In this paper, we have proposed several unbiased 
estimators of the population variance, using the method of RSS and some of its 
modifications for the location-scale parameter family of distributions. Our results 
clearly indicate the superiority of RSS estimators over the usual SRS estimators. 
Except for the normal distribution, MRSS estimator dominates the SRS estimator 
for all other distribution considered. 

The estimators based on respectively the first and the last order statistics (i.e. 
the smallest and the largest) haven been shown to do quite well for the case of 
known location parameter. 

The estimators proposed in this study are all unbiased for estimating the 
population variance of the location-scale family distributions, but the amount of 
improvement in the relative precision depends on the underlining distribution. 

Finally, we note that the relative precision of the proposed estimators under each 
of RSS, MRSS, smallest and largest methods increase with the increasing sample 
size m. However, the RSS is more difficult to perform than the other methods for 
large sample sizes, makes the proposed estimators under MRSS, smallest and largest 
are more appealing than RSS in case where they perform better. 
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Table 1
The relative precision of the estimators based on RSS with respect to 

SRS estimator for the population variance for the logistic, normal, double 
exponential and student t distributions when the location parameter is known

m

2 2
02 01ˆ ˆ( , )RP   2 2

03 01ˆ ˆ( , )RP   2 2
04 01ˆ ˆ( , )RP   2 2

05 01ˆ ˆ( , )RP  
r R r R

5 10 5 10 5 10 5 10
Logistic distribution
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1.061 1.061 1.259 1.259 1.259 1.259 1.234 1.234
4 1.131 1.131 1.572 1.572 1.572 1.572 1.234 1.234
5 1.199 1.199 1.882 1.882 1.882 1.882 1.344 1.344
6 1.267 1.267 2.175 2.175 2.175 2.175 1.344 1.344
Normal distribution
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1.082 1.082 1.268 1.268 1.268 1.268 0.983 0.983
4 1.179 1.179 1.614 1.614 1.614 1.614 0.983 0.983
5 1.279 1.279 1.974 1.974 1.974 1.974 0.984 0.984
6 1.379 1.379 2.329 2.329 2.329 2.329 0.984 0.984
Double exponential distribution
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1.049 1.049 1.294 1.294 1.294 1.294 1.205 1.205
4 1.102 1.102 1.632 1.632 1.632 1.632 1.205 1.205
5 1.155 1.155 1.962 1.962 1.962 1.962 1.352 1.352
6 1.256 1.256 2.275 2.275 2.275 2.275 1.352 1.352
Student t distribution
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1.031 1.031 1.225 1.225 1.225 1.225 2.671 2.671
4 1.060 1.060 1.477 1.477 1.477 1.477 2.671 2.671
5 1.087 1.087 1.708 1.708 1.708 1.708 3.150 3.150
6 1.112 1.112 1.912 1.912 1.912 1.912 3.150 3.150
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Table 2
The relative precision of the estimators based on RSS 

with respect to SRS estimator for the population variance for the 
logistic, normal, double exponential and student t distributions 

when the location parameter is unknown

m
 2 2

12 11ˆ ˆ,RP    2 2
13 11ˆ ˆ,RP    2 2

14 11ˆ ˆ,RP    2 2
15 11ˆ ˆ,RP  

r r r r
5 10 5 10 5 10 5 10

Logistic distribution
2 1.177 1.083 0.963 0.961 0.963 0.961 0.963 0.961
3 1.248 1.150 0.896 0.894 0.896 0.894 1.225 1.228
4 1.308 1.216 0.856 0.854 0.856 0.854 1.237 1.242
5 1.367 1.281 0.830 0.829 0.830 0.829 1.332 1.338
6 1.424 1.344 0.813 0.812 0.813 0.812 1.348 1.353
Normal distribution
2 1.024 1.011 0.976 0.973 0.976 0.973 0.976 0.973
3 1.113 1.097 0.955 0.950 0.955 0.950 0.986 0.985
4 1.211 1.195 0.939 0.932 0.939 0.932 0.983 0.981
5 1.311 1.295 0.926 0.917 0.926 0.917 0.987 0.986
6 1.410 1.397 0.914 0.905 0.914 0.905 0.987 0.985
Double exponential distribution
2 2.628 2.595 1.456 1.492 1.456 1.492 1.456 1.492
3 4.414 4.215 1.905 2.001 1.905 2.001 1.183 1.195
4 6.313 6.151 2.280 2.447 2.280 2.447 1.243 1.259
5 8.313 8.062 2.592 2.831 2.592 2.831 1.310 1.332
6 10.41 10.05 2.854 3.166 2.854 3.166 1.321 1.344
Student t distribution
2 1.040 1.079 0.495 0.487 0.495 0.487 0.495 0.487
3 1.069 1.109 0.301 0.294 0.301 0.294 2.432 2.556
4 1.095 1.132 0.227 0.221 0.227 0.221 1.511 1.538
5 1.120 1.172 0.188 0.183 0.188 0.183 2.796 2.977
6 1.143 1.154 0.164 0.159 0.164 0.159 1.982 2.050
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CHAPTER EIGHT

New Median Ranked Set Sampling

Dinesh S. Bhoj
Department of Mathematical Sciences

Rutgers University, USA

ABSTRACT

A new median ranked set sampling (NMRSS) procedure is proposed to 
estimate the mean of a population. The estimator based on NMRSS is compared 
with estimators based on other ranked set sampling procedures. It is shown that the 
relative precisions of the estimator based on NMRSS are higher than those based 
on other ranked set sampling methods for unimodal symmetric distributions around 
the mean. The NMRSS method also works quite well for moderate skew 
distributions.

KEY WORDS

Mean square error; modified ranked set sampling; ordered observations; ranked 
set sampling; relative precision; unbiased estimator; variance.

1. INTRODUCTION

Ranked set sampling (RSS) was first introduced by McIntyre (1952) in relation 
to estimating pasture yields. This is a cost-efficient alternative to simple random 
sampling (SRS) if observations are rather cheaply or cost free ranked without 
actually measuring them. Dell and Clutter (1972) and Takahasi and Wakimoto 
(1968) provided mathematical foundation for RSS. They showed that the sample 
mean of the RSS is an unbiased estimator for the population mean with smaller 
variance than that of the sample mean of SRS with the same sample size. Dell and 
Clutter (1972) also showed that the estimator for the population mean based on 
RSS is at least as efficient as the SRS estimator even when there are ranking errors. 

The procedure of selection of RSS involves drawing of n random samples with 
n units in each sample. The n units in each sample are ranked with respect to a 
variable of interest. Then the unit with the lowest rank is measured from the first 
sample, the unit with the second lowest rank is measured from the second sample, 
and this procedure is continued until the unit with the highest rank is quantified 
from the nth sample. The n2 ordered observations in the n samples can be displayed 
as:
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(11) (12) (1 ).. . n    x x x

(21) (22) (2 ).. . n    x x x

  

( 1) ( 2) ( ). ..n n nn    x x x   

only      11 22, , .... nnx x x are accurately measured and they constitute the RSS 

data. If n is small, the cycle may be repeated r times to increase the sample size.
For convenience, we assume that r = 1. McIntyre (1952) proposed the estimator 

( )ii nx   for the population mean  .

2. MODIFIED RANKED SET SAMPLING

The RSS procedure has been modified by some authors (Bhoj (1997) and 
Muttlak (1997)) which has further reduced the variance of the estimator for the 
mean. Bhoj (1997) proposed a general modified ranked set sampling in the 
parametric setting. In this scheme he proposed to select only two order statistics for 
even n=2m. He suggests to select the jth order statistic from the first m samples and 
kth order statistic from the last m samples. The choices of the jth and kth order 
statistics depend on the distribution under consideration and the parameter(s) to be 
estimated. If one is interested in estimating the mean of a symmetrical distribution 
around mean, the modified ranked set sampling procedure becomes the median 
ranked set sampling (MRSS). Muttlak (1997) proposed to use MRSS procedure for 
symmetrical and also for skew distributions.

In MRSS procedure, we draw n random samples of size n from the population 
and rank n observations in each sample. If n is odd, we measure the observation 
with rank (n+1)/2 from each sample. If n is even, we measure mth order statistic 
from the first m samples and (m+1)th order statistic from the last m samples. Then 
our estimator for  is

   1
1 1

1
ˆ

m n

im im
i i m

x x
n 

  

     
  , for even n,

  = 
1

n

(ik)
i

1
x

n 
   ,   for odd n,

where ( 1) / 2.k n 

Let iv denote the variance of ( )( ) ( - ) /iiiiy x   , where 2 is the variance of 

the population. Then the variance of ̂ is given by
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2
1ˆ( ) ( ) / 2m mVar nv v     , for even n,

= 2 /k nv  , for odd n.

The following results hold for ̂ .

a) ̂ is an unbiased estimator for  if the distribution is symmetric about  .

b) ˆ( ) ( )Var Var   for n>2 if the symmetric distribution about  is 

unimodal. For n=2, RSS and MRSS are identical and hence 
ˆ( ) ( )Var Var   .

c) For any distribution, ˆ( ) ( )Var Var x  , where x is the sample mean based 

on SRS.
d) If the distribution is asymmetric about  , ̂ is a biased estimator for  . In 

this case, Muttlak (1997) demonstrated that for most distributions, the mean 
square error (MSE) of ̂ is less than Var(x) for small sample sizes.

3. NEW MEDIAN RANKED SET SAMPLING

The accuracy of ̂ over  is compared by computing the relative precision, 

1 ˆ( ) / ( )Var VarRP    , where ̂ is an unbiased estimator for  . The MRSS 

procedure does not perform well for even n as compared to odd n. To exemplify 
this characteristic of MRSS, we present in Table 1 the values of RP1 for the logistic 
distribution along with the relative percentage increases (RPI) in RP1. The RPI in 
RP1 is defined as

1 1

1

 for  for ( 1)
.100 , 2

 for ( 1)

n nRP RP     n
nRP

 



.

Table 1
RP1 and RPI for the logistic distribution

N 2 3 4 5 6 7
RP1 1.0000 1.3876 1.4276 1.6154 1.6556 1.7742
RPI - 38.76 2.87 13.17 2.49 7.16

It is clear that the values of RPI are higher when we move from even to odd 
values of n, and they are lower when we switch from odd to even values of n.
Therefore, in this section we propose a new median ranked set sampling (NMRSS) 
for even n=2m. In this procedure, we draw first m samples of size (n-1) and last m 
samples of size (n+1). As in RSS or MRSS, we order the observations in each 
sample with visual inspection or methods not requiring actual measurements. Then 
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we quantify the median from each sample for estimating the population mean.
Thus our NMRSS data are ( ) , 1, 2,...im   i mx  from samples of size (n-1) and 

( 1) , 1,...,i m   i m nx    from samples of size (n+1). Now we propose an estimator

1
1 1

m n

(im) (im )
i i m

* = w m+(1- w) mx x 
  

   ,

where ( -1) / 2w n n . The variance of * is given by 

 22 2
( -1) 1( 1))( *) (1- )m n m nVar m w mw v v      , where ( )im nV denotes the 

variance of the mth order statistic from a sample of size ni. In the next section we 
compare the three estimators of  based on three ranked set sampling procedures.

4. COMPARISON OF ESTIMATOR

In this section we compare the estimators ̂ and * with the estimator  , an 

unbiased estimator for  . ̂ and * are unbiased estimators for  if the 

distribution is symmetric about  . For asymmetric distributions, ̂ and * are 

biased estimators. In this case, for comparison, we use mean square error (MSE) of 
the estimator, where 
MSE = Variance + (bias)2. We have computed the two relative precisions

1
( )
ˆ( )

Var
RP

Var





, for a symmetric distribution,

  =
( )

ˆ( )

Var

MSE




, for a skew distribution, 

and 2
( )

( *)

Var
RP

Var





, for a symmetric distribution,

  =
( )

( *)

Var

MSE




, for a skew distribution.

The values of RP1 and RP2 are presented in Table 2 for some distributions and 
three sample sizes. The moments of order statistics for these distributions are 
readily available; see Harter and Balakrishnan (1996). We can draw the following 
conclusions:
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Table 2
Relative precisions of the estimators ̂ and *

Distribution RP1 RP2

n = 2 n = 4 n = 6 n = 2 n = 4 n = 6
Normal 1.000 1.182 1.275 1.083 1.216 1.293
Logistic 1.000 1.427 1.656 1.230 1.515 1.701
Laplace 1.000 1.884 2.533 1.484 2.161 2.722
Gamma (3) 1.000 1.209 1.049 1.165 1.209 1.023
Gamma (5) 1.000 1.198 1.120 1.131 1.208 1.106
Weibull (2) 1.000 1.104 1.061 1.054 1.110 1.053
Weibull (40 1.000 1.122 1.184 1.045 1.146 1.196
Extreme Value 1.000 1.297 1.192 1.208 1.318 1.173

a) For unimodal symmetric distributions around  , the new median ranked set 

sampling is better than the median ranked set sampling procedure.
b) For moderate skew distributions, NMRSS is better than MRSS for small n.
c) For extremely skew distributions, NMRSS is better than MRSS for n=2. We 

checked this for Exponential, Pareto(5) and Weibull (.5) distributions. The 
values of RP2 for these distributions are, respectively, 1.334, 1.875 and 
2.671.

d) Both MRSS and NMRSS are not suitable for a rectangular distribution (not 
given in Table 2). This is expected since the optimal choices in this case are 
the extreme order statistics; see Bhoj (1997) and Bhoj and Ahsanullah 
(1996).

e) The values of RP1 and RP2 increase with n for symmetrical distributions 
around  . The values of RP1 and RP2 are higher for n=4 when compared to 

n=2 for moderate skew distributions. However, for n  6, the values of RP1

and RP2 decrease as n increases. Although Var( *) is smaller than 

ˆVar( ) , the bias in * increases faster than bias in ̂ as n increases.

Therefore MSE ( *) may be higher than MSE ˆ( ) for some skew 

distributions for n  6.

We revise Table 1 where we have computed RPI for the logistic distribution 
with MRSS procedure. The values of RPI in RP2 with NMRSS for n=3,4,5,6 and 7 
are, respectively, 12.80, 9.17, 6.64, 5.31 and 4.29. This clearly shows that NMRSS 
procedure works well for even n.

Based on the computations of relative precisions, we recommend the NMRSS 
procedure for even values of n when the samples are drawn from unimodal 
symmetric distributions. For moderate skew distributions, NMRSS may be 
recommended for 2n  and 4. Most importantly for most skew distributions we 
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can recommend the NMRSS procedure with n=2. In order to increase the sample 
size, the cycle may be repeated r 2 times.
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Pair and Selected Ranked Set Sampling
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Dhahran 31261 Saudi Arabia

ABSTRACT

Different quality control charts for the sample mean are developed using pair 
ranked set sampling (PRSS), and selected ranked set sampling (SRSS). These new 
charts are compared to the usual control charts based on simple random sampling 
(SRS) data. The charts based on PRSS and SRSS are shown to have smaller 
average run length (ARL) than the classical chart especially if the process starts to 
get out of control. Through this study we are assuming that the underlying 
distribution is normal. 

KEY WORDS

Average run length, ranked set sampling, lower confidence limit, simple 
random sampling and upper confidence limit. 

1. INTRODUCTION

This study is concerned with the idea of developing quality control charts using 
pair ranked set sampling (RSS) and selected ranked set sampling (SRSS) data. 
These newly developed control charts are considered as alternatives, and more 
efficient methods than the usual control charts based on the simple random 
sampling (SRS) method. 

The RSS method was first suggested by McIntyre (1952) who noted that it is 
highly beneficial and superior to the standard simple random sampling (SRS) for 
estimation of the population mean. Takahasi and Wakimoto (1968) supplied the 
necessary mathematical theory. Dell and Clutter (1972) studied the case in which 
the ranking may not be perfect, i.e. there are errors in ranking the unit with respect 
to the variable of interest. 

As pointed out by Dell and Clutter (1972) there will be loss in efficiency 
depending on the amount of errors in ranking the units. To overcome this problem, 
or at least to reduce the errors in ranking the units selected from the population, 
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Samawi et al. (1996) studied the properties of estimating the population mean 
using the extreme ranked set sampling method, Muttlak (1997) suggested the 
median ranked set sampling method and Hossain and Muttlak (1999) and (2001) 
respectively suggested using pair ranked set sampling (PRSS) and selected ranked 
set sampling (SRSS).

Muttlak and Al-Sabah (2001) developed quality control charts for the sample 
mean using ranked set sampling, median ranked set sampling and extreme ranked 
set sampling. They compared the newly developed charts using average run length 
(ARL) to the Shewhart control chart. They showed that the newly charts are more 
efficient than the Shewhart charts i.e. they have smaller average run length. Finally 
they collected a real life data set and used to construct quality control charts for the 
newly suggested control charts. 

In this paper the pair ranked set sampling (PRSS), and selected ranked set 
sampling (SRSS) will be used to develop control charts for the population mean. 
These charts are compared to the well-known quality control charts for variables 
using the usual simple random sampling (SRS) data; see for example Montgomery 
(1995). The control charts for PRSS and SRSS data are shown to have smaller 
average run length (ARL) then the usual control charts based on SRS data. 

2. SAMPLING METHODS

2.1 Ranked Set Sampling (RSS)
The RSS procedure can be summarized as follows: Select n random sets, each 

of size n units from the population, and rank the units within each set with respect 
to a variable of interest. Then an actual measurement is taken from the unit with 
the smallest rank from the first set. From the second set, an actual measurement is 
taken from the unit with the second smallest rank, and the procedure is continued 
until the unit with the largest rank is chosen for actual measurement from the nth
set. In this way, we obtain a sample of n measured units, one from each set. The 
cycle may be repeated r times until nr units have been measured. These nr units are 
forming the RSS data.

Let  :i n jX denote the ith order statistic from the ith set of size n in the jth cycle. 

Then the unbiased estimator of the population mean, see Takahasi and Wakimoto 
(1968) using RSS data based on the jth cycle is defined as:

, ( : )
1

1
; 1,2,...,

n

rss j i n j
i

X X j r
n 

  .             (1) 

The variance of ,rss jX is given by 
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  2
, ( : )2

1

1
var

n

rss j i n
i

X
n 

  ,        (2)

where   2
2
( : ) ( : ) ( : )i n i n i nE X E X     .

2.2 Ranked set sampling with concomitant variable
Suppose that the variable of interest X is difficult to measure and to order, but 

there is a concomitant variable Y, which is correlated with X. The variable Y may 
be used to acquire the rank of X as follows: Select n2 bivariate units from the 
population and group them into n sets of size n each. From the first set of size n, 
the X associated with the smallest Y is measured. From the second set of size n the 
X associated with the second smallest Y is measured. We continue this way until 
the X associated with the largest Y from the nth set is measured. The cycle is 
repeated r times until nr Xs have been measured. Note that ranking of the variable 
X will be with errors in ranking i.e. [ : ],i n jX is the ith judgment order statistic from 

the ith set of size n in the jth cycle of size r. This method is called imperfect ranked 
set sampling (IRSS).  

Assume that (X, Y) has a bivariate normal distribution and the regression of X 
on Y is linear. Then following Stokes (1977) we can write 

 x
x y

y

X Y


      


      (3)

where Y and  are independent and  has mean 0 and variance 2 2(1 )x  ,  is the 

correlation between X and Y and , , ,x y x y    are the means and standard 

deviations of the variables X and Y. 

Let ( : ),i n jY and [ : ],i n jX be the ith smallest value of Y and the corresponding 

value of X obtained from the ith set in the jth cycle respectively.  We can write the 
above equation

[ : ], ( : ),( )x
i n j x i n j y ij

y

X Y


     


,   i=1, 2,…, n, j =1, 2,…, r.  (4) 

The unbiased estimator of the mean of the variable of interest X with ranking 
based on the concomitant variable Y, i.e. using IRSS method, can be written for the 
jth cycle as
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, [ : ],
1

1
; 1, 2,...,

n

irss j i n j
i

X X j r
n 

  .    (5)

The variance of ,irss jX (see Stokes, 1977) is given by  

 
2 2

2 2
, ( : )2

1
var (1 )

n
x

irss j y i n
iy

X
n n 

  
    

  
 . (6) 

2.3 Pair Ranked Set Sampling (PRSS) 
In the paired ranked set sampling (PRSS) method, two sets of n random 

elements are required to obtain a sample of size two. At first n elements are 
selected randomly and ordered, the k-th smallest element of the set is considered 
for measurement, where 1 k n  is pre-determined, see Hossain and Muttlak 
(1999). Similarly, second set of size n elements is again selected randomly and 
ordered, and the (n-k+1)-th smallest of the set is measured. The procedure can be 
repeated r times to obtain a sample of size 2r. Note that in the usual RSS method 
the sample size is required to be a multiple of n and in the PRSS method it is 
required to be a multiple of 2 and does not depend on the choice of the set size n.   

Once the value of k is determined, an estimator of the population mean  for 
the jth cycle can be written as

( : )1 ( : )2
1

( ); 1,2,...,
2prssj k n j k n jX X X j r   (7)

where 1k n k    . Clearly for a symmetric distribution prssjX is an unbiased 

estimator for  with variance 

2
2
( : )2

var( )
2

prssj k nX
t


  . (8)

where 2 2
( : ) ( : ) ( : )[ ( )]k n k n k nE X E X   and t is known constant depending on the 

underlying distribution, t = 1 for normal distribution. For more details see Hossain 
and Muttlak (1999).

2.4. Selected Ranked Set Sampling (SRSS)
Consider the situation where, instead of selecting n random sets of size n

elements each as in the RSS, only k < n random set of size n elements are selected, 
and instead of measuring the ith smallest order statistic of the ith set, nith smallest 
order statistic of the ith set is considered for measurement. The values of 
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1 2 1 2, ,..., (1 ... )k kn n n n n n n    

are required to be determined beforehand, see Hossain and Muttlak (2001).

The procedure of selected ranked set sampling (SRSS) can be described as 
follows: At first, a set of n > k elements is randomly selected and they are ordered 
by visual inspection and the n1-th smallest is selected for measurements. Another 
set of n elements is randomly selected and they are ordered and the n2-th smallest 
element is measured, and the procedure is continued until the nk-th smallest is 
measured.

Once the values of 1 2, ,..., kn n n and , 1,2,...,ic i k are determined (see Hossain 

and Muttlak, 2001), the SRSS method will be use to collect the data. Let 

( : ) ; 1,2,...,in n j j rX  is the nith order statistics of the nith set of size n in the jth cycle.  If 

the underlining distribution is normal an unbiased estimator of the population mean 
 for the jth cycle is

( : )
1

i

k

srssj i n n j
i

X c X


  (9)

with

1 2 ( : )

2
( : )

i

i

n n
i

s n n

S S
c

D

 




where ( : )in n and 2
( : )in n are the expected value and the variance of the in -th order 

statistics for standard normal respectively. Also, 

2
( : ) ( : )

1 2 32 2 2
1 1 1( : ) ( : ) ( : )

1
, ,i i

i i i

k k kn n n n

i i in n n n n n

S S S
  

 
  

  
   and 2

1 3 2sD S S S 

The variance of srssjX can be shown to be

2 1var( )srssj
s

S
X

D
      (10)

where  is the value of the scale parameter for the underlying distribution. For 
more details see Hossain and Muttlak (2001).
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3. QUALITY CONTROL CHARTS

3.1. Quality Control Chart using SRS 
Let ijX for 1,2,...,i n and 1,2,...,j r denote the ith unit in the jth SRS of 

size n and 2( , )ijX N   . If the population mean  and variance 2 are known 

then the Shewhart control chart for

1

1
; 1,2,...,

n

j ij
i

X X j r
n 

           (11)

is given by

3UCL
n

CL


 


         

3LCL
n


     (12)

where UCL, CL and LCL denote the upper central limit, central limit and lower 
central limit respectively. The sample means , 1, 2,...,jX j r can be plotted in the 

above charts.

