RANKED SET SAMPLING
By
Munir Ahmad

M. Hanif
Hassen A. Muttlak



FOREWORD

The Editorial Board of Pakistan Journal of Statistics, in its meeting held in
September, 2009 to collect papers on one topic and published in the form of Book.
Each paper has been refereed by at least three experts actively engaged in “Ranked
Set Sampling”. This book is the first in the series and we hope that in future, we

shall be collecting papers and publishing in the form of books.

MUNIR AHMAD
Editor-in-Chief PJS and
Rector, NCBA&E, Lahore, Pakistan
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PREFACE

Recently attention is being paid to the basic concepts of “Ranked Set Sampling”
and there are a number of papers available in the literature. New techniques and
approaches are being studied recently but there is no collection of papers that
provide recent developments in the area. The motivation of this book is the amount
of recent papers published by various authors on the topic of “Ranked Set
Sampling” in Pakistan Journal of Statistics.

Our main objective is to present before a wider audiénce on the work done on
“Ranked Set Sampling” during the last decade and to.motivate statisticians in this
part of the world to work on some latest statistical technologies developed in
various aspects of sampling. This book does not show any overlap with the current
developments in the area, instead it has added'new approaches to the area, instead
it has added new approaches to thearea.

We are indebted to all the authors/of the papers for their enormous hard work in
preparation of the papers and their teferees for the quality work they have done and
to Mr. M. Imtiaz and, M, M. /Iftikhar for excellent job of reproduction /

composition of paperstand setting in the proper format.

Munir Ahmad
M. Hanif
Hassen A. Muttlak
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CHAPTER ONE

Stratified Ranked Set Sample

Hani M. Samawi
Jiann-Ping Hsu College of Public Health, Biostatistics Center, PO Box 8015
Georgia Southern University, Statesboro, GA 30460, USA
E-mail: hsamawi@georgiasouthern.edu

ABSTRACT

Stratified simple random sampling (SSRS) is used in certain types of surveys
because it combines the conceptual simplicity of simple random sample (SRS)
with potentially significant gains in efficiency. It is a‘fconvenient technique to use
whenever we wish to ensure that our sample is representativesof the, population
and also to obtain separate estimates for parameters of .each subdomain of the
population. If sampling units in a study canmbe. easily ranked compared to
quantification, Mclntyre (1952) proposed. to use(the mean of n units based on a
ranked set sample (RSS) to estimate the population mean, and observed that it
provides an unbiased estimator with.a smaller variance compared to SRS of the
same size n.

In this paper we introducesthe concept of stratified ranked set sample (SRSS)
for estimating the population mean. SRSS combines the advantages of
stratification and RSS to obtain an unbiased estimator for the population mean,
with potentially significant gains.in efficiency. 'The conclusion of this study is that
by using SRSS thefefficiency. of the estimator relative to SSRS and SRS has strictly
increased. Results from uniform distribution are given. Computer simulated results
on other distributions are also given. An example using real data is presented to
illustrate the computations.

KEY WORDS
Simple random sample, stratified random sample, ranked set sample, stratified
ranked set sample, order statistics.

1. INTRODUCTION

Ranked set sampling (RSS) was introduced by McIntyre (1952) to estimate the
pasture yield. RSS procedure involves randomly drawing » sets of » units each
from the