For this chart the average run length (ARL) is equal to 1/, where  is the 
probability of type I error if the process is under control. But if the process starts to 
get out of control then ARL= 1/, where  is the probability of type II error, see 
Montgomery (1995).

In most real life problems  and variance 2 are unknown. We use the 

collected data to estimate  and  , obviously the unbiased estimator for  is 

1

1 r

j
j

X X
r 

  .     (13)

But 

          
1

1 r

j
j

S S
r 

      (14)

where 2

1

1
( )

1

n

j ij j
i

S X X
n 

 


 is a biased estimate for  . We can use 4/S c as 

an unbiased estimator for  , where 4c can be shown to equal 
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 2 ( 2)
2 / 1

[( 1) / 2]

n
n

n

 


 
. We may now define the control limits for the sample 

mean jX to be 

4

3S
UCL X

c n

CL X

 



    

4

3S
LCL X

c n
     (15)

After establishing the above chart, the sample means ; 1,2,...,jX j r are 

plotted in the chart. For more details see Montgomery (1995).

3.2. Quality Control Charts using PRSS 
The PRSS mean prssjX of the jth cycle defined on Section 2.3 can be plotted on 

the control chart based on PRSS 

3
prssXUCL

CL

 


    

3
prssXLCL       (16)

where 
2

2
( : )2prss k nX


   and 2

( : )k n as defined in Section 2.3.

We use the average run length (ARL) to compare the PRSS control charts to 
the Shewhart control chart. The ARL assumes that the process is under control 
with mean o and standard deviation o , and at some point in time the process 

may start to get out of control i.e. the mean is shifted from 0 to 

/o o n     . We are assuming that the process is following the normal 

distribution with mean 0 and variance 2
o if the process is under control, and the 

shift on the process mean is 0
o

n
   


. If 0  the process is under control 

and in this case if the point is outside the control limits it is a false alarm.
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The simulation is done only for the rule: a point out of control limits, see 
Champ and Woodall (1987). For each value of  we simulate 1,000,000 
replications. We calculate the values of the limits in equation (16) using the results 
of the order statistics for the standard normal distribution, see for example Harter 
and Balakrishnan (1996).  

Ranking the variable of interest without errors in ranking the units is called 
perfect ranking. But if the units cannot be raked perfectly or the ranking is done on 
a concomitant variable we call that imperfect ranking, see Section 2.2. Since the 
perfect ranking and SRS are special cases of the imperfect ranking with 1  and 

0  respectively, we will consider the case of imperfect ranked set sampling 

(IPRSS) with different values of . Following the same procedure that we used in 

Section 1.2, we only need equation (6) to perform our simulation, which can be 
written as  

2
2 2 2

( : )var( ) (1 )
2
x

iprssj z k nX
           (17)

where 2
x is the variance of the variable of interest X and 2

( : )z k n is the variance of 

the k-th order statistic of a standard normal distribution. 

The control chart given in equation (16) is based on the perfect PRSS, we need 
to modify it to the case of imperfect ranking by substituting for the variance of 

iprssjX given in equation (17) to get 

3
iprssXUCL

CL

 


    

3
iprssXLCL       (18)

where 
2

2 2 2
( : )(1 )

2iprss

x
z k nX

        . Note that if the ranking of the units is 

done perfectly, i.e. there are no errors in ranking then we set 1  in equation 

(18).

In our simulation we considered both X and Y as standard normal random 

variable, this implies 2 1x  . The computer simulations are run 

for 0,0.25,0.5,0.75,0.9,1.0  , n = 3, 4, 5, 6 and for  = 0, 0.1, 0.2, 0.3, 0.4, 0.8, 

1.2, 1.6, 2.0, 2.4, 3.2. Results are shown in Tables 1- 4. Considering these results 
the following remarks are made.
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1. If the process is under control, i.e.  = 0, PRSS reduces the false alarm to 
ARL= 355.89. But in the case PRSS we are only measuring two units, one 
form each set of size n, i.e. a sample size of 2. For example if n=4 for all 
other cases we have to measure 4 units, one from each set of size 4, but for 
the case of PRSS we are only measuring 2 units, one unit from two sets of 
size 4 units.

2. The PRSS method is dominated SRS if the process starts to get out of 
control i.e. >0, for example if =0.4 and n = 4 the ARL using PRSS is 99 
as compare to 200.01, for SRS.

3. If the sample size increases there will not be much of a change in the ARL 
if =0. But the ARL will keep decreasing if >0, for example if the sample 
size is 5 and =0.4 the ARL is 81 as compared to 99 in the case of n=4.

4. Imperfect ranking decreases the efficiency of PRSS and the ARL will be 
larger which depend on the values of . But PRSS is still doing better than 
SRS method by having smaller ARL for the same value of .

5. The ARL for the PRSS will decrease much faster than SRS if  increases.

3.3 Quality Control Charts using SRSS 
The SRSS mean srssjX of the jth cycle defined on Section 2.4 can be plotted on 

the control chart based on SRSS, which can be defined as follows:

3
srssXUCL

CL

 


    

3
srssXLCL       (19)

where 2 2 2
( : )

1
isrss

k

i n nX
i

c


    .

As we did in the pervious sections, we used the ARL to compare the selected 
ranked set sampling (SRSS) control charts to the other control charts. We used the 
same values for  ,  and n that we used in the previous sections, and we run our 

simulation for 1,000, 000 replications. Following the same procedure that we used 
in Section 3.2, but here we use SRSS instead of PRSS i.e. imperfect selected 
ranked set sampling (ISRSS). The analogues of equations (17) and (18) are 

2 2 2 2 2
( : )

1
var( ) (1 )

i

k

isrssj x i z n n
i

X c


        
                   (20)

and
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3
isrssXUCL

CL

 


    

3
isrssXLCL       (21)

where 2 2 2 2 2
( : )

1
(1 )

iisrss

k

x i z n nX
i

c


        
 and 2

( : )iz n n is the variance of the 

nith order statistic of a standard normal distribution.

We considered in our simulation both X and Y as standard normal random 
variable. The computer simulation is run for the same values of  ,  and n that 

considered before and for different values of k. Results are shown in Tables 5- 14. 
Considering the results of Tables 5-14, the following remarks can be made:

1. If the process under control i.e.  = 0 SRSS is dominated SRS and PRSS 
methods in reducing the number of false alarm, i.e. reducing ARL. Please 
note that in SRSS we are only measuring k units out of the n units in each 
set, where k < n.   

2. If the number of measured units k remains constant, but the sample size n 
increases then the ARL will be decrease as n increases. For example if 
=0.4, k=2 and if n=3, 4, 5, or 6 then the corresponding ARL is 133.51, 
120.51, 110.79, 103.62 respectively. In the other we do not see this pattern 
if n remains constant and k increases.  

3. The SRSS reduces the ARL over SRS and PRSS for must cases considered 
in this study if the process starts to get out of control.

4. Imperfect ranking decreases the efficiency of SRSS, as it is the case for 
other methods. 

4. CONCLUSIONS AND RECOMMENDATIONS 

The ranked set sampling has attracted a number of authors as an efficient 
sampling method. The RSS method that proved to be more efficient when units are 
difficult and costly to measure, but are easy and cheap to rank with respect to a 
variable of interest without actual measurement.  In this study we used two 
modifications of RSS to develop several quality control charts for the variables of 
interest using the sample mean. These charts are compared with the classical 
control charts using simple random sampling data. It is clear that all the newly 
developed charts are more efficient than the classical control chart. The following 
are some specific conclusions.

1. All the newly developed control charts dominate the classical charts. If the 
process starts to get out of control by reducing the number of average run 
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length (ARL) substantially. But number of false alarms is not reduced by 
the same amount if the process is under control.

2. Errors in ranking will reduce the ARL for both cases considered. The 
amount of reduction in the ARL will depend on the amount of errors 
committed in ranking the units of the variable of interest. For example if we 
are using a concomitant variable to rank our variable, then the ARL will 
depend on the correlation between the two variables.

Finally we recommend using the PRSS and/ or SRSS to build the quality 
control charts. Since they are reducing the ARL comparing to SRS method. 
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Table 1
ARL values when n=3 using PRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 370.24 369.89 368.25 367.08 362.18 355.89
0.1 347.63 350.53 354.31 346.62 336.38 321.85
0.2 310.71 309.44 298.88 288.37 270.55 250.92
0.3 251.51 247.35 241.02 225.41 204.66 184.51
0.4 200.36 197.06 185.41 162.02 139.47 118.60
0.8 71.51 69.04 61.35 47.91 36.78 28.12
1.2 27.84 26.53 22.79 16.70 12.09 8.83
1.6 12.39 11.75 9.92 7.07 5.06 3.70
2.0 6.30 5.98 5.03 3.61 2.65 2.02
2.4 3.64 3.47 2.95 2.19 1.69 1.39
3.2 1.73 1.66 1.48 1.25 1.11 1.04

Table 2
ARL values when n=4 using PRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 370.12 369.52 369.79 366.84 364.41 351.63
0.1 345.54 349.04 347.94 339.99 330.49 308.13
0.2 311.08 300.48 300.53 279.65 258.41 230.08
0.3 251.76 251.72 238.22 212.24 182.88 151.45
0.4 201.12 195.97 182.83 155.20 126.15 98.99
0.8 71.56 68.60 59.71 43.78 30.88 20.97
1.2 27.82 26.38 22.02 14.98 9.83 6.33
1.6 12.38 11.65 9.53 6.30 4.11 2.71
2.0 6.30 5.92 4.84 3.24 2.21 1.59
2.4 3.65 3.44 2.85 2.00 1.48 1.19
3.2 1.73 1.65 1.45 1.19 1.06 1.01
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Table 3
ARL values when n=5 using PRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 369.80 368.46 370.50 367.84 367.92 355.40
0.1 352.84 348.85 348.22 339.38 328.12 304.61
0.2 308.58 305.24 298.86 274.41 247.83 208.77
0.3 252.14 250.15 235.47 207.47 170.65 130.62
0.4 199.99 195.60 180.46 147.37 114.38 81.09
0.8 71.55 68.49 58.15 40.54 26.02 15.18
1.2 27.82 26.24 21.41 13.60 8.05 4.47
1.6 12.39 11.59 9.23 5.70 3.39 2.02
2.0 6.30 5.88 4.68 2.95 1.88 1.30
2.4 3.65 3.41 2.76 1.85 1.32 1.07
3.2 1.73 1.64 1.42 1.15 1.03 1.00

Table 4
ARL values when n=6 using PRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 370.04 371.35 369.86 367.38 365.68 354.12
0.1 352.76 352.92 348.23 339.98 323.76 294.75
0.2 307.94 307.06 295.46 272.13 239.73 193.56
0.3 253.67 248.76 234.94 201.68 161.39 116.45
0.4 200.51 196.20 179.64 144.66 106.93 69.67
0.8 71.71 68.22 57.43 38.64 23.29 12.12
1.2 27.84 26.12 20.95 12.83 7.11 3.57
1.6 12.38 11.53 9.05 5.37 3.02 1.70
2.0 6.31 5.85 4.59 2.80 1.72 1.18
2.4 3.64 3.40 2.72 1.77 1.25 1.03
3.2 1.73 1.64 1.41 1.13 1.02 1.00
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Table 5
ARL values when n =3 and k=2 using SRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 370.6 370.22 369.13 362.63 330.69 324.73
0.1 352.87 352.83 350.06 339.51 321.79 299.90
0.2 307.90 307.07 301.88 286.28 266.81 245.59
0.3 252.54 250.54 242.22 225.58 204.78 184.75
0.4 200.18 197.29 188.62 168.77 151.01 133.51
0.8 71.63 69.54 63.27 52.56 44.29 36.96
1.2 27.83 26.79 23.83 18.89 15.11 12.36
1.6 12.38 11.88 10.40 8.07 6.37 5.17
2.0 6.31 6.04 5.28 4.10 3.27 2.69
2.4 3.65 3.56 3.08 2.45 2.01 1.71
3.2 1.73 1.68 1.53 1.32 1.19 1.11

Table 6
ARL values when n = 4 and k= 2 using SRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 373.01 370.01 369.62 359.51 334.67 311.88
0.1 354.50 353.99 350.55 335.67 314.99 284.88
0.2 309.60 308.89 302.21 284.37 257.01 229.46
0.3 252.04 250.26 241.70 218.66 193.21 168.30
0.4 201.30 197.72 186.29 163.99 144.67 120.51
0.8 71.38 64.43 62.30 49.81 39.29 31.41
1.2 27.78 26.60 23.19 17.54 13.22 10.23
1.6 12.39 11.79 10.10 7.46 5.58 4.27
2.0 6.30 5.99 5.12 3.80 2.88 2.27
2.4 3.64 3.48 3.00 2.29 1.810 1.50
3.2 1.73 1.67 1.50 1.27 1.14 1.06
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Table 7
ARL values when 4 = and k= 3 using SRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 370.22 369.97 368.89 365.15 355.64 334.57
0.1 352.85 352.13 348.52 338.31 317.94 291.43
0.2 311.52 308.78 299.70 282.13 253.45 221.51
0.3 256.31 253.35 243.42 218.19 187.41 157.68
0.4 203.84 200.06 186.94 160.30 133.80 108.81
0.8 74.17 71.54 63.19 48.44 36.50 27.30
1.2 29.08 27.77 23.71 17.14 12.25 8.81
1.6 13.04 12.35 10.36 7.31 5.15 3.72
2.0 6.64 6.28 5.26 3.73 2.70 2.03
2.4 3.83 3.63 3.08 2.26 1.72 1.39
3.2 1.79 1.72 1.53 1.26 1.11 1.04

Table 8
ARL values when n =5 and k=2 using SRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 370.05 369.94 365.95 358.34 335.26 298.28
0.1 353.24 352.20 348.81 336.12 308.75 272.75
0.2 308.85 304.66 299.13 277.84 249.34 216.69
0.3 253.81 250.91 240.36 214.86 187.16 157.44
0.4 199.58 196.35 185.39 160.21 134.48 110.79
0.8 71.31 69.01 61.29 47.62 36.53 27.85
1.2 27.81 26.54 22.82 16.65 12.11 8.90
1.6 12.38 11.76 9.91 7.07 5.06 3.72
2.0 6.30 5.97 5.03 3.61 2.65 2.02
2.4 3.65 3.46 2.95 2.19 1.69 1.38
3.2 1.73 1.66 1.49 1.24 1.11 1.04
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Table 9
ARL values when n=5 and k=3 using SRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 372.87 369.86 367.7 363.01 348.57 323.29
0.1 354.60 352.99 347.10 335.60 309.47 271.09
0.2 311.36 307.58 300.10 275.48 241.55 199.83
0.3 256.38 253.42 241.39 213.75 176.78 139.21
0.4 205.00 200.51 188.55 158.24 126.23 96.11
0.8 75.54 72.46 63.45 47.20 33.93 23.87
1.2 29.82 28.33 23.86 16.68 11.36 7.72
1.6 13.42 12.66 10.47 7.11 4.80 3.294
2.0 6.84 6.44 5.31 3.64 2.53 1.83
2.4 3.94 3.72 3.10 2.21 1.63 1.29
3.2 1.83 1.75 1.54 1.25 1.09 1.02

Table 10
ARL values when n = 5 and k=4 using SRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 372.47 368.64 366.99 364.26 362.16 348.20
0.1 351.33 349.21 348.03 342.50 329.94 308.25
0.2 309.05 308.45 300.75 284.07 258.36 227.41
0.3 255.13 253.04 240.86 215.86 185.43 152.76
0.4 202.01 198.94 184.96 158.21 128.18 100.14
0.8 73.70 70.93 61.74 45.38 31.92 21.52
1.2 29.01 27.46 22.94 15.59 10.21 6.52
1.6 12.96 12.22 9.98 6.58 4.26 2.78
2.0 6.62 6.21 5.06 3.37 2.28 1.62
2.4 3.82 3.59 2.97 2.07 1.51 1.20
3.2 1.79 1.71 1.49 1.21 1.06 1.01
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Table 11
ARL values when n =6 and k=2 using SRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 372.52 371.78 369.95 358.49 332.95 289.92
0.1 353.23 351.98 347.21 332.45 307.07 265.01
0.2 307.35 305.87 296.31 278.10 246.38 207.39
0.3 253.90 249.65 241.71 212.74 181.76 149.27
0.4 200.14 196.75 183.30 157.925 129.91 103.62
0.8 71.42 68.96 60.83 46.29 34.38 25.34
1.2 27.84 26.48 22.50 16.05 11.29 7.98
1.6 12.39 11.72 9.77 6.79 4.72 3.34
2.0 6.31 5.96 4.96 3.47 2.46 1.85
2.4 3.64 3.45 2.91 2.12 1.61 1.30
3.2 1.73 1.66 1.47 1.22 1.09 1.03

Table 12
ARL values when n =6 and k=3 using SRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 370.04 369.76 367.89 362.41 346.92 310.48
0.1 352.78 354.77 349.78 332.40 302.54 254.29
0.2 311.22 308.40 300.11 273.01 233.97 185.00
0.3 258.84 254.20 243.29 210.07 170.27 128.22
0.4 206.11 203.18 187.42 155.27 120.69 87.55
0.8 76.33 73.30 63.72 46.44 32.18 21.68
1.2 30.32 28.76 24.06 16.36 10.78 7.01
1.6 13.66 12.85 10.53 6.98 4.55 3.01
2.0 6.97 6.55 5.35 3.57 2.42 1.71
2.4 4.02 3.78 3.12 2.17 1.58 1.24
3.2 1.86 1.78 1.545 1.24 1.08 1.01
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Table 13
ARL values when n = 6 and k= 4 using SRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 369.57 363.87 359.21 354.24 350.95 342.11
0.1 331.08 329.61 330.43 325.41 316.20 300.93
0.2 290.38 288.79 282.81 268.14 245.72 216.43
0.3 240.96 237.41 227.43 202.43 174.16 143.19
0.4 202.58 187.45 175.75 148.52 120.01 91.92
0.8 73.87 67.60 58.56 42.56 29.17 18.91
1.2 29.01 26.42 21.90 14.64 9.28 5.66
1.6 12.99 11.83 9.60 6.20 3.90 2.46
2.0 6.61 6.06 4.90 3.21 2.12 1.47
2.4 3.82 3.53 2.89 1.99 1.43 1.14
3.2 1.79 1.69 1.47 1.19 1.05 1.01

Table 14
ARL values when n = 6 and k= 5 using SRSS


0.0 0.25 0.50 0.75 0.90 1.00

0.0 370.04 369.05 368.40 366.27 364.19 352.12
0.1 352.54 355.13 353.29 340.82 325.04 299.51
0.2 310.23 309.37 302.17 278.18 250.93 209.47
0.3 256.30 253.28 242.37 209.18 175.66 135.92
0.4 203.48 200.58 186.31 153.12 119.64 86.12
0.8 75.01 71.83 61.48 43.32 28.36 17.12
1.2 29.57 27.83 22.84 14.75 8.93 5.12
1.6 13.25 12.39 9.93 6.21 3.75 1.39
2.0 6.75 6.30 5.04 3.20 2.04 1.11
2.4 3.89 3.65 2.95 1.98 1.47 1.02
3.2 1.81 1.73 1.49 1.43 1.04 1.00
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CHAPTER TEN

Modified Ranked Set Sampling Methods

Hassen A. Muttlak
Department Mathematical Sciences

KFUPM, Dhahran 31261, Saudi Arabia

ABSTRACT

The ranked set sampling method (RSS) as suggested by McIntyre (1952) may 
be modified to yield new sampling methods with improved. Several modifications 
for the RSS are introduced by several authors such as extreme ranked set sampling 
(ERSS), suggested by Samawi et al. (1996), median ranked set sampling (MRSS), 
suggested by Muttlak (1997), etc. In this study a few other modifications for the 
RSS are introduced and compared to the RSS, ERSS and MRSS. It turns out that 
for probability distributions considered in this study, we can always improve upon 
the efficiency of RSS by using some sort of modification for the RSS method. 

KEY WORDS

Extreme ranked set sampling, median ranked set sampling, simple random 
sampling, percentile ranked sampling and relative precision.

1. INTRODUCTION

Ranked set sampling (RSS) was first suggested by McIntyre (1952) without the 
mathematical theory to support his suggestion. Takahasi and Wakimoto (1968) 
supplied the necessary mathematical theory.  They proved that the sample mean of 
the ranked set sample (RSS) is an unbiased estimator of the population mean with 
smaller variance than the sample mean of a simple random sample (SRS) with the 
same sample size.  Dell and Clutter (1972) studied the case in which the ranking 
may not be perfect i.e., there are errors in ranking the units. Muttlak (1996) 
suggested using pair ranked set sampling instead of RSS. This can be used when it 
is difficult to select a large number of units from the population of interest. Samawi 
et al. (1996) suggested using extreme ranked set sampling (ERSS) to estimate the 
population mean. They showed that the ERSS estimator is an unbiased estimator of 
the population mean if the underlying distribution is symmetric and it is more 
efficient than the SRS estimator. Muttlak (1997) suggested using median ranked 
set sampling (MRSS) to estimate the population mean more efficiently than the 
usual RSS method. For review and more bibliography on the RSS see Patil et al. 
(1999).   
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In this paper, a further modification of the RSS method is considered, namely, 
percentile ranked sampling (PRSS) with different values of 0 1p  . The newly 

suggested sampling method is compared with RSS, ERSS and MRSS. It is shown 
that for the probability distributions considered in this study, we can always 
improve the relative precision and reduce the errors in ranking by using the 
modified sampling method instead of the usual RSS method. 

2. NOTIONS AND SOME USEFUL RESULTS

Let X1, X2, ..., Xn be a random sample with probability density function f(x) 
with a finite mean  and variance 2.  Let X11, X12, ..., X1n; X21, X22, ..., X2n; ...; 
Xn1, Xn2, ..., Xnn be independent random variables all with the same cumulative 
distribution function F(x).  Let X (i:n) denotes the ith order statistic from the ith 

sample of size n  (i = 1, 2, ..., n).  The unbiased estimator of the population mean 
using RSS is defined as

( : )
1

1 n
rss i n

i
X X

n 
  .

The variance of Xrss is given by 

2
( : )2

1

1
var( )

n
rss i n

i
X

n 
  ,

where 2 2
( : ) ( : ) ( : )[ ( )]i n i n i nE X E X   .  

Let X (i: e), denote the smallest of the ith sample (i = 1, 2, ..., L= n/2) and the 
largest of the ith sample (i = L+1, L+2, ..., n) if the sample size n is even.  Also 
denote the smallest of the ith sample (i = 1, 2, ..., L1= (n-1)/2), the median of the ith

sample (i = (n+1)/2) and the largest of the ith sample (i = L1+2, L1+3, ..., n) if the 
sample size n is odd.  The estimator of the population mean based on ERSS with 
one cycle can be written as

( : )
1

1 n
errs i e

i
X X

n 
  .

The variance of errsX can be written as  

2
( : )2

1

1
var( )

n
errs i e

i
X

n 
  ,

where 2 2
( : ) ( : ) ( : )[ ( )]i n i e i eE X E X   . For more details, see Samawi et al (1996).
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Let X (i: m), denote the median of the ith sample if the sample size is odd, and the  
(n/2)th order statistic of the ith sample (i = 1, 2, ..., L= n/2 ) and the ((n+2)/2)th order 
statistic of the ith sample (i = L+1, L+2, ..., n)  if the sample size is even.  The 
estimator of the population mean using MRSS then can be written as

mrssX = ( : )
1

1 n

i m
i

X
n 
 .

The variance of mrssX can be written as  

2
( : )2

1

1
var( )

n

mrss i m
i

X
n 

 

where 2 2
( : ) ( : ) ( : )[ ( )]i m i m i mE X E X   . For more details, see Muttlak (1997).

3. PERCENTILE RANKED SET SAMPLING

In the percentile ranked set sampling (PRSS) procedure, select n random 
samples of size n units from the population and rank the units within each sample 
with respect to a variable of interest.  If the sample size is even, select for 
measurement from the first n/2 samples the (p(n+1))th smallest rank and from the 
second n/2 samples the (q(n+1))th smallest rank, where  0  p  1 and q = 1-p. If the 
sample size is odd, select from the first (n-1)/2 samples the (p(n+1))th smallest rank 
and from the other (n-1)/2 samples the (q(n+1))th smallest rank, and from one 
sample the median for that sample for actual measurement.  The cycle may be 
repeated r times to get nr units.  These nr units form the PRSS data.

Let X11, X12, ..., X1n; X21, X22, ..., X2n; ...; Xn1, Xn2, ..., Xnn be independent 
random variables all with the same cumulative distribution function F(x). Let Xi 

(p(n+1)) and Xi (q(n+1)) denote the (p(n+1))th order statistic (q(n+1))th order statistic of 
the ith sample respectively (i = 1, 2, ..., n), where 0  p 1 and q = 1-p. The 
estimator of the population mean using percentile ranked set sample (PRSS) with 
one cycle can be defined in the case of an even sample size as 

1prssX = 
1

1

( ( 1)) ( ( 1))
1 1

1 L n

i p n i q n
i i L

X X
n  

  

 
  

 
  ,

where L1 = n/2.  In the case of an odd sample size, the estimator of the population 
mean can be defined as

2prssX = 
2

2

( ( 1)) ( ( 1)) (( 1) / 2)
1 2

1 L n

i p n i q n i n
i i L

X X X
n   

  

 
   

 
  ,
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where L2= (n-1)/2 and Xi ((n+1)/2) is the median of sample i = (n+1)/2 

The variance of prssX can be written as  

2
( : )2

1

1
var( )

n

prss i p
i

X
n 

 

where 2 2
( : ) ( : ) ( : )[ ( )]i p i p i pE X E X   . Here ( : )i pX is the p(n+1)

th order statistic of 

the ith sample.

Let srsX denote the sample mean of simple random sample (SRS) of size n. 

The properties of prssX are

1. prssX is an unbiased estimator of the population mean  if the underling 

distribution is symmetric about the population   and 

2. Var ( prssX ) is less than Var ( srsX ).

3. If the distribution is not symmetric about  than the mean square error 

(MSE) of prssX is less than the variance of srsX .

It is not difficult to prove (1)-(3) using the results by Takahasi and Wakimoto 
(1968), Samawi et al (1996) and Muttlak (1997). 

To compare the proposed estimators for the population mean using PRSS with 
RSS, ERSS, MRSS and SRS methods, eight probability distribution functions were 
considered: rectangular, normal, exponential, gamma, weibull, double exponential, 
inverse Gaussian and lognormal.  The variance or the mean square error of the 
sample means for the RSS, ERSS, MRSS and PRSS with different values of p were 
calculated for the above distributions using the moments of the order statistics, see 
Harter and Balakrishnan (1996) and Balakrishnan and Chen (1997). The relative 
precision (RP) of estimating the population mean using any of the RSS based 
methods with respect to the usual estimator using SRS is defined as following

( )
( , )

( )

srs
srs rss

rss

Var X
RP X X

Var X
 ,

if the distribution is symmetric and     

( )
( , )

( )

srs
srs rss

rss

Var X
RP X X

MSE X
 ,

if the distribution is not symmetric. 
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Results are summarized by the relative precision (RP) and the bias in Tables I-III 
for RSS ERSS, MRSS and PRSS with p = 20%, 30% and 40%. For each population 
calculations were done with sample size n = 8 in Table I, n =9 in Table II and n=10 
inn Table III. Considering the results in Tables I-III, a gain in efficiency is obtained 
by using PRSS for different values of n and for all the distributions considered in this 
study.  For example, for n = 10 in Table III and p = 0.3 the relative precision (RP) of 
the PRSS is 5.329 for estimating the population mean of a weibull distribution with 
shape parameter 2.5. 

4. PERCENTILE RANKED SET SAMPLING 
WITH ERRORS IN RANKING

Dell and Clutter (1972) considered the case in which there are errors in 
ranking; that is, the quantified observation from the ith sample in the jth cycle may 
be not the ith order statistic but rather the ith judgment order statistic. They showed 
that the sample mean of RSS with errors in ranking is an unbiased estimator of the 
population mean , regardless of the errors in ranking and has a smaller variance 
than the usual estimator based on SRS with the same sample size.  

Let Xi [p(n+1)] and Xi [q(n+1)] denote the [p(n+1)]th and [q(n+1)]th judgment order 
statistics respectively, of the ith sample (i = 1, 2, ..., n), where 0  p  1 and q = 1-p. 
If the cycle is repeated once, the estimator of the population mean using percentile 
ranked set sample (PRSS) with errors in ranking can be defined in the case of an 
even sample size as 

1prsseX = 
1

1

[ ( 1)] [ ( 1)]
1 1

1 L n

i p n i q n
i i L

X X
n  

  

 
  

 
  ,

where L1 = n/2.  In the case of an odd sample size, the estimator of the population 
mean can be defined as

2prsseX = 
2

2

[ ( 1)] [ ( 1)] [( 1) / 2]
1 2

1 L n

i p n i q n i n
i i L

X X X
n   

  

 
   

 
  ,

where L2= (n-1)/2 and Xi [(n+1)/2] is the judgment median of sample i = (n+1)/2.  

The variance of prsseX can be written as  

2
[ : ]2

1

1
var( )

n

prsse i p
i

X
n 

 

where 
22

[ : ] [ : ] [ : ]( )i p i p i pE X E X     . Here [ : ]i pX is the p(n+1)
th judgment order 

statistic of the ith sample.
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Let srsX denote the sample means of simple random sample (SRS) of size n. 

The properties of prsseX are

1. prsseX is an unbiased estimator of the population mean  if the underling 

distribution is symmetric about   and

2. Var ( prsseX ) is less than Var ( srsX ).

3. If the distribution is not symmetric about  than the mean square error 

(MSE) of prsseX is less than the variance of srsX .

It is not difficult to prove a-c, using the results by Takahasi and Wakimoto 
(1968), Dell and Clutter (1972) Samawi et al (1996) and Muttlak (1997).
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Table I
Summary of the relative precision (RP) values for estimating 

the population mean using RSS, ERSS, MRSS, and PRSS with 
values of p = 0.2, 0.3 and 0.4, with sample size n = 8.

Distribution RSS ERSS MRSS PRSS 20% 30% 40%
Uniform (0, 1) RP

Bias
4.50 8.348 3.375 4.821 3.750 3.375

Normal (0, 1) RP
Bias

3.999 2.682 5.342 4.177 4.981 5.342

Exponential  (1) RP
Bias

2.943 0.457
0.421

1.673
0.241

3.545
0.007

2.426
0.174

1.673
0.241

Gamma (2) RP
Bias

3.354 0.725
0.345

2.404
0.253

3.812
0.009

3.126
0.184

2.404
0.253

Gamma (3) RP
Bias

3.535 0.939
0.453

2.903
0.257

3.921
0.009

3.533
0.182

2.903
0.257

Gamma (5) RP
Bias

3.702 1.253
0.459

3.524
0.259

4.018
0.011

4.044
0.187

3.524
0.259

Lognormal (0, 1) RP
Bias

1.891 0.279
1.037

1.814
0.538

4.068
0.083

2.586
0.416

1.814
0.538

Double Exponential (0,1) RP
Bias

3.124 1.309 9.509 3.768 6.863 9.509

Inverse Gaussian  (0.5) RP
Bias

3.885 1.951
0.115

4.633
0.065

4.124
0.003

4.641
0.047

4.633
0.065

Inverse Gaussian (1) RP
Bias

3.603 1.127
0.219

3.432
0.124

3.989
0.006

3.932
0.090

3.432
0.124

Inverse Gaussian (1.5) RP
Bias

3.262 0.715
0.308

2.563
0.173

3.821
0.008

3.276
0.127

2.563
0.173

Inverse Gaussian (2.5) RP
Bias

2.657 0.404
0.434

1.747
0.241

3.546
0.015

2.495
0.178

1.747
0.241

Weibull (0.5) RP
Bias

1.665 0.222
2.472

1.478
1.272

3.750
0.207

2.164
0.993

1.478
1.272

Weibull (1.5) RP
Bias

3.647 0.972
0.163

2.718
0.094

3.934
0.002

3.370
0.067

2.718
0.094

Weibull (2) RP
Bias

3.962 1.750
0.075

3.788
0.042

4.122
0.002

4.092
0.031

3.788
0.042

Weibull(2.5) RP
Bias

4.088 2.534
0.035

4.524
.0190

4.187
0.001

4.502
0.014

4.524
.0190
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Table II
Summary of the relative precision (RP) values for estimating the 

population mean using RSS, ERSS, MRSS, and PRSS with values of 
p = 0.2, 0.3 and 0.4, with sample size n = 9.

Distribution RSS ERSS MRSS PRSS 20% 30% 40%
Uniform (0, 1) RP

Bias
5.0 10.19 3.667 5.729 4.365 3.819

Normal (0, 1) RP
Bias

4.394 2.798 6.020 4.431 5.365 5.863

Exponential  (1) RP
Bias

3.181 0.484
0.389

1.432
0.254

3.770
0.000

2.577
0.158

1.636
0.232

Gamma (2) RP
Bias

3.650 0.771
0.412

2.166
0.267

4.102
0.001

3.344
0.167

2.409
0.244

Gamma(3) RP
Bias

3.858 1.003
0.419

2.708
0.271

4.241
0.001

3.795
0.170

2.949
0.248

Gamma (5) RP
Bias

4.052 1.347
0.425

3.439
0.274

4.362
0.002

4.292
0.172

3.665
0.251

Lognormal (0, 1) RP
Bias

1.980 0.288
0.975

1.528
0.562

4.199
0.064

2.635
0.387

1.719
0.523

Double Exponential (0,1) RP
Bias

3.374 1.299 11.42 3.695 6.735 9.900

Inverse Gaussian  (0.5) RP
Bias

4.265 2.139
0.106

4.914
0.068

4.495
0.001

5.036
0.043

4.993
0.062

Inverse Gaussian (1) RP
Bias

3.936 1.211
0.203

3.062
0.141

4.311
0.006

4.227
0.082

3.547
0.119

Inverse Gaussian (1.5) RP
Bias

3.542 0.760
0.286

2.320
0.183

4.100
0.003

3.487
0.116

2.569
0.167

Inverse Gaussian (2.5) RP
Bias

2.850 0.736
0.228

1.494
0.253

3.739
0.007

2.615
0.163

1.692
0.233

Weibull (0.5) RP
Bias

1.736 0.228
2.327

1.228
1.327

3.807
0.162

2.182
0.926

1.387
1.239

Weibull (1.5) RP
Bias

3.992 1.039
0.151

2.530
0.098

4.244
0.008

3.642
0.061

2.770
0.090

Weibull (2) RP
Bias

4.406 1.891
0.069

3.855
0.045

4.504
0.003

4.457
0.028

4.039
0.041

Weibull (2.5) RP
Bias

4.507 2.779
0.032

4.899
0.020

4.596
0.001

4.927
0.013

4.930
0.018
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Table III
Summary of the relative precision (RP) values for estimating the 

population mean using RSS, ERSS, MRSS, and PRSS with values of 
p = 0.2, 0.3 and 0.4, with sample size n =10.

Distribution RSS ERSS MRSS PRSS 20% 30% 40%
Uniform (0, 1) RP

Bias
5.50 12.10 4.033 6.722 5.042 4.321

Normal (0, 1) RP
Bias

4.795 2.904 6.620 4.662 5.714 6.332

Exponential  (1) RP
Bias

3.414 0.292
0.514

1.328
0.254

2.985
0.007

3.259
0.117

1.736
0.213

Gamma (2) RP
Bias

3.940 0.486
0.544

2.061
0.267

3.591
0.072

4.002
0.125

2.556
0.224

Gamma (3) RP
Bias

4.177 0.656
0.554

2.628
0.271

3.880
0.072

4.407
0.127

3.140
0.228

Gamma (5) RP
Bias

4.397 0.934
0.561

3.428
0.274

4.155
0.072

4.829
0.129

3.898
0.230

Lognormal (0,1) RP
Bias

2.064 0.182
1.288

1.392
0.562

3.522
0.076

3.205
0.313

1.759
0.489

Double Exponential (0,1) RP
Bias

3.617 1.291 12.63 3.633 6.593 9.940

Inverse Gaussian  (0.5) RP
Bias

4.641 1.727
0.140

5.165
0.068

4.479
0.018

5.422
0.032

5.330
0.057

Inverse Gaussian (1) RP
Bias

4.263 0.828
0.269

3.267
0.131

4.055
0.034

4.774
0.062

3.758
0.110

Inverse Gaussian (1.5) RP
Bias

3.820 0.485
0.377

2.203
0.183

3.602
0.047

4.121
0.087

2.707
0.154

Inverse Gaussian (2.5) RP
Bias

3.038 0.259
0.533

1.374
0.254

2.997
0.060

3.244
0.125

1.772
0.215

Weibull (0.5) RP
Bias

1.807 0.142
3.074

1.110
1.328

3.099
0.169

2.672
0.754

1.408
1.162

Weibull (1.5) RP
Bias

4.333 0.669
0.199

2.457
0.099

3.915
0.003

4.287
0.045

2.965
0.083

Weibull (2) RP
Bias

4.752 1.381
0.092

3.953
0.045

4.511
0.012

4.969
0.021

4.320
0.038

Weibull (2.5) RP
Bias

4.922 2.379
0.042

5.245
0.020

4.754
0.004

5.329
0.010

5.313
0.017
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ABSTRACT

Assume X (strength) ~   1/
1 11 , 0 , 0,xe x     independent of Y (stress) 

~   2/
2 21 , 0 , 0ye y     . In this paper we consider the problem of estimation 

of the reliability 1 2( , ) ( ).R P X Y    We consider both simple random sample 

(SRS) and ranked set sample (RSS), and provide several estimates of R along with 
their comparisons.

1. INTRODUCTION

In this paper we consider the problem of estimation of the reliability 

1 2( , ) ( )R P X Y    , based on 1, , NX X ~ iid ~ X where X is the strength with 

pdf,   1
1( ) 1 xf x e   , and 1, , MY Y ~ iid ~ Y where Y is the stress with pdf, 

  2
2( ) 1 yf y e   , and X and Y are independent. We consider both simple 

random sample (SRS) and ranked set sample (RSS), and provide several estimates 
of R. Under RSS, we have used three estimates of R. The comparisons of the 
estimates of R are conducted for large sample sizes as well as small sample sizes.

For details about RSS, we refer to Stokes (1980), McIntyre (1952), Takahasi 
and Wakimoto (1968), Dell and Clutter (1972) and Sinha, Sinha and Purkayastha 
(1995).

                                                
* Supported by a fellowship from the Institute for the Promotion of 

Teaching Science and Technology (IPST).
** Supported by a fellowship from Thailand Research Fund (TRF).
*** Supported by UMBC’s Presidential Research Professorship grant.
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2. MAIN RESULT

Since X ~ 1( )Exp  and Y ~ 2( )Exp  1 2 1 1 2( , ) ( )R        . For estimation 

of 1 2( , )R   based on SRS, let 1, , NX X ~ iid ~ 1 1( ), , , MExp Y Y  ~ iid ~

2( )Exp  . Obviously standard estimates of 1 and 2 are X and Y , respectively. 

So we use

1 2
ˆ ( , )SRS

X
R

X Y
  


. (1)

By the Central Limit Theorem, for large N and M, X ~
2
1

1, ,N Y
N

 
  
 

~
2
2

2,N
M

 
  
 

. 

Therefore, by using standard Taylor expansion, we get for large N and M

1 2
ˆ ( , )SRSR   ~

2 2
1 2

1 2 4
1 2

1 1
( , ),

( )
N R

N M

              
. (2)

For using RSS, we write N=kn and M=sm, and draw RSS from the 

X-population as  ( )
( )

j
iiX , 1, , ; 1, ,i k j n   and from the Y-population as 

 ( )
( )

j
iiY , 1, , ;i s  1, ,j m  , (see McIntyre (1952)). From McIntyre (1952) 

and Sinha, Sinha and Purkayastha (1995), the estimates of 1 and 2 based on 

RSS are obtained as 

( )
( )

1
1 1

ˆ
j

n k ii
Mc

j i

X

kn 
    ,

( )
( )

2
1 1

ˆ
j

m s ii
Mc

j i

Y

ms 
    (3)

( )
( )

1
1 1 1 1: : :

1ˆ
j

n k n kii
Blue

j i j ii k i k i k

X

c a a   

   
    
    
    , 

( )
( )

2
1 1 1 1: : :

1ˆ
j

m s m sii
Blue

j i j ii s i s i s

Y

c a a   

   
    
    
   

(4)

where :
: 2

:

i k
i k

i k

d
a

c
 , 

2

:
1

1

1

i

i k
l

d
k l

 
    
 , :

1

1

1

i

i k
l

c
k l

 
    
 , :

: 2
:

i s
i s

i s

d
a

c
 , 

2

:
1

1

1

i

i s
l

d
s l

 
    
 , 

:
1

1

1

i

i s
l

c
s l

     
 . Here ˆ

Blue is the best linear unbiased estimate of  based on 

RSS-data. For ˆ
Opt , our strategy is a variation of the usual RSS sample, which is 
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based on always drawing the thr order statistic from each row of all the cycles, r

depending on the set size, resulting in ( )
( )k

j
irX , 1, , ; 1, ,i k j n   and ( )

( )s

j
irY , 

1, , ; 1, ,i s j m   . Following Sinha et al. (1995), we use

( )
( )

1
1 1 :

ˆ k

j
n k ir

Opt
j i i k

X
kn

c 

 
  
  
  , 

( )
( )

2
1 1 :

ˆ s

j
m s ir

Opt
j i i s

X
sm

c 

 
  
  
  . (5)

Here kr is such that :r ka is the smallest among 1: :, ,k k ka a and sr is such that 

:r sa is the smallest among 1: :, ,s s sa a .

Once 1 and 2 are estimated as above, an estimate of 1 2( , )R   is obtained 

by 1
1 2

1 2

ˆ
ˆ ( , )

ˆ ˆ
RSS

RSS
RSS RSS

R


  
  

. To study the large sample properties of 

1 2
ˆ ( , )RSSR   , we first state the following theorem where proof follows from the 

CLT.

Theorem 2.1 For large n and m, the distributions of the estimates of 1 and 2
based on RSS are given by

a) 1
ˆ

Mc ~ 
2
1

1 :2
1

,
k

i k
i

N d
k n 

 
 
  

 , 2
ˆ

Mc ~
2
2

2 :2
1

,
s

i s
i

N d
s m 

 
 
  

 (6)

b) 1
ˆ

Blue ~ 

12
1

1
1 :

1
,

k

i i k

N
n a





     
   

 , 2
ˆ

Blue ~ 

12
2

2
1 :

1
,

s

i i s

N
m a





     
   

 (7)

c) 1
ˆ

Opt ~
2
1 :

1, r ka
N

kn

 
 
  

, 2
ˆ

Opt ~ 
2
2 :

2 , r sa
N

sm

 
 
  

(8)

The large sample distributions of 1 2
ˆ ( , )RSSR   are stated below.

Theorem 2.2 For large n and m, the distributions of the estimates of 1 2( , )R  
based on RSS are given by the following:

a) 1 2
ˆ ( , )McR   ~

2 2
2 21 2

1 2 : :4
1 11 2

( , ), / /
( )

k s

i k i s
i i

N R d k n d s m
 

              
  (9)
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b) 1 2
ˆ ( , )BlueR   ~ 

1 12 2
1 2

1 2 4
1 1: :1 2

1 1 1 1
( , ),

( )

k s

i ii k i s

N R
n a m a

 

 

                      
     (10)

c) 1 2
ˆ ( , )OptR   ~ 

2 2
: :1 2

1 2 4
1 2

( , ),
( )

r k r sa a
N R

kn sm

              
    (11)

Proof. Follows from Theorem 2.1 and Taylor expansion.

3. COMPARISON OF ESTIMATES

In this section we provide a comparison of the above estimates of 1 2( , )R   . 

We first mention about the large sample result.

Theorem 3.1 For large n and m, ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )Opt Blue Mc SRSVar R Var R Var R Var R   .

Proof:

1. To compare ˆ( )SRSVar R with ˆ( )McVar R is equivalent to comparing 1 N with 

2
:

1
/

k

i k
i

d k n

 and 1 M with 2

:
1

/
s

i s
i

d s m

 .

Since N=kn and :
1

k

i k
i

d k


 , so 2
: :

1 1
/ / 1

k k

i k i k
i i

d k n d Nk N
 

   . Similarly we 

get :
1

/ 1
s

i s
i

d sM M


 . So ˆ ˆ( ) ( )Mc SRSVar R Var R .

2. To compare ˆ( )McVar R with ˆ( )BlueVar R is equivalent to comparing 

2
:

1
/

k

i k
i

d k n

 with 

1

1 :

1 1k

i i kn a





 
 
 
 and 2

:
1

/
s

i s
i

d s m

 with 

1

1 :

1 1s

i i sm a





 
 
 
 . 

From the numerical computations, we verified that 

1
2

:
1 1:

1
/

k k

i k
i ii k

d k
a



 

 
 

 
  for 

all k. Of course the same is true for comparing 2
:

1
/

s

i s
i

d s

 with 

1

1 :

1s

i i sa





 
 
 
 . 

So ˆ ˆ( ) ( )Blue McVar R Var R .
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3. To compare ˆ( )BlueVar R with ˆ( )OptVar R is equivalent to comparing 

1

1 :

1 1k

i i kn a





 
 
 
 with :r ka

kn
and 

1

1 :

1 1s

i i sm a





 
 
 
 with :r sa

sm
.

Since : : ,r k i ka a i  , then 
: :

1 1

r k i ka a
 and 

1: :

1k

ir k i k

k

a a

 
  

 
 , so 

1

:

1 :

1k
r k

i i k

a

k a





 
  
 
 .

Similarly, we get 

1

:

1 :

1s
r s

i i s

a

s a





 
  
 
 . So ˆ ˆ( ) ( )Opt BlueVar R Var R

This completes the proof.

We conclude this paper with a small sample comparison of the above estimates 
of 1 2( , )R   based on 1000 simulations using SAS. We have taken N=M=10, and 

n=m=5, k=s=2. The table below shows the bias and the variance of the proposed 
estimates of 1 2( , )R   .

Table 3.1 Comparison of estimates of 1 2( , )R   in small samples

1 1  , 2 1 

R=0.5
1 1  , 2 2 

R=0.33
1 1  , 2 3 

R=0.25
1 1  , 2 4 

R=0.2
bias var bias var bias var bias var

SRS 0.00179 0.01041 0.00781 0.00842 0.00933 0.00625 0.00943 0.00472
McIntyre 0.00618 0.00797 0.01031 0.00648 0.01082 0.00477 0.01036 0.00357
Blue -0.00358 0.00884 0.00205 0.00705 0.00399 0.00515 0.00459 0.00383
Optimum -0.00292 0.00807 0.00744 0.00656 0.00841 0.00484 0.00831 0.00362

Table 3.1 (continued)

1 2  , 2 1 

R=0.67
1 3  , 2 1 

R=0.75
1 4  , 2 1 

R=0.8
bias var bias var bias var

SRS -0.00469 0.00863 -0.00677 0.00648 -0.00729 0.00492
McIntyre 0.00073 0.00645 -0.00146 0.00475 -0.00234 0.00355
Blue -0.00854 0.00732 -0.00961 0.00546 -0.00949 0.00413
Optimum -0.00221 0.00651 -0.00396 0.00478 -0.00448 0.00357
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It follows from the above table that, even in small samples, the estimates of 

1 2( , )R   based on RSS have both smaller bias and smaller variance compared to 

the SRS-based estimate. It also happens that the estimate of 1 2( , )R   based on 

McIntyre procedure is marginally better than the two other RSS-based estimates.
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ABSTRACT

The ranked-set sampling technique has been generalized so that more efficient 
estimators may be obtained. The generalized ranked-set sampling technique is 
applied in the estimation of quantiles of the uniform distribution. Three estimators 
are proposed. These include generalized ranked-set minimum variance unbiased 
estimator, simple estimator and ranked-set sample estimator. Coefficients, 
variances and relative efficiencies are derived. The estimators are compared to the 
best linear unbiased estimator of the quantiles.

KEYWORDS

Uniform distribution, order statistics, linear estimation, generalized ranked-set 
sampling, ranked-set sampling

1. INTRODUCTION

In applied statistics, experimenters often encounter situations where the actual 
measurements of the sample observations are difficult to make due to constraints in 
cost, time and other factors. However, ranking of the potential sample data is 
relatively easy. In these situations, McIntyre (1952) advocated the use of ranked-
set sampling. He applied the ranked-set sampling technique in assessing the yields 
of pasture plots without actually carrying out the time-consuming process of 
mowing and weighing the hay for a large number of plots. Since then, the 
technique has been studied and applied to several areas of applied research. 
Takahasi and Wakimato (1968) and Dell and Clutter (1972) studied theoretical 
aspects of this technique on the assumption of perfect judgment ranking and 
imperfect judgment ranking respectively. Patil, Sinha and Taillie (1993) studied the 
same technique when the sample is from a finite population. Patil, Sinha and 
Taillie (1994) have reviewed various aspects of the ranked-set sampling. Also, 
Bohn (1996) discussed the application of this technique in nonparametric 
procedures. 
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In this paper the ranked-set sampling technique has been generalized so that 
more efficient estimators may be obtained. The generalized ranked-set sampling 
technique is applied in the estimation of quantiles of the uniform distribution. 
Three estimators are proposed. These are generalized ranked-set minimum 
variance unbiased estimator (GR-MVUE), simple estimator (SE) and ranked-set 
sample estimator (RSS). Coefficients, variances, and relative efficiencies are 
derived. The estimators are compared to the best linear unbiased estimators 
(BLUE) of the quantiles.

In generalized ranked-set sampling, first a set of N elements is randomly 
selected from a given population. The sample is ordered without making actual 
measurements. The unit identified with the N1 rank is accurately measured. Next, a 
second set of N elements is randomly selected from the population. Again the units 
are ordered and the unit with the N2 rank is accurately measured. The process is 
continued until N set of N elements is selected. The units are again ordered and the 
unit with NN rank is accurately measured. The ordered sample of the N sets can be 
represented as follows:

Set 1 X(11) X(12) ... X(1N)

Set 2 X(21) X(22) ... X(2N)

   ... 

Set N X(N1) X(N2) ... X(NN)

The generalized ranked-set sample of size N consists of units which are 
accurately measured i.e. (

1 2 N(1N ) (2N ) (NN )X ,X ,...,X ) where 1  Ni  N and 1  i  N. 

The generalized ranked-set sample actually includes the usual ranked-set sample 
which is obtained when N1 = 1, N2 = 2,..., NN = N.

2. ESTIMATORS

2.1 Best Linear Unbiased Estimator of Quantiles
Let the random variable X have a uniform distribution with probability density 

function 

1
( )

2 3
f x 


, 3 3x        ,   > 0

where  and  are the location and scale parameters respectively.

The quantile function of the distribution is defined as

( ) 3 (2 1), 0 1.Q          
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The best linear unbiased estimator (BLUE) of the quantile function Q() is 

ˆ ˆ ˆ( ) 3 (2 1)BLUEQ       

where the location and scale parameters are estimated by their respective BLUEs. 
Downton (1954) and Sarhan and Greenberg (1962) have obtained the results for 
BLUEs for the location and the scale parameter.

The variance is given by

   2 2 2ˆ( ( ) ) 6 3( 1) ( 1)(2 1) ( 1)( 2)BLUEV Q N N N N         

2.2 Estimator of Quantiles based on generalized ranked-set sampling
Let ( ) ( )( ) /

j jiN iNZ X   

( ) ( )
E( Z )

j jiN iN
 

j(iNV ( Z )
j jiN N ar  , i = 1, 2,, N, j = 1,2,…,N.

Therefore ( ) ( )E(X )
j jiN iN    and 

j

2
( iN )Var(X )

j jiN N   .

Let  1 2(1 ) (2 ) ( ), ,...,
N

T

S N N NN     where T implies the transpose

1T = (1,1)
S = {N1, N2,..., NN}

 1 2 NS (1N ) (2N ) (NN )X = X ,X ,...,X
T

andVar( XS) =  S
2

where  S is a N  N diagonal matrix with 
i iiN N as the (i,i)th element.

Then SE(X ) 1 S    = AS

where 
1 2 ( )(1 ) (2 )

11 1 ...

...
N

T
S

NNN N
A

 
     

and ( , )T    .

Least squares estimator of  is obtained by applying the Gauss and Markov 
theorem (Sarhan and Greenberg (1962)). Then

1 1 1ˆ ( )T T
S S S S S S SA A A X      and   1 1 2ˆ ( )T

S S S SVar A A    

where superscript -1 implies inverse. 
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Therefore, based on generalized ranked-set sample XS with 

S = {N1,N2,...,NN} the estimator for the quantile function is 

ˆ ˆ ˆ( ) 3 (2 1)S S SQ       
where 

ˆ S =  1 ( ) 3
( )2

1 1 2 3

( )
/

( )
i

i i i

N S iN S
iN iN N

i S S S

T T
X

T T T

 





ˆ S   ( ) 2 3
( )2

1 1 2 3

( )
/

( )
i

i i i

N iN S S
iN iN N

i S S S

T T
X

T T T

 





 

 

 

1 2
1S ( )

1

1
2S

1

1
3S ( )

1

T  = = /

T  = 1 1 = 1/

 T = 1 = /

i i i

i i

i i i

N
T

s S s iN iN N
i

N
T

S iN N
i

N
T

S S iN iN N
i













    

  

   







The variances of the estimator is given by

2
2

1 2 32
1 2 3

3ˆ( ( ) (2 1) 2 (2 1)
( )

S S S S
S S S

V Q T T T
T T T

          
where 

( )

2
3 1

( 1)j

j
iN

N

N

 
     

2

12 ( 1)

( 1) ( 2)j j

j j
iN N

N N N

N N

 
 

 

( ), ( ) 2

12 ( 1)
( )

( 1) ( 2)j k j k

j k
iN iN iN N

N N N
Cov X X

N N

 
  

 
for j < k.

2.3 Generalized Ranked-Set Minimum Variance Unbiased Estimators 
Generalized ranked-set minimum variance unbiased estimator (GR-MVUE) is 
obtained from the generalized ranked-set estimator when all possible choices of S 
are considered. The best choice of S is the one which gives the minimum variance 
of the estimator. This S is denoted by SGR-MVUE. The estimator is denoted by 
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ˆ( )GR MVUEQ  . Table 1 provides ranks SGR-MVUE and coefficients of the estimator 

for N = 2(1)10 and  = 0.01, 0.05, 0.5, 0.9, 0.95

2.4 Simple Estimator (SE)
The simple estimator is obtained from the generalized ranked-set estimators as 

follows:

When sample size is even, S = {N1,N2,...,NN} where N1 = N2 =  =NN/2 = 1 
and N/2+1 NN =  = N  = N  then S = {1,...,1,N,...,N}. Then from generalized 

ranked-set estimators, the simple estimator for the quantile function Q() when 
sample sizes are even is:

/2 /2

i ( 1) j ( )
1 /2 1

ˆ ˆ ˆ( ) 3 (2 1)

  B ( ) B ( )

SE SE SE

N N

SE i SE iN
i j N

Q

N X N X
  

      

  

where 
( ) 1/ (1 )(2 1) / ( ( 1))i SEB N N N N N      , i = 1,..,N/2

( ) 1/ (1 )(2 1) / ( ( 1))j SEB N N N N N      , j = N/2+1,..,N

SE = {1,...,1,N,...,N} 

   2 2 2 2ˆ( ( ) 12 3 / ( 2)( 1) (2 1) / ( 2)( 1)SEVar Q N N N N         

When sample size is odd S = {N1,N2,...,NN} where N1 = N2 =  = N(N+1)/2 = 1 and 

(N+1)/2+1 NN =  = N  = N  then S = {1,...,1,1,N,...,N}. Then from generalized 

ranked-set estimator, the simple estimator for the quantile function Q() when 
sample sizes are odd is:

( 1)/2 1

i ( 1) j ( )
1 ( 1)/2 2

ˆ ˆ ˆ( ) 3 (2 1)

  B ( ) B ( )

SE SE SE

N N

SE i SE iN
i j N

Q

N X N X
 

   

      

  

where  
2( ) 1/ ( 1) (2 1) / ( 1)i SEB N N N     
2 2( ) 1/ ( 1) (2 1) (1 ) / ( 1)j SEB N N N N      

SE = {1,1,...,1,1,N,N,...N}

   
2 2 3

2 3 2 2

ˆ( ( )) 12 (3 / ((1 ) ( 2)( 1)

(2 1) / ( 1) ( 1)( 2) 2 3 / ( 2)( 1) )

SEVar Q N N N N

N N N N N N

     

        
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2.5 Ranked-Set Sample Estimator (RSS)
The ranked-set sample estimator (RSS) for Q() is obtained from the 

generalized ranked-set estimator when S = {1,2,..,N}. The estimator is 

i ( 1) i ( 1)
1 1

ˆ ˆ ˆ( ) 3 (2 1)

  B ( ) C ( )

RSS RSS RSS

N N

RSS i RSS i
i i

Q

N X N X
 

      

  

where
( ) ( 1) / (2 ( 1) )i RSS NB N N i N i S   

  ( ) 3 ( 1)(2 1)(2 1) / 2 3 ( 1) ( 1) 2i RSS NC N N i N i N i N S N        

1
(1/ )

N

N
i

S i


 

RSS = {1,2,...,N}

The variance of the estimator is

 
  

2

2

ˆ( ( ) ) 6 3 / (( 1)( 2)

(2 1) / ( 2) ( 1) 2

RSS N

N

Var Q N N S

N N S N

    

     

3. COMPARISONS

In this section comparison has been made between generalized ranked-set 
minimum variance unbiased estimator (GR-MVUE), simple estimator (SE), 
ranked-set sample estimator (RSS) and best linear unbiased estimator (BLUE). 
Generalized ranked-set minimum variance unbiased estimator is more efficient 
than simple estimator, ranked-set sample estimator and best linear unbiased 
estimator. This is apparent from Table 2 and the properties of the simple estimator 
and ranked-set sample estimators. The simple estimator is more efficient than 
ranked-set sample estimators as well as the best linear unbiased estimators. The 
ranked-set sample estimator is more efficient than the best linear unbiased 
estimator.

Simple estimator is more efficient than ranked-set sample estimator for N = 3 

and  1
0 22 11 3 6 11

44
     and N  4 and 0 1   . This can be seen by 

considering even and odd sample cases. 

When N is even, let N = 2m where m  1. When m  2, S2m < (2m +1)/2 and 
therefore
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   
     

    

 

ˆ ˆ( ) ( )

2 26 3/ (( 1)( 2) (2 1) / ( 2) ( 1) 2

2 2 2 212 3/ ( 2)( 1) (2 1) / ( 2)( 1)

18 362
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Therefore when N  4 and is even, Simple Estimator (SE) is more efficient than 
ranked-set sample estimators (RSS)

When N is odd, let N = 2m+1. When m  2, S2m+1 < 3/2 + 4m3/(2m+1)2, then 
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After simplifying, the expression is
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The bracket containing  terms in the numerator of the right hand side of the 
above equation, is rewritten as (-3 +12 - 122 + mf1() + m2f2() + m3f3() 
+ m4f4() + m5f5() + m6f6() + m7f7() + m8f8() + m9f9() ) where fi() are the 
coefficients of mi ( 1 i  9 ). The function f9() is positive for 0    1. The 
function fi() ( 1 i  8 ) is either positive or negative depending on the value of . 
For m  15 and 0    1,

m8 (12 f9()+f8()) + m7 (24 f9()+f7()) + m6 (20 f9()+f6()) + m5 (21 f9()+f5()) 
+ m4 (25 f9()+f4())+m3 (19 f9()+f3())+m2 (7 f9()+f2())+m (2 f9()+f1())
+((((((((m-12)m-24)m-20)m-21)m-25)m-19)m-7)m-2) f9() -3 +12 - 122 > 0

Therefore, when N is odd and N  31 and 0    1 

ˆ ˆ( ( ) ) ( ( ) ) 0RSS SEVar Q Var Q   

It can also be shown that when N = 3 and  1
0 22 11 3 6 11

44
     or 

when 5  N  30 and is odd and ˆ ˆ0 1 ( ( ) ) ( ( ) )RSS SEVar Q Var Q      .

Simple estimator is also more efficient than best linear unbiased estimator 
when N  4 and 0 1   . The relative efficiencies of simple estimator compared 
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to ranked-set sample estimator and best linear unbiased estimator are presented in 
Table 3 for 2  N  10 and  = 0.01, 0.05, 0.5, 0.9, 0.95

Ranked-set sample estimator is also more efficient than best linear unbiased 
estimator when N  4 and 0 1   . The relative efficiencies of ranked-set sample 

estimator compared to best linear unbiased estimator are presented in Table 4 for 
2  N  10 and  = 0.01, 0.05, 0.5, 0.9, 0.95

4. CONCLUSION

It is evident that the generalized ranked-set minimum variance unbiased 
estimator, the simple estimator and the ranked-set sample estimator are all more 
efficient than the best linear unbiased estimator. 

The simple estimators are more efficient than ranked-set sample estimators as 
well as the best linear unbiased estimators. The simple estimator has a closed form 
and the expression for the variances, has been derived. The simple estimators are 
more useful than the ranked-set sample estimators or the best linear estimators.
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Table 1: Coefficients for computing ˆ ( )GR MVUEQ 
N SGR-MVUE  1 2 3 4 5 6 7 8 9 10
2 {1,2} 0.95 -0.2794 1.2794
3 {1,3,3} 0.95 -0.0196 0.5098 0.5098
4 {3,4,4,4} 0.95 0.2010 0.2663 0.2663 0.2663
5 {1,5,5,5,5} 0.95 0.1103 0.2224 0.2224 0.2224 0.2224
6 {1,6,6,6,6,6} 0.95 0.1363 0.1727 0.1727 0.1727 0.1727 0.1727
7 {1,7,7,7,7,7,7} 0.95 0.1536 0.1411 0.1411 0.1411 0.1411 0.1411 0.1411
8 {1,8,8,8,8,8,8,8} 0.95 0.1660 0.1191 0.1191 0.1191 0.1191 0.1191 0.1191 0.1191
9 {1,1,9,9,9,9,9,9,9} 0.95 0.0876 0.0876 0.1178 0.1178 0.1178 0.1178 0.1178 0.1178 0.1178
10 {1,1,10,10,10,10,10,10,10,10} 0.95 0.0912 0.0912 0.1022 0.1022 0.1022 0.1022 0.1022 0.1022 0.1022 0.1022
2 {1,2} 0.9 -0.1928 1.1928
3 {2,3,3} 0.9 0.0762 0.4619 0.4619
4 {2,4,4,4} 0.9 0.1726 0.2758 0.2758 0.2758
5 {1,5,5,5,5} 0.9 0.1536 0.2116 0.2116 0.2116 0.2116
6 {1,6,6,6,6,6} 0.9 0.1767 0.1647 0.1647 0.1647 0.1647 0.1647
7 {1,7,7,7,7,7,7} 0.9 0.1921 0.1347 0.1347 0.1347 0.1347 0.1347 0.1347
8 {1,1,8,8,8,8,8,8} 0.9 0.1015 0.1015 0.1328 0.1328 0.1328 0.1328 0.1328 0.1328
9 {1,1,9,9,9,9,9,9,9} 0.9 0.1057 0.1057 0.1127 0.1127 0.1127 0.1127 0.1127 0.1127 0.1127
10 {1,1,10,10,10,10,10,10,10,10} 0.9 0.1089 0.1089 0.0978 0.0978 0.0978 0.0978 0.0978 0.0978 0.0978 0.0978
2 {1,2} 0.5 0.5000 0.5000
3 {1,2,3} 0.5 0.3636 0.2727 0.3636
4 {1,1,4,4} 0.5 0.2500 0.2500 0.2500 0.2500
5 {1,1,1,5,5} 0.5 0.1667 0.1667 0.1667 0.2500 0.2500
6 {1,1,1,6,6,6} 0.5 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
7 {1,1,1,1,7,7,7} 0.5 0.1250 0.1250 0.1250 0.1250 0.1667 0.1667 0.1667
8 {1,1,1,1,8,8,8,8} 0.5 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
9 {1,1,1,1,1,9,9,9,9} 0.5 0.1000 0.1000 0.1000 0.1000 0.1000 0.1250 0.1250 0.1250 0.1250
10 {1,1,1,1,1,10,10,10,10,10} 0.5 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
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Table 1 (continued)
N SGR-MVUE  1 2 3 4 5 6 7 8 9 10
2 {1,2} 0.1 1.1928 -0.1928
3 {1,1,2} 0.1 0.4619 0.4619 0.0762
4 {1,1,1,3} 0.1 0.2758 0.2758 0.2758 0.1726
5 {1,1,1,1,5} 0.1 0.2116 0.2116 0.2116 0.2116 0.1536
6 {1,1,1,1,1,6} 0.1 0.1647 0.1647 0.1647 0.1647 0.1647 0.1767
7 {1,1,1,1,1,1,7} 0.1 0.1347 0.1347 0.1347 0.1347 0.1347 0.1347 0.1921
8 {1,1,1,1,1,1,8,8} 0.1 0.1328 0.1328 0.1328 0.1328 0.1328 0.1328 0.1015 0.1015
9 {1,1,1,1,1,1,1,9,9} 0.1 0.1127 0.1127 0.1127 0.1127 0.1127 0.1127 0.1127 0.1057 0.1057
10 {1,1,1,1,1,1,1,1,10,10} 0.1 0.0978 0.0978 0.0978 0.0978 0.0978 0.0978 0.0978 0.0978 0.1089 0.1089
2 {1,2} 0.05 1.2794 -0.2794
3 {1,1,3} 0.05 0.5098 0.5098 -0.0196
4 {1,1,1,2} 0.05 0.2663 0.2663 0.2663 0.2010
5 {1,1,1,1,5} 0.05 0.2224 0.2224 0.2224 0.2224 0.1103
6 {1,1,1,1,1,6} 0.05 0.1727 0.1727 0.1727 0.1727 0.1727 0.1363
7 {1,1,1,1,1,1,7} 0.05 0.1411 0.1411 0.1411 0.1411 0.1411 0.1411 0.1536
8 {1,1,1,1,1,1,1,8} 0.05 0.1191 0.1191 0.1191 0.1191 0.1191 0.1191 0.1191 0.1660
9 {1,1,1,1,1,1,1,9,9} 0.05 0.1178 0.1178 0.1178 0.1178 0.1178 0.1178 0.1178 0.0876 0.0876
10 {1,1,1,1,1,1,1,1,10,10} 0.05 0.1022 0.1022 0.1022 0.1022 0.1022 0.1022 0.1022 0.1022 0.0912 0.0912NCBA&E
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Table 2: Variances and relative efficiencies for generalized ranked-set 
minimum variance unbiased estimator

N    
2

ˆ
GR MVUE

Var Q 



  
  
ˆ

ˆ
BLUE

GR MVUE

Var Q

Var Q 





  
  

ˆ

ˆ
RSS

GR MVUE

Var Q

Var Q 





  
  
ˆ

ˆ
SE

MVUE

Var Q

Var Q





2 0.95 3.4300 0.7915 1.0000 1
3 0.95 0.7023 1.9736 1.7371 1.9989
4 0.95 0.2625 3.3148 2.3743 1.6002
5 0.95 0.1500 4.0131 2.5016 1.9035
6 0.95 0.0924 4.7911 2.6951 1.5191
7 0.95 0.0626 5.4349 2.8214 1.7113
8 0.95 0.0451 5.9706 2.9036 1.4245
9 0.95 0.0331 6.6032 3.0406 1.5658

10 0.95 0.0248 7.3010 3.2085 1.4006
2 0.9 2.9200 0.8425 1.0000 1.0000
3 0.9 0.5865 2.1894 1.8192 2.1315
4 0.9 0.2620 3.1047 2.1103 1.4591
5 0.9 0.1448 3.9074 2.3205 1.8060
6 0.9 0.0919 4.5421 2.4417 1.4171
7 0.9 0.0637 5.0381 2.5056 1.5568
8 0.9 0.0450 5.6677 2.6458 1.3370
9 0.9 0.0327 6.3290 2.8021 1.4789

10 0.9 0.0248 6.9205 2.9283 1.3161
2 0.5 1.0000 1.5000 1.0000 1.0000
3 0.5 0.4909 1.8333 1.0000 1.0313
4 0.5 0.2400 2.5000 1.2000 1.0000
5 0.5 0.1488 2.8800 1.2613 1.0000
6 0.5 0.0918 3.5000 1.4286 1.0000
7 0.5 0.0638 3.9184 1.5112 1.0000
8 0.5 0.0444 4.5000 1.6557 1.0000
9 0.5 0.0331 4.9383 1.7456 1.0000

10 0.5 0.0248 5.5000 1.8778 1.0000
2 0.1 2.9200 0.8425 1.0000 1.0000
3 0.1 0.5865 2.1894 1.8192 1.0682
4 0.1 0.2620 3.1047 2.1103 1.4591
5 0.1 0.1448 3.9074 2.3205 1.2363
6 0.1 0.0919 4.5421 2.4417 1.4171
7 0.1 0.0637 5.0381 2.5056 1.2045
8 0.1 0.0450 5.6677 2.6458 1.3370
9 0.1 0.0327 6.3290 2.8021 1.2193

10 0.1 0.0248 6.9205 2.9283 1.3161
2 0.05 3.4300 0.7915 1.0000 1.0000
3 0.05 0.7023 1.9736 1.7371 1.0000
4 0.05 0.2625 3.3148 2.3743 1.6002
5 0.05 0.1500 4.0131 2.5016 1.2851
6 0.05 0.0924 4.7911 2.6951 1.5191
7 0.05 0.0626 5.4349 2.8214 1.3075
8 0.05 0.0451 5.9706 2.9036 1.4245
9 0.05 0.0331 6.6032 3.0406 1.2772

10 0.05 0.0248 7.3010 3.2085 1.4006
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Table 3: Variances and relative efficiencies for simple estimator

N    
2

ˆ
SE

Var Q 



  
  

ˆ

ˆ
RSS

SE

Var Q

Var Q





  
  

ˆ

ˆ
BLUE

SE

Var Q

Var Q





2 0.95 3.4300 1.0000 0.7915
3 0.95 1.4037 0.8690 0.9874
4 0.95 0.4200 1.4837 2.0714
5 0.95 0.2856 1.3142 2.1083
6 0.95 0.1404 1.7742 3.1539
7 0.95 0.1071 1.6487 3.1759
8 0.95 0.0643 2.0384 4.1914
9 0.95 0.0519 1.9419 4.2171

10 0.95 0.0348 2.2907 5.2126
2 0.9 2.9200 1.0000 0.8425
3 0.9 1.2500 0.8535 1.0272
4 0.9 0.3822 1.4464 2.1279
5 0.9 0.2615 1.2848 2.1635
6 0.9 0.1302 1.7230 3.2051
7 0.9 0.0992 1.6094 3.2362
8 0.9 0.0601 1.9790 4.2393
9 0.9 0.0484 1.8948 4.2796

10 0.9 0.0327 2.2250 5.2583
2 0.5 1.0000 1.0000 1.5000
3 0.5 0.5063 0.9697 1.7778
4 0.5 0.2400 1.2000 2.5000
5 0.5 0.1488 1.2613 2.8800
6 0.5 0.0918 1.4286 3.5000
7 0.5 0.0638 1.5112 3.9184
8 0.5 0.0444 1.6557 4.5000
9 0.5 0.0331 1.7456 4.9383

10 0.5 0.0248 1.8778 5.5000
2 0.1 2.9200 1.0000 0.8425
3 0.1 0.6265 1.7030 2.0495
4 0.1 0.3822 1.4464 2.1279
5 0.1 0.1790 1.8769 3.1604
6 0.1 0.1302 1.7230 3.2051
7 0.1 0.0768 2.0801 4.1826
8 0.1 0.0601 1.9790 4.2393
9 0.1 0.0399 2.2982 5.1909

10 0.1 0.0327 2.2250 5.2583
2 0.05 3.4300 1.0000 0.7915
3 0.05 0.7023 1.7371 1.9736
4 0.05 0.4200 1.4837 2.0714
5 0.05 0.1928 1.9466 3.1229
6 0.05 0.1404 1.7742 3.1539
7 0.05 0.0818 2.1578 4.1566
8 0.05 0.0643 2.0384 4.1914
9 0.05 0.0423 2.3807 5.1701

10 0.05 0.0348 2.2907 5.2126
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Table 4: Variances and relative efficiencies of ranked-set sample estimator

N    
2

ˆ
RSS

Var Q 



  
  

ˆ

ˆ
BLUE

RSS

Var Q

Var Q





2 0.95 3.4300 0.7915
3 0.95 1.2199 1.1362
4 0.95 0.6232 1.3961
5 0.95 0.3753 1.6043
6 0.95 0.2492 1.7777
7 0.95 0.1765 1.9263
8 0.95 0.1310 2.0562
9 0.95 0.1008 2.1717

10 0.95 0.0797 2.2755
2 0.9 2.9200 0.8425
3 0.9 1.0669 1.2035
4 0.9 0.5528 1.4712
5 0.9 0.3360 1.6839
6 0.9 0.2244 1.8602
7 0.9 0.1597 2.0108
8 0.9 0.1190 2.1421
9 0.9 0.0918 2.2586

10 0.9 0.0727 2.3633
2 0.5 1.0000 1.5000
3 0.5 0.4909 1.8333
4 0.5 0.2880 2.0833
5 0.5 0.1877 2.2833
6 0.5 0.1312 2.4500
7 0.5 0.0964 2.5929
8 0.5 0.0736 2.7179
9 0.5 0.0578 2.8290

10 0.5 0.0466 2.9290
2 0.1 2.9200 0.8425
3 0.1 1.0669 1.2035
4 0.1 0.5528 1.4712
5 0.1 0.3360 1.6839
6 0.1 0.2244 1.8602
7 0.1 0.1597 2.0108
8 0.1 0.1190 2.1421
9 0.1 0.0918 2.2586

10 0.1 0.0727 2.3633
2 0.05 3.4300 0.7915
3 0.05 1.2199 1.1362
4 0.05 0.6232 1.3961
5 0.05 0.3753 1.6043
6 0.05 0.2492 1.7777
7 0.05 0.1765 1.9263
8 0.05 0.1310 2.0562
9 0.05 0.1008 2.1717

10 0.05 0.0797 2.2755
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Multistage Median Ranked Set Samples for 
Estimating the Population Mean
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ABSTRACT

Multistage median ranked set samples method (MMRSS) is considered. The 
estimator of population mean using MMRSS method is compared with that using 
simple random sapling (SRS) and ranked set sampling (RSS) methods. It is noted 
that the estimator of population mean using MMRSS is unbiased and more 
efficient than its counter parts for almost all distribution considered if the 
underlying distribution is symmetric. For asymmetric distributions considered in 
this study, MMRSS estimator has a smaller bias, and it's preferable for even 
sample size.

KEYWORDS

Ranked set sampling; median ranked set sampling, multistage median ranked 
set sampling.

1. INTRODUCTION

Ranked set sampling (RSS) method was first proposed by McIntyre (1952) for 
estimating the mean of pasture yields. McIntyre showed that the mean of m units 
in the ranked set sampling was unbiased and had a smaller variance than the mean 
of the same number of observations selected by simple random sampling. Hence 
the ranked set sampling is more efficient than simple random sampling when 
estimating the population mean. Takahasi and Wakimoto (1968) provided the 
mathematical properties of RSS. Dell and Clutter (1972) showed that RSS 
estimator is an unbiased for the population mean regardless of error in ranking. 
Muttlak (1997) suggested using median ranked set sampling (MRSS) method, and 
showed that MRSS estimator is more efficient than the usual RSS estimator based 
on the same sample size. Al-Saleh and Al-Omari (2002) introduced multistage 
ranked set sampling, that increase the relative efficiency for estimating the 
population mean for fixed sample size.
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In this paper we introduce a new modification of RSS, namely, multistage 
median ranked set sampling. The usual sample mean is suggested as an estimator 
of the population mean using the MMRSS procedure.

2. MULTISTAGE MEDIAN RANKED SET SAMPLING

Multistage median ranked set sampling procedure can be described as follows:

Step 1: Randomly selected 1rm  sample units from the target population, 
where r is the number of stages.

Step 2: Allocate the 1rm  sample units as randomly as possible into rm sets 
each of size m . 

Step 3: For each rm sets in step 2, if the sample size m is odd, select for 

measurement from each rm sets the (( 1) / 2)thm  smallest rank, i.e. 

median of the sample. If the sample size m is even, select for measurement 

from the first each 2rm sets the ( / 2)thm smallest rank and from each 

other 2rm sets the (( 2) / 2)thm  smallest rank. This step yield 1rm  sets 

each of size m.

Step 4: Without doing any actual quantification, repeat step 3 on the 1rm 

ranked set to obtain 2rm  second stage ranked sets, each of size m . The 
process is continued using step 3 up to the thr stage to get a sample of size 
m from MMRSS.

Finally, the m units identified in step 4 are actually measured only for 
estimating the mean of the variable of interest. The whole process can be repeated 
k times to obtain an MMRSS of size n km .

To clarify this method, let ( )r j
iX be the ith sample unit of the thj set at stage r. 

Example 1: Consider the case of 3m  and 2r  , so that we have 27 units.

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
, , , , , , , , , , , , ,5 71 2 3 4 6 8 9 10 11 12 13 14

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
, , , , , , , , , , , , .15 16 17 18 19 20 21 22 23 24 25 26 27

X X X X X X X X X X X X X X

X X X X X X X X X X X X X

Allocate them into 9 sets each of size 3 at zero stage (SRS), and then rank 
visually the units within each sample with respect to the variable of interest as 
following
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Thus, the set  (2)1 (2)2 (2)3
( 1)/2 ( 1)/2 ( 1)/2, ,m m mY Y Y   is a second stage median ranked set 

samples. The actual quantified for estimating the variable of interest will achieved 
using only these three units. Thus, the number of quantified units, which is 3, is a 
small portion of the number of sampled units, which is 27, but all sampled units 
add to the information content of the quantified units. Hence, we compare this 
sample with a sample of size 3, not 27, of SRS. 

Figure 1: Display of 27 units in 9 sets up to 2 stage using MMRSSO
Sets First stage Second stage

 (0)1 (0)1 (0)1(0)1
(1) (2) (3), ,A X X X  (1)1 (0)1

( 1)/2 medmY A 
(1)1 (1)2

( 1)/2 ( 1)/2(2)1
( 1)/2 (1)3

( 1)/2

, ,
med

m m
m

m

Y Y
Y

Y

 




    
  

 (0)2 (0)2 (0)2(0)2
(1) (2) (3), ,A X X X  (1)2 (0)2

( 1)/2 medmY A 

 (0)3 (0)3 (0)3(0)3
(1) (2) (3), ,A X X X  (1)3 (0)3

( 1)/2 medmY A 

 (0)4 (0)4 (0)4(0)4
(1) (2) (3), ,A X X X  (1)4 (0)4

( 1)/2 medmY A 
(1)4 (1)5

( 1)/2 ( 1)/2(2)2
( 1)/2 (1)6

( 1)/2

, ,
med

m m
m

m

Y Y
Y

Y

 




    
  

 (0)5 (0)5 (0)5(0)5
(1) (2) (3), ,A X X X  (1)5 (0)5

( 1)/2 medmY A 

 (0)6 (0)6 (0)6(0)6
(1) (2) (3), ,A X X X  (1)6 (0)6

( 1)/2 medmY A 

 (0)7 (0)7 (0)7(0)7
(1) (2) (3), ,A X X X  (1)7 (0)7

( 1)/2 medmY A 
(1)7 (1)8

( 1)/2 ( 1)/2(2)3
( 1)/2 (1)9

( 1)/2

, ,
med

m m
m

m

Y Y
Y

Y

 




    
  

 (0)8 (0)8 (0)8(0)8
(1) (2) (3), ,A X X X  (1)8 (0)8

( 1)/2 medmY A 

 (0)9 (0)9 (0)9(0)9
(1) (2) (3), ,A X X X  (1)9 (0)9

( 1)/2 medmY A 

3. GENERAL SETUP AND SOME BASIC RESULTS

Let 11,X 12 ,X ..., 1mX ; 21,X 22 ,X ..., 2mX ;…; 1,mX 2 ,mX ..., mmX ; be m

independent random samples each of size ,m assume that each variable has the 

same distribution function ( )F x with mean  and variance 2 . Let 

(1) ,iX (2) ,iX ..., ( )i mX ( 1,2,..., )i m be the ordered statistics of the thi sample 

1,iX 2 ,iX ..., imX ( 1,2,..., )i m . Let 1 2, ,..., mY Y Y be RSS, then 
d

( )=i iY X .
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At the thk cycle ( 1, 2,..., )k n , for odd sample size, let ( )
(( 1)/2)
r

i m kY  be the 

median of the thi sample (i 1,2,..., )m at stage r.

Thus, the quantified sample ( )
1

1
2

r
m

k
Y  
 
 

, ( )
1

2
2

r
m

k
Y  

 
 

,…, ( )
1

2

r
m

m k
Y  

 
 

will denote the MMRSSO. 

For even sample size, let ( )
( /2)
r

i m kY be the ( / 2)thm order statistic of the thi

sample ( 1,2,..., ; / 2)i l l m  , and let ( )
(( 2)/2)
r

i m kY  be the (( 2) / 2)thm  order statistic 

of the thi sample ( 1, 2,..., )i l l m   each at stage r. Thus, the quantified sample 

( )

1
2

r
m

k
Y
 
 
 

, ( )

2
2

r
m

k
Y

 
 
 

, …, ( )

2 2

r
m m

k
Y

 
 
 

, ( )

1 1
2 2

r
m m

k
Y

   
 

,…, ( )

1
2

r
m

m k
Y

  
 

will denote the MMRSSE. 

The estimator of the population mean  using multistage median ranked set 

samples can be defined as

( ) ( )
(( 1)/2)

1 1

( ) ( ) ( )
( /2) (( 2)/2)

1 1 1

1
, if  is odd

ˆ
1

, if  is even, /2.

n m
r r

MMRSSO i m k
k i

MMRSS n l m
r r r

MMRSSE i m k i m k
k i i l

Y Y m
mn

Y Y Y m l m
mn


 


   

   
       

 

  

(3.1)

Assume that the cycle is repeated once; let us define the following notations:

Let  iE X  ,  2 Var iX  , ( 1,2,..., )i m ,  ( ) ( )
( 1)/2 ( 1)/2
r r
m i mE Y   ,

2( )
( 1)/2

r
m   ( )

( 1)/2Var r
i mY  ,  ( ) ( )

( /2) ( /2)
r r
m i mE Y  ,  2( ) ( )

( /2) ( /2)Varr r
m i mY  , 

 ( ) ( )
( 2)/2 ( 2)/2
r r
m i mE Y   ,  2( ) ( )

( 2)/2 ( 2)/2Varr r
m i mY   .

Based on these notations we have

( ) ( )
( 1)/2

1r r
MMRSSO mY Y

m  ,    (3.2)
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 ( ) ( )
( 1)/2

1r r
MMRSSO mE Y

m      (3.3)

 ( ) 2( )
( 1)/2

1
Var r r

MMRSSO mY
m   .    (3.4)

 ( ) ( ) ( )
( /2) ( 2)/2

1

2
r r r

MMRSSE m mY Y Y   ,    (3.5)

   ( ) ( ) ( )
( /2) ( 2)/2

1

2
r r r

MMRSSE m mE Y    ,    (3.6)

   ( ) 2( ) 2( )
( /2) ( 2)/2

1
Var

2
r r r

MMRSSE m mY
m     .    (3.7)

For a random sample from a continuous population whose pdf is symmetrical 
about x   , (H. A. David and H. N. Nagaraja (2003)), showed that ( ) ( )if x  

( 1) ( )m if x    . Assume that the distribution is symmetric about 0x  , then 

d

( ) ( 1)=i m iX X   . Hence, ( ) ( 1)i m i    and 2 2
( ) ( 1)i m i    .

This implies to, ( ) ( )
( /2) ( 2)/2
r r
m m   and 2( ) 2( )

( /2) ( 2)/2
r r

m m   , and if m is 

odd, ( )
( 1)/2 0r
m    . Therefore,  ( ) 0r

MMRSSEE Y  ,  ( ) 0r
MMRSSOE Y  , and 

 ( ) 2( )
( /2)

1r r
MMRSSE mVar Y

m
  .

The mean square error (MSE) of the estimator ( )r
MMRSSY is given by

      2( ) ( ) ( )MSE Var Biasr r r
MMRSS MMRSS MMRSSY Y Y     (3.8)

Note that, for symmetric distributions

 ( )Bias 0r
MMRSSY  , and    ( ) ( )MSE Varr r

MMRSS MMRSSY Y .

Lemma 1:

1) If the distribution is symmetric about the population mean, then ( )r
MMRSSOY

and ( )r
MMRSSEY are unbiased estimators of a population mean, i.e. 

 ( )r
MMRSSOE Y   and  ( )r

MMRSSEE Y   .
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2) If the distribution is symmetric about the population mean, then the relative 

efficiency of ( )r
MMRSSOY and ( )r

MMRSSEY are increasing in r ( 1)r  , except for 

the uniform distribution, the lemma is true if 2r  .

Proof:

To prove 1, assume m is odd, then we have

  ( )
(( 1)/2)

1

( ) 1 m
r

i m
i

r
MMRSSOE Y E Y

m 


   
 

  ( )
(( 1)/2)

1

1 m
r

i m
i

E Y
m 


 

( )
(( 1)/2)

1

1 m
r

i m
im 


   
 


1

1 m

im 

     
 


In the case of m is even, we have

 ( ) ( ) ( )
( /2) (( 2)/2)

1 1

1 l m
r r r

i m i m
i i l

MMRSSEE Y E Y Y
m 

  

     
  
 

   ( ) ( )
( ( /2)) (( 2)/2)

1 1

( ) ( )
( /2) (( 2)/2)

1 1

1

1

l m
r r

i m i m
i i l

l m
r r

i m i m
i i l

E Y E Y
m

m


  


  

   
 
     
 

 

 

Since the distribution is symmetric about the population mean, and 
( )r

MMRSSOY , ( )r
MMRSSEY are unbiased estimators, then we have ( )

( /2)
r

i m     and 

( )
(( 2)/2)
r

i m     , where  is real number. Therefore,

 ( )

1 1

1
( ) ( )

l m
r

i i l
MMRSSEE Y

m   

         
 
    .

To prove 2, when m is odd, Let ( )
1

1
2

r
m

Y  
 
 

, ( )
1

2
2

r
m

Y  
 
 

,…, ( )
1 1

2 2

r
m m

Y   
 
 

,…, ( )
1

2

r
m

m
Y  

 
 

be an MMRSSO at stage r. Let    ( ) ( )
( 1)/22

1

1
Var Var

m
r r

MMRSSO i m
i

Y Y
m




  .
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Let ( 1)r
iZ  be the thi median of the sample ( 1)

1
1

2

r
m

Y 
 

 
 

, ( 1)
1

2
2

r
m

Y 
 

 
 

,…, ( 1)
1 1

2 2

r
m m

Y 
  
 
 

,…, 

( 1)
1

2

r
m

m
Y 

 
 
 

, and let ( 1) ( 1)

1

1 m
r r

i
i

Z Z
m

 


  . Then, ( 1) ( 1)r rZ Y  , 

   ( 1) ( 1)Var Varr r
MMRSSOY Z  and ( )r

iY has the same distribution as ( 1)r
iZ  .

Hence,

     ( 1) ( 1) ( 1) ( 1)
2 2

1

1 1
Var Var Cov ,

m m
r r r r

i i jMMRSSO
i i j

Y Z Z Z
m m

   

 
  

 ( ) ( 1) ( 1)
2 2

1

1 1
Var( ) Cov ,

m m
r r r

i i j
i i j

Y Z Z
m m

 

 
  

Since,  ( 1) ( 1)Cov , 0r r
i jZ Z   (Lehman (1966), Essary et al. (1997)), and Yang 

(1982) showed that for the median of iid sample,   2
1

2

Var mX    . Therefore, 

   ( ) ( 1)Var Varr r
MMRSSO MMRSSOY Y  and hence the relative efficiency of ( )r

MMRSSOY is 

increasing in r .

In the case of even sample size, let

( 1)

2( 1)

( 1)
2

2

th of , 1
2 2

2 2
th of , .

2 2

r
m

i
r

i

r
m

i

m m
Y i

Z

m m
Y i m


 
 
 


 

 
 

  
            

            
 

Then the proof is directly as in the case of odd sample size.

Corollary:

1) If the distribution is symmetric about the population mean, then

 ( )Var r
MMRSSOY and  ( )Var r

MMRSSEY are less than Var( )SRSX at any stage r.

2) For asymmetric distribution about a population mean, we have

   ( )MSE Varr
SRSMMRSSOY X and    ( )MSE Varr

SRSMMRSSEY X .
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4. EFFICIENCY OF MMRSS METHOD

Let 1 2, ,...,i i imX X X be independent random sample with cdf F(x) and pdf f(x), 

with mean  and variance 2 . 

The SRS estimator of the population mean  is given by

1

1 m

SRS i
i

X X
m 

  ,    (4.1)

with mean  SRSE X   and variance 

 
2

Var SRSX
m


 .    (4.2)

The estimator of the population mean  using RSS is defined as

( )
1

1 m

RSS i i
i

X X
m 

  ,    (4.3)

with mean  RSSE X   and variance 

   
2

2

2
1

1
Var

m

RSS i
i

X
m m 


    .   (4.4)

From (3.7) and (4.2), if the parent distribution is symmetric about its mean, the 

relative efficiency of ( )r
MMRSSY with respect to SRSX is given by

   
 

Var
,

Var

SRS
SRS RSS

RSS

X
eff X Y

Y
 and    

 
( )

( )

Var
,

Var

SRSr
SRS MMRSS r

MMRSS

X
eff X Y

Y
       (4.5)

and if the distribution is non symmetric, using (3.8) and (4.2) the relative efficiency 
is given by 

 
 

( )

( )

MSE
( , )

MSE

SRSr
SRS MMRSS r

MMRSS

X
eff X Y

Y
 .    (4.6)

4.1. Results for Uniform Distribution

Assume that the variable of interest X has a uniform (0, ) , namely, 
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1/ 0 ; 0,
( ; )

0 elsewhere.

x
f x

     
  



So that 
2


  and 

2
2

12


  , and :i mX has a beta( , 1)i m i  with pdf 

1

:
! 1

( ) 1
( 1)!( )!

i m i

i m
m x x

f x
i m i

 
              

, 0 x   .

with meant  : 1i m
i

E X
m





and variance

 
2

: 2

( 1)
Var

( 1) ( 2)
i m

i m i
X

m m

  


 
. (4.1.1)

From (4.1) and (4.2), the SRS estimator of the population mean 
2


  from a 

sample of size m , has mean / 2 , and the variance is given by

 
2 2

:2 2
1

1 1
Var Var( )

12 12

m

SRS i m
i

m
X X

mm m

  
    

 
 . (4.1.2)

From (4.4), the RSS estimator of the population mean 
2


  has mean 

 
1

1
( )

2

m

RSS i
i

E Y E Y
m 


 

and variance given by 

   
2

( : )2
1

1
Var

6 ( 1)

m

RSS i m
i

Y Var X
m mm 


 


 (4.1.3)

In the case of even sample size, let 4m  and 1r  , from (3.3) and (4.1.1) 

the estimator of the population mean 
2


  using MMRSSE is

( ) ( ) ( )
( /2) (( 2)/2)

1 1

1 l m
r r r

MMRSSE i m i m
i i l

Y Y Y
m 

  

   
 
 

with variance given by  
2

( )
2

Var
4( 1)

r
MMRSSEY

m





. (4.1.4)
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Using equations (4.1.2) and (4.1.4), the relative efficiency of ( )r
MMRSSEY with 

respect to SRSX for estimating the population mean is defined as

   
 

2
( )

( )

Var ( 1)
, 1

3Var

SRSr
SRS MMRSSE r

MMRSSE

X m
eff X Y

mY


   .

This implies that the variance of the sample mean using MMRSSE for 
estimating the population mean is less than the variance of the sample mean using 
SRS. Assume that the parent distribution is U(0,1), let 4m  and 1r  , from 

(4.1.1) we have, 2(1)
2:4

1

25
  and 2(1)

3:4
1

25
  , and

   
2 4

(1) (1) (1)
2 3

1 3

1

4MMRSSE i i
i i

Y Y Y
 

   
 
 

    (1) (1) (1) (1)
1(2) 2(2) 3(3) 4(3)

1

4
Y Y Y Y    ,

 (1) 1 1 1 1
Var 2 2

16 25 25 100MMRSSEY
      
 

.

And the variance of a SRS of size 4m  from U(0,1) is  Var 0.0208SRSX  . 

Thus, the relative efficiency of (1)
MMRSSEY with respect to SRSX is 

 (1), 2.083SRS MMRSSEeff X Y  which agrees with simulation results.

For odd sample size, if 3m  and 1r  , from (3.2), the estimator of the 

population mean 
2


  using MMRSSO is (1) (1)

(( 1)/2)
1

1 m

MMRSSO i m
i

Y Y
m 


  with 

variance

 
2

( )Var
4 ( 2)

r
MMRSSOY

m m





. (4.1.5)

From (4.1.2) and (4.1.5), the relative efficiency of ( )r
MMRSSOY with respect to 

SRSX for estimating the population mean is given by

   
 

( )

( )

Var ( 2)
, 1

3Var

SRSr
SRS MMRSSO r

MMRSSO

X m
eff X Y

Y


   .
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Clearly, that the variance of the sample means using MMRSSO method for 
estimating the population mean is less than the variance of the sample mean using 
SRS method.

For m=3 and 1r  , assume the parent distribution is U(0,1), from (4.1.1) we 
have 

2(1)
(2)

1

20
  , 

and (1) (1)
(2)

1

1

3

m

MMRSSO i k
i

Y Y


  (1) (1) (1)
1(2) 2(2) 3(2)Y Y Y   ,

 (1) 2(1)
1

2

1 1 1
Var 3

9 20 60MMRSSO m
Y  

 
 

      .

The variance of a SRS of size, 3m  , is 0.028. Hence, the relative efficiency 

of (1)
MMRSSOY with respect to SRSX is given by  (1), 1.666SRS MMRSSOeff X Y  . This 

agrees with simulation result. If m=5, we have  (1), 2.333SRS MMRSSOeff X Y  , which 

indicate that the efficiency of ( )r
MMRSSOY is increasing in the sample size.

5. SIMULATION STUDY

To compare the relative efficiency of the proposed estimators for the 
population mean using MMRSS against usual estimators using RSS and SRS, we 
compared the average of 70.000 sample estimates with sample sizes 3, 4m  and 5 
for 1,2,3r  and 4. Eight distributions, namely, uniform, normal, logistic, 
exponential, lognormal, weibull, beta and gamma are considered. The relative 
efficiency of the sampling methods considered in this study can be computed using 
(4.5) and (4.6).
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Table 1
The relative efficiency of RSS and MMRSS estimators for estimating 

the population mean of symmetric distributions

Distribution
RSS MMRSS

m 1r  2r  3r  4r 
Uniform (0,1) 3 2.000 1.672 3.152 6.366 13.626

4 2.500 2.085 5.530 20.973 45.022
5 3.000 2.367 6.876 21.351 79.421

Normal (0,1) 3 1.917 2.235 4.969 11.219 25.030
4 2.367 2.780 7.674 20.973 56.599
5 2.734 3.441 11.906 39.515 147.782

Normal (1,2) 3 1.916 2.196 4.982 11.202 24.813
4 2.346 2.768 7.697 20.669 56.745
5 2.797 3.512 12.294 40.819 151.347

Logistic (-1,1) 3 1.843 2.544 6.168 14.059 31.518
4 2.239 3.152 8.904 24.297 65.155
5 2.550 4.131 15.397 50.784 189.983

Table 2
The relative efficiency of RSS and MMRSS estimators for estimating 

the population mean of non symmetric distributions
Distribution RSS MMRSS

m 1r  2r  3r  4r 
Exponential (1) 3 RP 1.606 2.218 3.074 3.372 3.444

Bias 0.000 0.166 0.244 0.279 0.295
4 RP 1.948 2.473 3.890 5.589 7.482

Bias 0.000 0.168 0.196 0.187 0.173
5 RP 2.159 2.188 2.201 2.125 2.105

Bias 0.000 0.218 0.281 0.300 0.305
LogNormal (0,1) 3 RP 1.292 3.485 4.100 3.955 3.863

Bias 0.000 0.397 0.545 0.607 0.631
4 RP 1.447 3.318 4.274 5.158 6.009

Bias 0.000 0.398 0.460 0.450 0.430
5 RP 1.533 2.703 2.322 2.190 2.145

Bias 0.000 0.496 0.609 0.638 0.648
Weibull (1,3) 3 RP 1.629 2.257 3.131 3.418 3.519

Bias 0.000 0.500 0.731 0.835 0.881
4 RP 1.943 2.447 3.863 5.584 7.433

Bias 0.000 0.498 0.586 0.561 0.520
5 RP 2.191 2.239 2.240 2.174 2.147

Bias 0.000 0.652 0.843 0.897 0.914
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Distribution RSS MMRSS
m 1r  2r  3r  4r 

Beta (7,4) 3 RP 2.000 2.157 4.564 9.406 18.695
Bias 0.000 0.005 0.007 0.008 0.008

4 RP 2.394 2.605 6.766 17.765 43.601
Bias 0.000 0.004 0.005 0.005 0.005

5 RP 2.765 3.034 9.130 22.232 37.638
Bias 0.000 0.006 0.008 0.008 0.009

Gamma (3,1) 3 RP 1.827 2.268 4.020 6.036 7.583
Bias 0.000 0.180 0.260 0.296 0.312

4 RP 2.202 2.649 5.541 10.043 10.138
Bias 0.000 0.178 0.208 0.202 0.203

5 RP 2.519 2.859 4.547 5.280 5.548
Bias 0.000 0.233 0.298 0.318 0.324

From Tables 3.1 and 3.2 we can conclude the following:

1. It can be observed that the estimator of the population mean obtained from 
MMRSS is more efficient than the usual SRS and RSS estimators of population 
mean. i.e.,

 ( )Var Var( )r
SRSMMRSSOY X and  ( )Var Var( )r

SRSMMRSSEY X .

2. For uniform (0,1) distribution, only at the first stage, the relative efficiency of 
MMRSS estimator is less than the relative efficiency of the usual RSS 
estimator of population mean.

3. The relative efficiency of the MMRSS estimators is increasing in r for fixed 
sample size. As an example if the underlying distribution is normal (1,2), the 
values of the relative efficiency using 1,2,3r  and 4 with 3m  are 2.196, 
4.982, 11.202 and 24.813 respectively. This emphasized that 

       ( ) ( 1) (1) (0)Var Var Var Varr r
MMRSS MMRSS MMRSS MMRSSY Y Y Y    .

4. For non symmetric distributions the MMRSS estimator for estimating the 
population mean has a smaller bias, as an example for beta distribution with 
parameters 7 and 4, the relative efficiency using MMRSS method with 3m 
at the first stage is 2.157 with bias 0.005 while at the 4th stage with the same 
sample size, the relative efficiency is 18.695 with bias 0.008. i.e. that, 

       (4) (3) (0)MSE MSE MSE MSE SRSMMRSS MMRSS MMRSSY Y Y X    .

NCBA&E



Multistage median ranked set samples for estimating the population mean156

6. CONCLUDING REMARKS

Gain in efficiency is attained for estimating the population mean using median 
multistage ranked set samples, specially if the underlying distribution is symmetric 
about its mean. For asymmetric (skewed) distributions, the gain in efficiency is 
substantial with even sample size. The use of multistage median ranked set 
samples method is feasible for estimating the population mean if odd sample size is 
considered, because we only identify the median of the sample.
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ABSTRACT

Double quartile ranked set sampling procedure (DQRSS) and its properties for 
estimating the population mean are introduced. The performance of DQRSS with 
respect to simple random sapling (SRS), ranked set sampling (RSS) and quartile 
ranked set samples (QRSS) for estimating the population mean, is considered. The 
DQRSS estimator is unbiased of the population mean for symmetric distributions 
about its mean. In addition, the DQRSS method is more efficient than the SRS, 
RSS, and QRSS for all symmetric and asymmetric distributions considered in this 
study. For asymmetric distributions considered in this study, DQRSS estimator has 
a smaller bias.

KEYWORDS

Ranked set sampling, quartile ranked set sampling, double quartile ranked set 
sampling.

1. INTRODUCTION

McIntyre (1952) introduced ranked set sampling method for estimating the mean 
of pasture yields. In situations where the experimental or sampling units in a study 
can be more easily ranked than quantified, McIntyre proposed that the mean of 
m sample units based on a RSS as an estimator of the population mean. This 
estimator is unbiased estimator with a smaller variance compared to the usual sample 
mean based on a SRS of the same size. Takahasi and Wakimoto (1968) provided the 
mathematical properties of RSS. Dell and Clutter (1972) showed that RSS estimator 
is an unbiased for the population mean regardless of error in ranking. Samawi et al. 
(1996) suggested using extreme ranked set sampling (ERSS) for estimating a 
population mean, and showed that for symmetric distributions, the ERSS estimator is 
unbiased and has a smaller variance than the SRS estimator. Muttlak (1997) 
suggested using median ranked set sampling (MRSS) to increase the efficiency of the 
estimator and to reduce errors in ranking. Al-Saleh and Al-Kadiri (2000) introduced 
double ranked set sampling for estimating the population mean, they showed that the 
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ranking in the second stage is easier than the ranking in the first stage. Al-Saleh and 
Al-Omari (2002) introduced multistage ranked set sampling, that increase the relative 
efficiency for estimating the population mean for fixed sample size. Muttlak (2003) 
proposed QRSS for estimating the population mean and to reducing the errors in 
ranking comparing to RSS.

2. SAMPLING METHODS

2.1 Quartile ranked set samples
In QRSS method, select m units from the population and rank the units within 

each sample with respect to a variable of interest. If the sample size is even, select 
for measurement from the first 2m samples the 1(q ( 1))thm  smallest rank and 

from the second 2m samples the u(q ( 1))thm  smallest rank. If the sample size 

is odd, select from the first ( 1) / 2m  samples the 1(q ( 1))thm  smallest rank and 

from the other ( 1) / 2m  samples the u(q ( 1))thm  smallest rank, and from one 

sample the median for that sample for actual measurement.

2.2 Double ranked set sampling
DRSS can be described as follows:

1) Identify 3m elements from the target population and divide these elements 

randomly into m sets each of size 2m elements.

2) Use the usual RSS procedure on each set to obtain m ranked set samples of 
size m each.

3) Apply the RSS procedure again on step (2) to obtain a DRSS of size m.

In this article, we consider double quartile ranked set samples (DQRSS) as a 
modification of RSS for estimating the population mean. The performance of 
DQRSS with respect to SRS, RSS and QRSS for estimating the population mean, 
is considered. The results indicates that the use of DQRSS for estimating the 
population mean is more efficient than SRS, RSS and QRSS for all distributions 
considered in this study. For asymmetric distributions, the DQRSS estimator has 
smaller bias with variance smaller than that of the SRS estimator.

2.3 Double quartile ranked set samples
The DQRSS procedure can be described as follows:

Step 1: Select 3m units from the population and divide them into 2m
samples each of size m .
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Step 2: If the sample size is even, select from the first 2 2m samples the 

1(q ( 1))thm  smallest rank, and from the second 2 2m samples the 

3(q ( 1))thm  smallest rank. If the sample size is odd, select from the 

first ( 1) / 2m m  samples the 1(q ( 1))thm  smallest rank, the 

median from the next m samples and the 3(q ( 1))thm  smallest 

rank from the second ( 1) / 2m m  samples. This step yield m sets 

each of size m.

Step 3: Apply the QRSS procedure on the m sets obtained in step 2, to get a 
DQRSS sample of size m.

Step 4: The whole cycle may be repeated n times to obtain a sample of size 
mn from DQRSS.

Note that we will take the nearest integer of 1(q ( 1))thm  and 3(q ( 1))thm  , 

where 1q 0.25 and 3q 0.75 .

3. ESTIMATING OF THE POPULATION MEAN

Let 11,X 12 ,X ..., 1mX ; 21,X 22 ,X ..., 2mX ;…; 1,mX 2 ,mX ..., mmX ; be m

independent random samples of size m and assume that each variable ijX has the 

same distribution function ( )F x with mean  and variance 2 . Let 

(1) ,iX (2) ,iX ..., ( )i mX ( 1,2,..., )i m be the ordered statistics of the thi sample 

1,iX 2 ,iX ..., imX ( 1,2,..., )i m . Let 1 2, ,..., mY Y Y be RSS, then ( )

d

i iY X . The 

estimator of the population mean  using RSS is defined by 
1

1 m

RSS i
i

Y Y
m 

  , with 

variance given by 
2

2
( )2

1

1
Var( ) ( )

m

RSS i
i

Y
m m 


    .

The estimator of the population mean  using SRS is defined by 

1

1 m

SRS i
i

X X
m 

  , with variance 2 / .m
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At the thk cycle ( 1, 2,..., )k n , for even sample size, let 
1

*
(q ( 1))i m kY  be the 

first quartile of the ith sample ( 1,2,..., ; / 2)i l l m  , and let 
3

*
(q ( 1))i m kY  be the 

third quartile of the ith sample ( 1,..., )i l m  . The quantified sample
1

*
1(q ( 1))m kY  , 

1

*
2(q ( 1))m kY  ,…, 

1

*

(q ( 1))
2

m
m k

Y


, 
3

*

1(q ( 1))
2

m
m k

Y
 

,…, 
3

*
(q ( 1))m m kY  , will denote the DQRSSE.

If the sample size is odd, let 
1

*
(q ( 1))i mY  be the first quartile of the ith sample 

(i 1,2,..., )h , where ( 1) / 2h m  , *
(( 1) / 2)i m kY  is the median of the ith sample 

( ( 1) / 2i m  ), and 
3

*
(q ( 1))i m kY  the third quartile of the ith sample 

( 2,..., )i h m  . The quantified sample 
1

*
1(q ( 1))m kY  , 

1

*
2(q ( 1))m kY  , …, 

1

*
1

(q ( 1))
2

m
m k

Y 


, 

*
1 1

1( )
2 2

m m
k

Y  


, 
3

*
1

2(q ( 1))
2

m
m k

Y 
 

, …, 
3

*
(q ( 1))m m kY  will denote the DQRSSO.

The estimator of the population mean using DQRSS can be defined as

1 3

1 3

* * *
(q ( 1)) (q ( 1))

1 1 1
*

* * * *
(q ( 1)) (q ( 1))1

( 1)1 1 2
2

1
, /2 

1
, ( -1)/2

n l m

DQRSSE i m k i m k
k i i l

DQRSS n h m

DQRSSO i m k i m km
h kk i i h

Y Y Y l m
mn

Y

Y Y Y Y h m
mn

 
   

      
 

      
   

       
  

  

  

The variance of *
DQRSSY for even and odd sample size can be given 

respectively by

1 3

*2 *2 *2
(q ( 1)) (q ( 1))2

1 1 1

1 n l m

DQRSSE i m k i m k
k i i lnm

 
   

      
 

   , /2l m .

1 3

*2 *2 *2 *2
(q ( 1)) (q ( 1))12 ( 1)1 1 2

2

1 n h m

DQRSSO i m k i m km
h kk i i hnm

      
 

 
      
 
 

   , 

( -1)/2h m

Assume that *
iY has the mean *

i and the variance *2
( )i , Al-Saleh and 

Al-Kadiri (2000) showed that 
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*
( )

1

m

i
i

   , 2 *2 * 2
( ) ( )

1 1

1
( )

m m

i i
i im  

        
 

where  and 2 are the mean and the variance of the population respectively.

Lemma 1:
Let X be a random variable of pdf ( )f x and cdf ( ).F x Its mean and variance 

are  and 2 respectively. A random sample of size m was selected and ranked, 

let :r mX be the thr smallest value of the sample, where 1,...,r m . The pdf and 

cdf for :r mX are 

1
:

1
( ) ( )(1 ( )) ( )

( , 1)
r m r

r mf x F x F x f x
B r m r

  
 

,

: ( ) ( ( ); , 1)r mF x FB F x r m r   ,

respectively, where ( ( ); , 1)FB F x r m r  is a beta distribution function with 

parameters ( , 1)r m r  . Let denote the mean and the variance of :r mX as :r m

and 2
:r m respectively. Then

a. 1
: [ ( )]r m F r  

b. 1
1: [1 ( )]m r m F r

   

c. 2 2 2
: :( )r m r m     

where ( ) ( ; , 1))rr QB p r m r    which is a quartile function for beta distribution 

and /( 1)rp r m  .

If ( )f x is symmetry then 

d. : 1: 2r m m r m    

e. 2 2
: 1:r m m r m   

Proof:
The variance of :r mX is given by 

2 2 2 2
: : : : :( ) ( ) ( ) ( ) ( )r m r m r m r m r mx f x dx x f x dx        

Substituting : ( )r mf x and rearranging the above equation produces

NCBA&E



Double Quartile Ranked Set Samples162

2 2 2 1
: :

1
( ) ( ) ( )(1 ( )) ( )

( , 1)
r m r

r m r m x F x F x f x dx
B r m r

  
         



As 
1( )[1 ( )]

1
( , 1)

r m rF x F x

B r m r

 


 
, so 

2 2 2 2
: :( ) ( ) ( )r m r m x f x dx       

Using Taylor series, as given in David & Nagarajah (2003), can be shown that 

1
: : : :( ) ( ) ( )r m r m r m r m rE X xf x dx F p    

Let : ( ) ( ( ); , 1)r m rF x FB F x r m r p   

Utilizing this relationship produces

1 1
: : ( ) [ ( )] where ( ) ( ; , 1))r m r m r rF p F r r QB p r m r        

Let 1: ( ) ( ( ); 1, ) , 1m r m r r rF x FB F x m r r q q p       
1 1

1: 1: ( ) [ ( ; 1, )]m r m m r m r rF q F QB q m r r 
       

Since (1 ; 1, ) 1 ( ; , 1)r rQB p m r r QB p r m r       , then

1
1: [1 ( )]m r m F r

   

If ( )f x is symmetry for any 0 ( ) 1r  

1 1[1 ( )] [ ( )]F r F r      

So 1 1
: 1:[1 ( )] [ ( )] 2r m m r mF r F r 

        

The variance of :r mX is given by 

 21 1

2 1
:

( ) [ ( )]
(1 )

( , 1)
r m r

r m

F u F r
u u du

B r m r

 
 

 
  

 

For symmetrical ( )f x , 
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 21 1

2 1
:

(1 ) [1 ( )]
(1 )

( , 1)
r m r

r m

F u F r
u u du

B r m r

 
 

  
  

 

 21 1

1 2
1:

( ) [1 ( )]
(1 )

( 1, )
m r r

m r m

F u F r
u u du

B m r r

 
 

 

 
   

 

Lemma 2:
Let :r mY be the thr smallest value of a random sample of size m . The sample 

was selected from a population of pdf 

1
:

1
( ) ( )(1 ( )) ( )

( , 1)
r m r

r mf x F x F x f x
B r m r

  
 

where the mean and variance correspond to pdf ( )f x are  and 2 respectively. 

In addition, let 1:m r mY   be the ( 1)thm r  smallest value, *
: :( )r m r mE Y   , 

*
1: 1:( )m r m m r mE Y      , *2

: :Var( )r m r mY   , *2
1: 1:Var( )m r m m r mY      . Then,

a. * 1
: [ ( )]r m F r   

b. * 1
1: [1 ( )]m r m F r

    

c. *2 * 2 2 2
: : : :( ) ( )r m r m r m r m         .

If ( )f x is symmetry then 

d. * *
: 1: 2r m m r m    

e. *2 *2
: 1:r m m r m   

Proof:
Using the results of lemma 1

* 1 1
: : [ ( )] [ ( )]r m r mF r F r      

* 1 1
1: : [1 ( )] [1 ( )]m r m r mF r F r 

      
*2 * 2 2
: : : :( )r m r m r m r m     

Since 2 2 2
: :( )r m r m      so 

*2 * 2 2 2
: : : :( ) ( )r m r m r m r m        
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For any symmetry distribution, and [0,1]

1 1( ( )) ( (1 ) )F F      

so, * *
: 1: 2r m m r m    

The variance of :r mY is equal to

 21 1
: :*2 1

:

( ) [ ( )]
(1 )

( , 1)

r m r m r m r
r m

F u F r
u u du

B r m r

 
 

 
  

 

 21 1

1
( ) [ ( )]

(1 )
( , 1)

r m r
F u F r

u u du
B r m r

 
 

  
 

 


 21 1

1 *2
1:

( ) [1 ( )]
(1 )

( 1, )
m r r

m r m

F u F r
u u du

B m r r

 
 

 

  
   

 


Lemma 3: 

1. *ˆ DQRSS is an unbiased estimator of the population mean, under the 

assumption that the population is symmetric about its mean.

2.  *Var DQRSSY is less than each of Var( )SRSX , Var( )RSSX and 

Var( )QRSSY .

3. The mean square error of DQRSS estimator is less than the variance of the 

SRS estimator for asymmetric distributions i.e.,  *MSE Var( )DPRSS SRSY X .

Proof:
For m even

( : ) ( 1: )
1 1

1
ˆ

l m

DQRSSE i r m i m r m
i i l

Y Y
m  

  

    
 
 

     2

2

( : ) ( 1: )
1 1

* *
: 1:

1
ˆ

1

2 2

m

m

m

DQRSSE i r m i m r m
i i

r m m r m

E E Y E Y
m

m m

m

 
  

 

 
    

 
       
 

 

and 
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     

 

2

2

( : ) ( 1: )2
1 1

2
*2 *2
: 1:

1
ˆVar Var Var

1

2

m

m

m

DQRSSE i r m i m r m
i i

r m m r m

Y Y
m

m m

 
  

 

 
    

 


   

 

For m odd
1

2

1
23

2

( : ) ( 1: ) :
1

1
ˆ

m

m
m

m

DQRSSO i r m i m r m m
i i

Y Y Y
m






 
 

 
     

 
 

     
 

1
2

1
23

2

( : ) ( 1: ) :
1

* *
: 1:

1
ˆ( )

1 1

2

m

m
m

m

DQRSSO i r m i m r m m
i i

r m m r m

E E Y E Y E Y
m

m

m






 
 

 

 
     

 
       

 

 

and

       
1

2

1
23

2

( : ) ( 1: ) :2
1

1
ˆVar Var Var Var

m

m
m

n

DQRSSO i r m i m r m m
i i

Y Y Y
m






 
 

 
     

 
 

  1
2

2
*2 *2 *2
: 1: :2

1 1

2
mr m m r m m

m

mm
 

       
 

4. EFFICIENCY OF DQRSS

To compare the considered estimators for the population mean using DQRSS 
with respect to the SRS, RSS, and QRSS procedures. Three symmetric 
distributions, namely, uniform, normal and logistic and three asymmetric 
distributions, namely, exponential, gamma and weibull are considered. The relative 
efficiency of the unbiased estimators using ranked set samples procedures for 
estimating the population mean with respect to SRS is defined as 

   
Var( )

,
Var

SRS
SRS RSS

RSS

X
eff X Y

Y
 , and for biased estimators the relative efficiency is 

defined as    
Var( )

,
MSE

SRS
SRS RSS

RSS

X
eff X Y

Y
 .

Assume the cycle is repeated once, Tables 1 and 2 summarize the relative 
efficiency of the RSS, QRSS and DQRSS estimators with sample sizes 

6,7,10,11m  and 12, for each simulation, 60,000 iterations were performed.
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Table 1
The relative efficiency for estimating the population mean using RSS, QRSS,

and DQRSS with respect to SRS with sample size m = 6 and 7.

Distribution
m = 6 m = 7

RSS QRSS DQRSS RSS QRSS DQRSS

Uniform (0,1)
eff 3.500 3.214 16.966 4.000 3.809 23.445
Bias

Uniform (0,2)
eff 3.500 3.232 17.267 4.000 3.770 23.021
Bias

Normal (0,1)
eff 3.191 3.639 11.906 3.658 4.065 14.669
Bias

Normal (1,2)
eff 3.210 3.645 11.950 3.631 4.051 14.590
Bias

Logistic (-1,1)
eff 2.868 3.729 11.707 3.259 4.144 13.845
Bias

Exponential (1)
eff 2.430 3.009 9.549 2.746 3.321 8.692
Bias 0.092 0.016 0.075 0.059

Exponential (2)
eff 2.407 3.016 9.569 2.735 3.327 8.598
Bias 0.046 0.008 0.038 0.029

Exponential (3)
eff 2.467 3.051 9.764 2.693 3.293 8.513
Bias 0.031 0.005 0.025 0.020

Gamma (1,2)
eff 2.391 3.022 9.395 2.715 3.333 8.575
Bias 0.183 0.033 0.150 0.119

Gamma (1,3)
eff 2.416 3.025 9.572 2.669 3.282 8.496
Bias 0.279 0.047 0.230 0.178

Weibull (1,3)
eff 2.459 3.029 9.660 2.755 3.334 8.503
Bias 0.274 0.047 0.227 0.178
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Table 2
The relative efficiency for estimating the population mean using RSS, QRSS 

and DQRSS with respect to SRS with sample size m = 10,11 and 12

Distribution
m = 10 m = 11 m = 12

RSS QRSS DQRSS RSS QRSS DQRSS RSS QRSS DQRSS
Uniform 
(0,1)

eff 5.500 5.085 38.097 6.000 5.637 47.852 6.500 6.730 66.637
Bias

Uniform 
(0,2)

eff 5.500 5.128 38.463 6.000 5.680 47.627 6.500 6.667 66.234
Bias

Normal 
(0,1)

eff 4.827 5.736 31.288 5.197 6.067 35.034 5.673 6.338 37.261
Bias

Normal 
(1,2)

eff 4.844 5.850 31.721 5.195 6.240 35.046 5.652 6.412 36.958
Bias

Logistic 
(-1,1)

eff 4.198 6.270 32.220 4.533 6.755 34.801 4.911 6.728 34.315
Bias

Exponential 
(1)

eff 3.440 3.281 15.024 3.671 3.542 28.555 3.922 4.693 8.303
Bias 0.117 0.056 0.105 0.001 0.061 0.083

Exponential 
(2)

eff 3.426 3.288 14.916 3.659 3.521 28.406 3.962 4.735 8.409
Bias 0.059 0.028 0.053 0.000 0.031 0.042

Exponential 
(3)

eff 3.394 3.252 14.844 3.653 3.535 28.775 3.964 4.773 8.452
Bias 0.039 0.019 0.035 0.000 0.020 0.028

Gamma 
(1,2)

eff 3.440 3.276 14.878 3.723 3.594 28.877 3.919 4.697 8.372
Bias 0.234 0.113 0.210 0.001 0.123 0.167

Gamma 
(1,3)

eff 3.460 3.274 14.963 3.638 3.539 28.510 3.990 4.711 8.350
Bias 0.354 0.170 0.314 0.002 0.184 0.250

Weibull 
(1,3)

eff 3.471 3.245 14.808 3.699 3.576 28.675 3.960 4.751 8.480
Bias 0.352 0.170 0.313 0.002 0.185 0.249

From simulation results, we conclude the following:

1. A gain in efficiency is attained using DQRSS for estimating the population 
mean for all cases that considered in this study. As an example for normal 
(0,1), with 11m  , the relative efficiency of the DQRSS 53.034 for 
estimating the population mean comparing this value with its counterpart 
5.197, 6.067 using RSS and QRSS respectively.

2. If the underlying distribution is asymmetric, again in efficiency is attained 
using DQRSS, regardless of a smaller bias. As an example, for 11m  the 
relative efficiency of the DQRSS 28.877 with bias 0.001 for estimating the 
population mean of a gamma distribution with parameters 1 and 2, while for 

11m  the relative efficiency using RSS is 3.723 and by using QRSS its 
3.594 with bias 0.210.
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5. DOUBLE QUARTILE RANKED SET SAMPLING 
WITH ERRORS IN RANKING

Dell and Clutter (1972) showed that the sample mean using RSS is unbiased 
estimator of the population mean regardless of whatever the ranking is perfect or 
not, and has a smaller variance than its counterpart SRS with the same sample size.

Muttlak (2003) showed that QRSS with errors in ranking is unbiased estimator 
of the population mean when the underlying distribution is assumed to be 
symmetric about its mean.

Let 
1

*
[ ( 1)]i q mY  and 

3

*
[ ( 1)]i q mY  be the first and third judgment quartile of the thi

sample ( 1,2,..., )i m respectively with errors in ranking. The estimator of the 

population mean with error in ranking using DQRSS can be defined as

1 3

1 3

* * *
[q ( 1)] [q ( 1)]

1 1 1

*
* * * *

[q ( 1)] [q ( 1)]1
( 1)1 1 2

2

1ˆ , /2 

ˆ 1ˆ ,

( -1)/2

e

e

e

n l m

DQRSSE i m k i m k
k i i l

n h mDQRSS
DQRSSO i m k i m km

h kk i i h

Y Y Y l m
mn

Y
Y Y Y Y

mn

h m

 
   

        
  

      
 

            


  

  

The estimator of the population mean  with errors in ranking has the 

following properties:

1. *ˆ
eDQRSSY is unbiased estimator of the population mean if the population is 

symmetric about its mean.

2.  *ˆVar
eDQRSSY is less than  Var SRSX .

3. For asymmetric distribution about its mean,    *ˆMSE Var
eDQRSS SRSY X

The above properties can be proved based on Takahasi and Wakimoto (1968), 
Dell and Clutter (1972), Muttlak (2003) and AL-Saleh and AL-Kadiri (2000).

In this article, it is observed that the DQRSS estimator is unbiased of the 
population mean if the underlying distribution is symmetric, and more efficient 
than the SRS, RSS and QRSS. The authors suggest using the DQRSS for 
estimating the population mean of symmetric distribution and asymmetric 
distribution when the biased is small; also, we can use DQRSS to reduce the errors 
in ranking than RSS. 
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CHAPTER FIFTEEN
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ABSTRACT

Multistage quartile ranked set sampling (MQRSS) method is suggested for 
estimating the population mean. The MQRSS is compared with the simple random 
sampling (SRS), ranked set sampling (RSS) suggested by McIntyre (1952) and 
quartile ranked set sampling (QRSS) suggested by Muttlak (2003) based on the 
same sample size. We show that MQRSS estimator is an unbiased of the 
population mean and more efficient than SRS, QRSS and RSS ( 1r  , r is the 
number of stage) when the underlying distribution is symmetric about its mean. 
Also, by MQRSS we can increase the efficiency of mean estimator for specific 
value of the sample size. For asymmetric distributions considered in this study, 
MQRSS estimator has a smaller bias. A collection of a real data is used to illustrate 
the method.

KEYWORDS

Simple random sampling; ranked set sampling; quartile ranked set sampling; 
multistage ranked set sampling; symmetric distribution; asymmetric distribution.

1. INTRODUCTION

The RSS was suggested by McIntyre (1952) for estimating mean pasture yields 
with greater efficiency than SRS. In situations where the experimental or sampling 
units in a study can be more easily ranked than quantified, McIntyre proposed that 
the mean of m sample units based on a RSS as an estimator of the population 
mean. Takahasi and Wakimoto (1968) independently introduced the same method. 
Dell and Clutter (1972) showed that the mean of the RSS is an unbiased of the 
population mean, whatever or not there are errors in ranking. Samawi et al. (1996) 
investigated variety of extreme ranked set samples (ERSS) for estimating a 
population means. Muttlak (1997) suggested using median ranked set sampling 
(MRSS) to estimate the population mean. Al-Saleh and Al-Kadiri (2000) 
introduced double ranked set sampling for estimating the population mean, they 
showed that the ranking in the second stage is easier than the ranking in the first 
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stage. Al-Saleh and Al-Omari (2002) suggested multistage ranked set sampling 
(MSRSS) that increase the efficiency of estimating the population mean for 
specific value of the sample size. Muttlak (2003) suggested QRSS for estimating 
the population mean and showed using QRSS procedure will reduce the errors in 
ranking comparing to RSS since we only select and measure the first or the third 
quartile of the sample. Jemain and Al-Omari (2006) suggested double quartile 
ranked set sampling (DQRSS) for estimating the population mean and showed that 
the DQRSS mean is an unbiased estimator and more efficient than the SRS, RSS 
and the QRSS if the underlying distribution is symmetric.

In this paper, MQRSS is considered. The properties of MQRSS for estimating 
the population mean are discussed. Also, MQRSS is compared with SRS, RSS, 
QRSS and DQRSS methods. The method is illustrated by using real data set. 
However, by MQRSS we can increase the efficiency of the mean estimator for 
specific value of the sample size m by increase the number of stages. Also MQRSS 
we can use larger sample as compared to the usual RSS, since all we have to do is 
to find the first or the third quartile of the ith sample and measure it.

2. SAMPLING METHODS

2.1 Ranked set sampling
To obtain a sample of size m by the usual RSS as suggested by McIntyre 

(1952), select m random samples each of size m from the target population and 
rank the units within each sample with respect to a variable of interest. The ith 
smallest of the ith sample  1, 2,...,i m is drawn and measured. The method is 

repeated n times if needed to increase sample size.

2.2 Quartile ranked set sampling
The QRSS procedure suggested by Muttlak (2003) involves selecting m

random samples each of size m units from the target population and ranks the units 
within each sample with respect to the variable of interest. If the sample size m is 
even, then select and measure from the first / 2m samples the 1( ( 1)thq m 
smallest rank unit and from the second / 2m samples the 3( ( 1)thq m  smallest 

rank unit. Note that we will take the nearest integer of 1( ( 1))thq m  and 

3( ( 1))thq m  where 1 0.25q  , and 3 0.75q  . If the sample size m is odd, select 

and measure from the first ( 1) / 2m  samples the 1( ( 1)thq m  smallest rank unit 

and from the other ( 1) / 2m  samples the 3( ( 1)thq m  smallest rank unit, and 

from one sample the median for that sample. The cycle can be repeated n times if 
needed to get a sample of size nm units.
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2.3 Multistage quartile ranked set samples
The MQRSS procedure is described as in the following steps:

Step 1: Randomly selected 1rm  sample units from the target population, 
where r is the number of stages and m is the sample size.

Step 2: Allocate the 1rm  selected units as randomly as possible into rm sets, 
each of size m .

Step 3: For each set in Step (2), if the sample size is even, select from the first 

/ 2rm samples, the 1( ( 1))thq m  smallest rank unit and from the 

second / 2rm samples the 3( ( 1))thq m  smallest rank unit, where 

1 0.25q  and 3 0.75q  . The obtained sample will denoted by 

MQRSSE.

If the sample size is odd, select from the first  1 / 2r rm m  samples 

the 1( ( 1))thq m  smallest rank unit and from the next 1rm  samples the 

median of each sample and from the other  1 / 2r rm m  samples the 

3( ( 1))thq m  smallest rank unit. Such sample will be denoted by 

MQRSSO. 

Step 4: Repeat Step (3) on the 1rm  quartile ranked sets to obtain 2rm  second 
stage quartile ranked sets each of size m .

Step 5: The process continues until we end up with one thr stage of quartile 
ranked set samples of size m . 

The whole process can be repeated n times if needed to get a sample of size 
nm from MQRSS data. Note that we always take the nearest integer of 

1( ( 1))thq m  and 3( ( 1))thq m  . It is of interest to note that if 1r  and 3m  the 

MQRSS will be reduced to the usual RSS method. It is very important to 
emphasize here that the ranking at all stages are done by visually inspection or by 
any other cheap method and the actual quantification is only done on the last 
sample of size m that is obtained at the last stage. 

To clarify this procedure, consider the cases in the following example:
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Example:
Let 4m  and 2r  , so that we may have a random sample of size 16, 

allocate them into 16 subsets each of size 4 units. Let ( )
( : )
r

i j mX be the jth minimum 

 1, 2,3, 4j  of the ith set  1, 2,...,16i  at stage r. After ranking the units within 

each subset appear as shown below:

 (0) (0) (0) (0) (0)
1 1(1:4) 1(2:4) 1(3:4) 1(4:4), , ,A X X X X ,…,  (0) (0) (0) (0) (0)

16 16(1:4) 16(2:4) 16(3:4) 16(4:4), , ,A X X X X .

Now, to apply the MQRSSE procedure on each of the 16 sets, the first quartile 
is the smallest rank and the third quartile is the largest rank. Thus for 1r  , we 
will select the first quartile from the first 8 sets and the third quartile from the other 
8 sets as:

 (1) (0)
11(1:4) minX A ,  (1) (0)

22(1:4) minX A , 

 (1) (0)
33(1:4) minX A ,  (1) (0)

44(1:4) minX A ,

 (1) (0)
55(1:4) minX A ,  (1) (0)

66(1:4) minX A , 

 (1) (0)
77(1:4) minX A ,  (1) (0)

88(1:4) minX A ,

and

 (1) (0)
99(4:4) maxX A ,  (1) (0)

1010(4:4) maxX A ,

 (1) (0)
1111(4:4) maxX A ,  (1) (0)

1212(4:4) maxX A ,

 (1) (0)
1313(4:4) maxX A ,  (1) (0)

1414(4:4) maxX A ,

 (1) (0)
1515(4:4) maxX A ,  (1) (0)

1616(4:4) maxX A .

This step yields 4 sets each of size 4 at the first stage. The obtained sets are:

 (1) (1) (1) (1) (1)
1 1(1:4) 2(1:4) 3(1:4) 4(1:4), , ,A X X X X , 

 (1) (1) (1) (1) (1)
2 5(1:4) 6(1:4) 7(1:4) 8(1:4), , ,A X X X X ,

 (1) (1) (1) (1) (1)
3 9(4:4) 10(4:4) 11(4:4) 12(4:4), , ,A X X X X , 

 (1) (1) (1) (1) (1)
4 13(4:4) 14(4:4) 15(4:4) 16(4:4), , ,A X X X X .

For 2r  , reapply the MQRSSE method on these 4 sets, so we will select the 
smallest rank from the first 2 sets largest rank from the other 2 sets as:
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 (2) (1)
11(1:4) min AX  ,  (2) (1)

22(1:4) min AX  ,

 (2) (1)
33(4:4) maxX A ,  (2) (1)

44(4:4) maxX A .

The final set  (2) (2) (2) (2)
1(1:4) 2(1:4) 3(4:4) 4(4:4), , ,X X X X is a second stage quartile ranked 

set sample. It is of interest to note that (2) (2)
1(1:4) 2(1:4),X X are iid, also (2) (2)

3(4:4) 4(4:4),X X

are iid. These 4 units exactly are measured for estimating the mean of the variable 
of interest as:

(2) (2) (2) (2)
1(1:4) 2(1:4) 3(4:4) 4(4:4)(2)

4MQRSSE

X X X X
X

  
 .

Thus, the number of quantified units, which is 4, is small portion to the number 
of sampled units, which is 64, but all sampled units add to the information content 
of the quantified units. Hence, it makes sense to compare the information in this 
sample with that of a SRS of the size 4 and not 64.

3. ESTIMATION OF THE POPULATION MEAN

Let 1X , 2X ,…, mX be a random sample with probability density function 

 f x with mean  and variance 2 . Let 11X , 12X ,…, 1mX ; 21X , 22X ,…, 2mX ; 

…, 1mX , 2mX , …, mmX be independent random variables all with the same 

cumulative distribution function  F x . The SRS estimator of the population mean 

from a sample of size m is given by

1

1 m

iSRS
i

X
m

X


  ,    (3.1)

with variance 

 
2

Var SRSX
m


 .    (3.2)

The estimator of the population for a RSS of size m (see McIntyre (1952)) is 
given by 

( : )
1

1
i i m

m

RSS
i

X X
m 

  ,    (3.3)

with variance
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     
2 2

( : ) ( : )2 2
1 1

1 1
Var Var

m m

RSS i i m i m
i i

X X
mm m 


      .    (3.4)

Since,  2( : )
1

0
m

i m
i

   , then RSSX is more efficient than SRSX based on 

the same number of measured observations. 

The MSRSS estimator of the population mean from a sample of size m (see 
Al-Saleh and Al-Omari (2002)) is given by

( ) ( )

1

1 m
r r

XMSRSS i
i

X
m 

  ,    (3.5)

with variance 

   2( ) ( )2

1

1 1
Var

m
r r

MSRSS i
i

X
m m 

      
 

 ,    (3.6)

where  and 2 are the mean and the variance of the population, respectively. It 

is of interest to note here that the MSRSS method suggested by AL-Saleh and 

AL-Omari (2002) constitute by apply the usual RSS method on 1rm  sets each of 

size 2m up to rth stage, which is difference from our work based on MQRSS 

where we apply the QRSS method on rm sets each of size m up to rth stage. 

Now to estimate the population mean using MQRSS method, at the rth stage if 

the sample size is even, let 
1

( )
( ( 1): )
r

i q m mX  be the 1( ( 1))thq m  smallest rank unit of 

the ith sample 1, 2, ...,
2

m
i
  
 

and 
3

( )
( ( 1): )
r

i q m mX  be the 3( ( 1))thq m  smallest rank 

unit of the ith sample 
2 4

, , ...,
2 2

m m
i m

   
 

. Note that the units 
1

( )
1( ( 1): )

r
q m mX  , 

1

( )
2( ( 1): )
r
q m mX  ,…, 

 1

( )

( 1):
2

r
m

q m m
X


are iid and also 

 3

( )
2

( 1):
2

r
m

q m m
X 


,…,

3

( )
( ( 1): )

r
m q m mX  , 

are iid. However, all units are mutually independent but not identically distributed. 
These measured units denote the MQRSSE.

For odd sample size, let 
1

( )
( ( 1): )
r

i q m mX  be the   1 1q m th smallest rank unit of 

the ith sample 
1

1, 2, ...,
2

m
i

  
 

and ( )
1
:

2

r
m

i m
X

 
 
 

be the median of the ith sample of 
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the rank, 
1

2

m
i


 and 

3( ( 1): )
( )
i q m m

rX  be the 3( ( 1))thq m  smallest rank unit of the 

ith sample 
3

,
2

m
i

 


5
, ...,

2

m
m

 



. Note that 
1

( )
1( ( 1): )

r
q m mX  ,

1

( )
2( ( 1): )
r
q m mX  ,…,

 1

( )
1

( 1):
2

r
m

q m m
X 


, are iid and ( )

1 1
:

2 2

r
m m

m
X

  
 
 

,
3

( )
3

( ( 1): )
2

r
m

q m m
X 


,…,

3( ( 1): )
( )
m q m m

rX  are iid. 

However, all units are mutually independent but not identically distributed. These 
measured units denote the MQRSSO.

The MQRSS estimators of the population mean in the case of an even and odd 
sample sizes respectively are given by

1 3

2( ) ( ) ( )
( ( 1): ) ( ( 1): )

21
2

1
m

m
r r r

MQRSSE i q m m i q m m
mi i

X X
m

X 
 

 
 

  
 
 

  ,    (3.7)

1 3

1

2( ) ( ) ( ) ( )
( ( 1): ) ( ( 1): )1 1

3:1
2 2 2

1
MQRSSO

m
m

r r r r
i q m m i q m mm m

mmi i

X X X
m

X



        

 
 

   
 
 

  .   (3.8)

The variances of ( )r
MQRSSEX and ( )r

MQRSSOX respectively are given by 

     
1 3( ( 1): )

2( ) ( ) ( )
( ( 1): )2 21

2

1
Var Var VarMQRSSE i q m m

m
m

r r r
i q m m

mi i

X X
m

X 
 

 
 

  
 
 

  ,

   (3.9)

   
1

1

2( ) ( )
( ( 1): )2

1

1
Var Var

m

r r
MQRSSO i q m m

i
X

m
X









 





 
3

( ) ( )
( ( 1): )1

3:
2 2

Var Var
m

r r
i q m mm

mm i

X X      

 
        

 . (3.10)

Equation (3.9) and (3.10), respectively can be written as

      1 3( ( 1): )
( ) ( ) ( )

( ( 1): )

1
Var Var Var

2MQRSSE q m m
r r r

q m mX X
m

X   . (3.11)

NCBA&E



Multistage Quartile Ranked Set Samples178

        1 3

( ) ( ) ( )
( ( 1): ) ( ( 1): )2

1
Var Var Var

2

r r r
MQRSSO q m m q m m

m
X X

m
X  


  .

( )
12
:

2

1
Var r

m
m

X
m  

 
 

 
    
 

(3.12)

The properties of the MQRSS estimators are:

(1) If the parent distribution is symmetric about the population mean  , then 

(a) The MQRSS estimators are unbiased of the population mean.

(b) The efficiency of ( )r
MQRSSX is increasing in r.

(c) For 2r  ,  ( )Var Var( )r
RSSMQRSSX X .

(2) If the underlying distribution is asymmetric  , then for 5m  , it is found 

that    ( )MSE Varr
SRSMQRSSX X , where the MSE is the mean square error 

of ( )r
MQRSSX .

4. SIMULATION STUDY

To compare the proposed estimators for the population mean using MQRSS 
against the usual estimators using SRS and RSS methods. Six probability 
distribution functions were considered for the populations: uniform, normal, 
logistic, exponential, gamma and weibull. The efficiency of estimating the
population mean using the RSS with respect to SRS estimator is defined by

   
 

Var
,

Var RSS

SRS

SRS RSSeff X X
X

X
 .    (4.1)

If the distribution is symmetric the efficiency of the MQRSS with respect to 
SRS is defined as 

   
 

( ) ( )

( )

Var
,

Var

r

MQRSS

SRSr
SRS MQRSS r

X
eff X X

X
 ,    (4.2)

but if the distribution is asymmetric the efficiency is defined follows

   
 

( )( )

( )

Var
,

MSE

SRSrr
SRS MQRSS r

MQRSS

X
eff X X

X
 .    (4.3)
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We compared the average of the 70,000 sample estimates. The simulation was 
done using the Mathematica 5.2 program. The mean square error (MSE) of the 

( )r
MQRSSX is given by

      2( ) ( ) ( )MSE Var Biasr r r
MQRSS MQRSS MQRSSX X X  .    (4.4)

It is necessary to emphasize here that to estimate the population mean by a 

sample of size m using RSS method we have to identify 2m units and only 

measure m of them. And when we use MQRSS we must identify 1rm  units and 
only measure m of them. But the comparison between the RSS and MQRSS is 
done based on the same number of measured units, m, which obtained at the last 
stage.

Results are summarized by the efficiency values and bias in Table 1, 2 and 3 
with sample sizes 3, 4,5m  and 10 for stages 1,2,3r  using both RSS and 
MQRSS. 

Table 1: The efficiency values for estimating the population mean using 
RSS and MQRSSO with sample size 3m  for 1,2r  and 3

Distribution RSS
MQRSSO

1r  2r  3r 
Uniform (0,1) Eff 2.000 2.000 5.713 16.501
Uniform (0,2) Eff 2.000 2.000 5.773 16.041
Normal (0,1) Eff 1.914 1.914 3.295 4.998
Normal (1,2) Eff 1.910 1.910 3.296 5.143
Logistic (-1,1) Eff 1.849 1.849 2.384 2.713

Exponential (1)
Eff 1.636 1.636 1.394 0.678
Bias 0.000 0.230 0.551

Exponential (2) Eff 1.687 1.641 1.359 0.691
Bias 0.000 0.116 0.273

Exponential (3)
Eff 1.672 1.610 1.373 0.681
Bias 0.000 0.078 0.184

Gamma (1,2)
Eff 1.655 1.615 1.374 0.680
Bias 0.000 0.462 1.105

Gamma (1,3) Eff 1.593 1.638 1.399 0.681
Bias 0.000 0.701 1.657

Weibull (1,3)
Eff 1.633 1.633 1.357 0.683
Bias 0.000 0.704 1.660
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Table 2: The efficiency values for estimating the population mean using 
RSS and MQRSSE with sample size 4m  for 1,2r  and 3

Distribution RSS
MQRSSE

1r  2r  3r 
Uniform (0,1) Eff 2.500 3.125 27.018 367.084
Uniform (0,2) Eff 2.500 3.148 26.876 373.279
Normal (0,1) Eff 2.347 2.034 3.432 4.901
Normal (1,2) Eff 2.319 2.012 3.406 4.892
Logistic (-1,1) Eff 2.229 1.706 1.904 2.017

Exponential (1) Eff 1.922 1.162 0.352 0.119
Bias 0.000 0.168 0.719 1.382

Exponential (2) Eff 1.912 1.208 0.343 0.120
Bias 0.000 0.082 0.363 0.690

Exponential (3) Eff 1.900 1.175 0.352 0.117
Bias 0.000 0.055 0.240 0.461

Gamma (1,2)
Eff 1.891 1.170 0.349 0.120
Bias 0.000 0.331 1.443 2.767

Gamma (1,3)
Eff 1.940 1.160 0.348 0.119
Bias 0.000 0.505 2.164 4.144

Weibull (1,3)
Eff 1.937 1.154 0.349 0.117
Bias 0.000 0.505 2.160 4.152

Table 3: The efficiency values for estimating the population mean using
RSS and MQRSSO with sample size 5m  for 1,2r  and 3

Distribution RSS
MQRSSO

1r  2r  3r 
Uniform (0,1) Eff 3.000 2.562 9.401 33.264
Uniform (0,2) Eff 3.000 2.548 9.248 33.543
Normal (0,1) Eff 2.749 3.271 10.338 32.177
Normal (1,2) Eff 2.812 3.327 10.276 31.935
Logistic (-1,1) Eff 2.563 3.637 11.437 33.681

Exponential (1) Eff 2.177 2.607 5.579 14.248
Bias 0.000 0.151 0.130 0.085

Exponential (2) Eff 2.206 2.610 5.753 14.115
Bias 0.000 0.074 0.064 0.043

Exponential (3) Eff 2.177 2.616 5.703 14.369
Bias 0.000 0.050 0.043 0.028

Gamma (1,2) Eff 2.240 2.622 5.675 14.230
Bias 0.000 0.300 0.258 0.170

Gamma (1,3) Eff 2.161 2.638 5.670 14.279
Bias 0.000 0.449 0.389 0.256

Weibull (1,3)
Eff 2.236 2.649 5.640 14.227
Bias 0.000 0.447 0.385 0.256
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Table 4: The efficiency values for estimating the population mean using 
RSS and MQRSSE with sample size 10m  for 1,2r  and 3

Distribution RSS
MQRSSE

1r  2r  3r 
Uniform (0,1) Eff 5.500 5.085 38.097 250.384
Uniform (0,2) Eff 5.500 5.128 38.463 250.729
Normal (0,1) Eff 4.787 5.736 31.288 160.948
Normal (1,2) Eff 4.779 5.850 31.721 162.267
Logistic (-1,1) Eff 4.198 6.270 32.220 152.985

Exponential (1)
Eff 3.440 3.281 15.024 38.506
Bias 0.117 0.056 0.042

Exponential (2)
Eff 3.426 3.288 14.916 38.924
Bias 0.059 0.028 0.021

Exponential (3)
Eff 3.394 3.252 14.844 38.725
Bias 0.039 0.019 0.014

Gamma (1,2)
Eff 3.440 3.276 14.878 38.583
Bias 0.234 0.113 0.084

Gamma (1,3)
Eff 3.460 3.274 14.963 39.124
Bias 0.354 0.170 0.125

Weibull (1,3)
Eff 3.471 3.245 14.808 38.509
Bias 0.352 0.170 0.126

Considering the results Tables 1-4, we can conclude the following:

(1) A gain in efficiency is obtained using MQRSS for different values of m
with 1, 2r  and 3 for all symmetric distributions considered in this study 
and for asymmetric distributions if the sample size 5m  and for 4m  in 
some cases.

(2) For asymmetric distributions considered in this study, the MQRSS 
estimator has a smaller bias. As an example, for estimating the population 
mean of exponential distribution with parameter 3 for 10m  and 3r  the 
efficiency of MQRSS is 38.725 and the bias 0.014.

(3) For all symmetric distributions we considered, the efficiency of the 
( )r
MQRSSX is increasing in r . For example, for 5m  and 1, 2r  and 3 the 

efficiency values of MQRSS are 3.327, 10.334 and 30.796 respectively for 
estimating the population mean of a normal distribution with parameters 1 

and 2. Also, for asymmetric distributions the efficiency of ( )r
MQRSSX is 

increasing in r on the converse of the bias which is decreasing in r.
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(4) For 1r  , the ( )r
MQRSSX is more efficient than RSSX with the same number 

of quantified units. As an example, for 3m  and 2r  the efficiency of 
the MQRSS is 5.713 for estimating the population mean of a standard 
uniform distribution.

(5) For 1r  and 2, the MQRSS is same as the QRSS and DQRSS respectively 
and it is found that the MQRSS is more efficient than both of QRSS and 
DQRSS 1r  and 2r  respectively.

5. APPLICATION TO REAL DATA SET

We illustrate the performance of the multistage ranked set samples method for 
mean estimation using a collection of real data set which consists of the olive yield 
of each of 64 trees, for more details see Al-Saleh and Al-Omari (2002). In this 
study, balanced ranked set sampling is considered. All sampling was done without 
replacement using the statistical programming Mathematica 5.2. We obtained the 
mean and the variance of the sample mean using SRS, RSS and MQRSS methods 
with set sizes 3, 4m  and 5. We compared the averages of the 70,000 sample 
estimate.

Let, iu be the olive yield of the ith tree i = 1,2, ..., 64 . The mean  , and the 

variance 2 of the population, respectively, are

64

1

1
9.777 kg/tree

64 i
i

u


   , and 
64

2 2 2

1

1
( ) 26.112 kg / tree

64 i
i

u


    .

The skewness, kurtosis, and the median of the population, respectively, are 
0.484, 2.071 and 8.250. The skewness should be close to zero for symmetrically 
distributed data, while for our data that considered, the skewness is 0.484, which 
mean that these data are asymmetrically distributed. Hence, we compute the mean 

square error of ( )r
MQRSSX and the efficiency values of RSSX and ( )r

MQRSSX relative to 

SRSX can be computed using the relations 13 and 15 respectively. We calculate the 

efficiency of RSS and of MQRSS and 3, 4,5m  . Results are summarized by the 
efficiency and the bias values in Tables 5 with 3, 4,5m  for 1, 2,3r  for RSS 
and MQRSS.
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Table 5: The efficiency values of RSS and MQRSS relative to 
SRS with sample size 3, 4,5m  for stages 1, 2,3r 

Methods Sample size
3m  4m  5m 

SRS Mean 9.787 9.784 9.772
Variance 8.344 6.159 4.843

RSS Mean 9.784 9.773 9.773
Variance 4.294 2.564 1.696
Efficiency 1.954 2.383 2.870

MQRSS Stage

1r  Mean 9.748 10.203 9.435
Bias 0.029 0.426 0.341
MSE 4.279 2.468 1.976
Efficiency 1.922 2.482 2.430

2r  Mean 10.183 11.058 9.666
Bias 0.407 1.281 0.111
MSE 1.760 2.070 0.598
Efficiency 4.741 2.960 8.061

3r  Mean 10.439 11.521 9.843
Bias 0.663 1.744 0.067
MSE 1.014 3.104 0.151
Efficiency 8.170 1.984 32.124

Based on Table 5, the MQRSS mean at ant stage is closed to the population 
mean 9.777, and the bias that because our data are asymmetrically distributed. It 
can be noted that the MQRSS is much more efficient than SRS. 

5. CONCLUDING REMARKS

It is recommended to use MQRSS for estimating the population mean if the 
underlying distribution is symmetric, and if the distribution is asymmetric with 
larger sample size when estimating the mean, since only we have to do is identify 
and measure the first or the third quartile of the thi sample.
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CHAPTER SIXTEEN

Modified Ratio Estimator for the Population Mean
using Double Median Ranked Set Sampling

Abdul Aziz Jemain, Amer Al-Omari and Kamarulzaman Ibrahim
School of Mathematical Sciences, Faculty of Science and Technology, 

University Kebangsaan Malaysia 43600 UKM Bangi, Selangor, Malaysia

SUMMARY

In this paper, ranked set sampling (RSS), median ranked set sampling (MRSS) 
and double median ranked set sampling (DMRSS) methods are used for estimating 
the population mean based on a modified ratio estimator. It is found that, RSS, 
MRSS and DMRSS produce approximately unbiased estimators of the population 
mean and these estimators are more efficient than those obtained using simple 
random sampling (SRS) based on the same sample size. Also, it is found that, 
DMRSS is more efficient than both RSS and MRSS methods.

1. INTRODUCTION

Ranked set sampling is introduced by McIntyre (1952) for estimating mean 
pasture and forage yields as a more efficient and cost effective method than the 
commonly used simple random sampling in the situations where visual ordering of 
sample units can be done easily, but the exact measurement of the units is difficult 
and expensive. Takahasi and Wakimoto (1968) provided the necessary 
mathematical theory of RSS. Samawi and Muttlak (1996) suggested the used of 
RSS to estimate the population ratio. Muttlak (1997) suggested using median 
ranked set sampling (MRSS) to estimate the population mean. Samawi and Muttlak 
(2001) used MRSS to estimate the population ratio. Al-Saleh and Al-Kadiri (2000) 
suggested double ranked set sampling method (DRSS) for estimating the 
population mean, and they showed that the ranking at the second stage is easier 
than the ranking at the first stage. Samawi and Tawalbeh (2002) suggested double 
median ranked set sampling method for estimating the population mean and ratio. 
Jemain and Al-Omari (2006) proposed multistage median ranked set sampling 
(MMRSS) method for estimating the population mean. 

In this paper, RSS, MRSS and DMRSS methods are used for estimating the 
population mean of the variable of interest Y using information in the auxiliary 
variable X based on a modified ratio estimator. The modified ratio estimators for 
the population mean obtained using RSS, MRSS and DMRSS are compared with 
the counterparts using SRS.
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2. SAMPLING METHODS

2.1 Ranked set sampling

The RSS involves randomly selecting 2m units from the population. These 
units are randomly allocated into m sets, each of size m. The m units of each 
sample are ranked visually or by any inexpensive method with respect to the 
variable of interest. From the first set of m units, the smallest unit is measured. 
From the second set of m units, the second smallest unit is measured. The process 
is continued until from the mth set of m units the largest unit is measured. 
Repeating the process n times yields a set of size mn from the initial nm2 units.

2.2 Median ranked set sampling
In median ranked set sampling (MRSS) method select m random samples each 

of size m units from the population and rank the units within each sample with 
respect to the variable of interest. If the sample size m is odd, then from each 
sample select for measurement the (( 1)/2)thm  smallest rank (the median of the 

sample). If the sample size m is even, then select for measurement the ( / 2)thm

smallest rank from the first / 2m samples, and the (( 2)/2)thm  smallest rank 

from the second / 2m samples. The cycle can be repeated n times if needed to 
obtain a sample of size nm (Muttlak 1997).

2.3 Double ranked set sampling
The double ranked set sampling (DRSS) procedure can be described as the 

followings: Identify 3m units from the target population and divide these units 

randomly into m sets each of size 2m . The procedure of ranked set sampling is 
applied on each m2 units to obtain m ranked set sampling each of size m, then again 
apply the ranked set sampling procedure on the m ranked set sampling sets 
obtained in the first stage to obtain a DRSS of size m (Al-Saleh and Al-Kadiri 
2000).

3. ESTIMATORS FOR THE POPULATION MEAN

Let  1 1,X Y ,  2 2,X Y , ... ,  ,m mX Y be a bivariate normal random sample with 

pdf ( , )f x y , cdf ( , )F x y , with means X , Y , variances X , Y and correlation 

coefficient  . Assume that the ranking is performed on the variable X to estimate 

the mean of the variable of interest Y. Let  11 11,X Y ,  12 12,X Y , ... ,  1 1,m mX Y , 

 21 21,X Y ,  22 22,X Y , ... ,  2 2,m mYX ,…,  1 1,m mX Y ,  2 2,m mX Y , ... ,  ,mm mmX Y

be m independent bivariate normal random samples each of size m. Let 
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 (1) [1],i iX Y ,  (2) [2],i iX Y ,…,  ( ) [ ],i m i mX Y be the order statistics of 1 2, ,...,i i imX X X

and the judgment order of 1iY , 2iY ,…, imY ,  1,2,...,i m . 

3.1 Using SRS
The SRS estimator of the population mean Y as suggested by Singh and 

Tailor (2003) is given by 

ˆ X
YSRS SRS

SRS

Y
X

  
   

  
, (1)

with bias and MSE, respectively, given by

   21
ˆBias YSRS Y X

f
C K

m


     , (2)

and

    2 2 21
ˆMSE 2YSRS Y Y X

f
C C K

m


      (3)

where, M and m are the population and sample size respectively and

m
f

M
 , 

2
2

2
Y

Y
Y

C





, x

x


 

 
, 

2
2

2
X

X
X

C





, Y

X

C
K

C
  , XY

X Y


 

 
, 

   212

1
1

M

X i X
i

M X



    ,    212

1
1

M

Y i Y
i

M Y



    and

    12

1
1 X Y

M

XY i i
i

M X Y



     .

For more details about ratio estimation see Raj (1968) and Cochran (1977). The 
transformed ratio estimator suggested by Singh and Tailor (2003) can be exploited 
to estimate the population mean Y using RSS, MRSS and DMRSS methods.

3.2 Using RSS
Assume that the ranking is performed on the auxiliary variable X, the only 

measured units, using RSS are denoted by  1(1) 1[1],X Y ,  2(2) 2[2],X Y ,…,

 ( ) [ ],m m m mX Y . The suggested RSS estimator of the population mean Y from a 

bivariate normal sample of size m is defined as:

ˆ X
YRSS RSS

RSS

Y
X

  
   

  
, (4)
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where ( )
1

1 m

RSS i i
i

X X
m 

  and [ ]
1

1 m

RSS i i
i

Y Y
m 

  . This estimator can be approximated 

using Taylor expansion as:

   
  

2
ˆYRSS RSS RSS X RSS X

RSS X RSS Y

Y H X HG X

G X Y

     

  
(5)

where,  /Y XH     and  1/ XG    . Take the expectation of (5) yields

     ˆ VarYRSS Y RSSE G H X     , (6)

since,      Cov ,RSS RSS RSS X RSS YX Y E X Y   ,    Cov , VarRSS RSS RSSX Y X

and Y

X


  


. Therefore, the bias of ˆYRSS is given by 

     ˆBias VarYRSS RSSG H X   . (7)

To the first order of approximation, the estimator of the population mean ˆYRSS
is given by: 

 ˆYRSS RSS RSS XY H X    . (8)

The expectation of (8) is  ˆYRSS YE    , implies that the estimator is 

approximately unbiased. Using      2 2 21
Var Var 1RSS RSS YY X

m
     , the 

variance and MSE of (8), respectively, can be found as

       2 2 21
ˆVar Var 1YRSS RSS YH X

m
      , (9)

and

                     2 2 2 21
ˆMSE Var 1 Var 1YRSS RSS RSS YH X G X

m
         .  (10)

3.3 Using MRSS

If the sample size m is odd, then 1 1
1 1

2 2

,m mX Y    
      

 
 
 
 

, 1 1
2 2

2 2

,m mX Y    
      

 
 
 
 

,...,
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1 1

2 2

,m m
m m

X Y    
      

 
 
 
 

denote the measured MRSSO. If the sample size m is even, 

then 
1 1

2 2

,m mX Y   
      

 
 
 
 

, 
2 2

2 2

,m mX Y   
      

 
 
 
 

,…, 
2 2 2 2

,m m m mX Y   
      

 
 
 
 

, 2 2 2 2

2 2 2 2

,m m m mX Y      
      

 
 
 
 

,

…, 2 2

2 2

,m m
m m

X Y    
      

 
 
 
 

denote the measured MRSSE. The estimator of the 

population mean Y for a MRSS of size m is defined as:

ˆ X
YMRSS MRSS

MRSS

Y
X

  
   

  
,     (11)

where if m is odd MRSSX and MRSSY , respectively, are defined as 

1
1

2

1 m

MRSSO m
ii

X X
m  

  
 

  and 1
1

2

1 m

MRSSO m
ii

Y Y
m  

   

  , 

and if m is even, MRSSX and MRSSY , respectively, are given by:

2

2
21

2 2
2

1
m

m

MRSSE m m
i imi i

X X X
m    

       

 
   
 
 

  and
2

2
21

2 2
2

1
m

m

MRSSE m m
i imi i

Y Y Y
m    

       

 
   
 
 

  .

The estimator ˆYMRSS can be approximated as

   
  

ˆYMRSS MRSS MRSS X MRSS X

MRSS X MRSS Y

Y H X HG X

G X Y

     

  
    (12)

Take the expectation of (12) yields

     ˆ VarYMRSS Y MRSSE G H X     .     (13)

Therefore, the bias of ˆYMRSS is given by 

     ˆBias VarYMRSS MRSSG H X   .     (14)

And the variance and MSE, respectively, are given by
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       2 2 21
ˆVar Var 1YMRSS MRSS YH X

m
      ,     (15)

and

         2 2 2 21
ˆMSE Var 1 Var 1YMRSS MRSS MRSS YH X G X

m
         .

     (16)

3.4 Using DMRSS

If the sample size m is odd, then * *
1 1

1 1
2 2

,m mX Y    
      

 
 
 
 

, * *
1 1

2 2
2 2

,m mX Y    
      

 
 
 
 

,…, 

* *
1 1

2 2

,m m
m m

X Y    
      

 
 
 
 

denote the measured DMRSSO. And if m is even, then 

* *

1 1
2 2

,m mX Y   
      

 
 
 
 

, * *

2 2
2 2

,m mX Y   
      

 
 
 
 

,…, * *

2 2 2 2

,m m m mX Y   
      

 
 
 
 

, * *
2 2 2 2

2 2 2 2

,m m m mX Y      
      

 
 
 
 

,

…, * *
2 2

2 2

,m m
m m

X Y    
      

 
 
 
 

denote the DMRSSE. The DMRSS estimator of the 

population mean Y is given by

*
*

ˆ X
YDMRSS DMRSS

DMRSS

Y
X

  
      

,     (17)

where if m is odd *
DMRSSX and *

DMRSSY , respectively, are defined as

* *
1

1
2

1 m

DMRSSO m
ii

X X
m  

  
 

  and * *
1

1
2

1 m

DMRSSO m
ii

Y Y
m  

   

  , 

and if m is even, *
DMRSSX and *

DMRSSY , respectively, are defined as

2* * *
2

21
2 2

2

1
m

m

DMRSSE m m
i imi i

X X X
m    

       

 
   
 
 

 

and 
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2* * *
2

21
2 2

2

1
m

m

DMRSSE m m
i imi i

Y Y Y
m    

       

 
   
 
 

  .

The estimator ˆYDMRSS can be approximated as

   
  

* * *

* *

ˆYMRSS DMRSS DMRSS X DMRSS X

DMRSS X DMRSS Y

Y H X HG X

G X Y

     

  
    (18)

Take the expectation of (18) yields

     *ˆ VarYDMRSS Y DMRSSE G H X     .     (19)

Therefore, the bias, variance and MSE of ˆYDMRSS , respectively are given by 

     *ˆBias VarYDMRSS DMRSSG H X       (20)

       2 * 2 21
ˆVar Var 1YDMRSS DMRSS YH X

m
      ,     (21)

and

         2 * 2 * 2 21
ˆMSE Var 1 Var 1YDMRSS DMRSS DMRSS YH X G X

m
       
 

(22)

4. SIMULATION STUDY

A simulation study was conducted to investigate the performance of SRS, RSS, 
MRSS and DMRSS methods for estimating the population mean where the ranking 
was performed on the variable X. The samples were generated from bivariate 
normal distribution with parameters 6X  , 3Y  , 1X Y    and 0.99,  

0.90, 0.80, 0.70, 0.50  . Based on 60,000 replications, the efficiency and the 

bias of ˆYSRS , ˆYRSS , ˆYMRSS and ˆYDMRSS are obtained and the results for 

3, 4m  are presented in Table 1 and for 5,6m  in Table 2. The efficiency of 
ˆYRSS , ˆYMRSS and ˆYDMRSS with respect to ˆYSRS , respectively, are defined as:

   
 

ˆMSE
ˆ ˆ,

ˆMSE
YSRS

YSRS YRSS
YRSS

eff


  


,     (21)
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   
 

ˆMSE
ˆ ˆ,

ˆMSE
YSRS

YSRS YMRSS
YMRSS

eff


  


,     (22)

   
 

ˆMSE
ˆ ˆ,

ˆMSE

YSRS

YSRS YDMRSS

YDMRSS

eff


  


.     (23)

From the results of simulation given in Tables 1 and 2, we can conclude the 
followings:

1. The estimators of population mean obtained by RSS, MRSS and DMRSS is 
more efficient compared to the usual SRS estimator based on the same 
number of measured units.

2. Based on the same sample size,    ˆ ˆ ˆ ˆ, ,YSRS YDMRSS YSRS YMRSSeff eff     

 ˆ ˆ,YSRS YRSSeff   . This is particularly apparent when  is close to 1. For 

example, for 3m  , the efficiency of RSS, MRSS and DMRSS, 
respectively are 1.846, 2.099 and 4.127 with 0.99  .

3. It is found that, for the same value of the correlation coefficient the absolute 
value of the bias satisfies the inequality,    ˆ ˆBias BiasYDMRSS YMRSS   . 

For example, for 0.80   and 6m  , the absolute bias of the estimators 

using MRSS and DMRSS, respectively, are 0.008 and 0.004.

4. The efficiency of each the estimators, ˆYRSS , ˆYMRSS and ˆYDMRSS is 

increasing with the sample size for the same value of  . For example, for 

3,4,5,6m  , the efficiency of DMRSS estimator, respectively, are 1.100, 
1.114, 1.118 and 1.125 for 0.70  .

5. For the estimators considered, the negative values of the correlation 
coefficient  give higher values of the efficiency than the positive values for 

a given sample size. For example, with 5m  using DMRSS for 0.90 
and 0.90 , the efficiency values are 1.922 and 6.644 respectively.

6. The efficiency of estimators using any of RSS, MRSS and DMRSS 
methods is found to be increasing as the magnitude of the correlation 
coefficient increase. As an example, for 6m  , the efficiency of using 
MRSS for 0.50,0.70,0.80,0.90  , 0.99 are 1.012, 1.080, 1.231, 1.647 

and 3.351. Similarly, for 0.50, 0.70,    0.80, 0.90, 0.99   the 

efficiency are 2.275, 3.474, 4.774, 7.480 and 15.089 respectively. 
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Table 1
The efficiency and bias values of estimating the population mean 
using RSS, MRSS and DMRSS with respect to SRS for 3m  , 4.

3m  4m 
 RSS MRSS DMRSS RSS MRSS DMRSS

0.99 eff 1.846 2.099 4.127 2.264 2.565 5.615

Bias -0.010 -0.008 -0.004 -0.006 -0.006 -0.002

0.90 eff 1.350 1.413 1.752 1.440 1.512 1.868

Bias -0.009 -0.007 -0.001 -0.006 -0.006 -0.001

0.80 eff 1.121 1.186 1.287 1.176 1.205 1.297

Bias -0.004 -0.006 -0.003 -0.004 -0.003 0.000

0.70 eff 1.039 1.080 1.100 1.081 1.082 1.114

Bias -0.006 -0.003 -0.003 -0.003 -0.003 -0.001

0.50 eff 1.006 1.015 1.018 1.014 1.017 1.026

Bias 0.001 -0.001 0.000 0.000 -0.001 0.000

-0.99 eff 1.954 2.326 5.114 2.465 2.849 7.554

Bias 0.037 0.032 0.011 0.026 0.021 0.005

-0.90 eff 1.835 2.098 3.963 2.213 2.512 5.173

Bias 0.037 0.029 0.013 0.023 0.018 0.005

-0.80 eff 1.710 1.904 3.163 2.028 2.236 3.798

Bias 0.035 0.028 0.011 0.014 0.019 0.006

-0.70 eff 1.599 1.782 2.598 1.837 1.991 2.981

Bias 0.032 0.022 0.010 0.022 0.014 0.005

-0.50 eff 1.413 1.515 1.933 1.570 1.632 2.130

Bias 0.023 0.017 0.007 0.013 0.011 0.003
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Table 2
The efficiency and bias values of estimating the population mean 
using RSS, MRSS and DMRSS with respect to SRS for 5m  , 6.

5m  6m 
 RSS MRSS DMRSS RSS MRSS DMRSS

0.99 eff 2.631 3.093 7.335 2.921 3.531 8.574

Bias -0.004 -0.004 0.001 -0.003 -0.002 0.001

0.90 eff 1.516 1.611 1.922 1.587 1.647 1.983

Bias -0.003 -0.003 0.001 -0.001 -0.002 0.002

0.80 Eff 1.220 1.221 1.314 1.211 1.231 1.321

Bias -0.004 -0.004 0.000 -0.002 -0.003 0.002

0.70 eff 1.078 1.085 1.118 1.085 1.080 1.125

Bias -0.003 -0.001 0.000 -0.001 0.000 0.000

0.50 eff 1.006 1.012 1.027 1.010 1.012 1.029

Bias -0.001 0.001 0.000 0.000 0.000 0.000

-0.99 eff 2.885 3.595 11.580 3.298 4.223 15.089

Bias 0.013 0.013 -0.001 0.011 0.009 -0.002

-0.90 eff 2.581 2.994 6.644 2.830 3.350 7.480

Bias 0.018 0.011 -0.001 0.009 0.010 -0.005

-0.80 eff 2.268 2.545 4.448 2.466 2.801 4.774

Bias 0.013 0.009 0.002 0.006 0.008 -0.004

-0.70 eff 2.017 2.214 3.346 2.135 2.389 3.474

Bias 0.013 0.011 -0.001 0.009 0.007 -0.003

-0.50 eff 1.669 1.794 2.189 1.708 1.848 2.275

Bias 0.008 0.005 -0.001 0.010 0.004 -0.002
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5. CONCLUSION

The suggested estimators for the population mean using RSS, MRSS and 
DMRSS methods are more efficient than the SRS estimator based on the same 
sample size. The efficiency of the suggested estimators is increasing in the sample 
size and also it is increasing as the magnitude of the correlation coefficient 
increase. When these three methods RSS, MRSS and DMRSS are compared, it is 
found that DMRSS are most efficient.
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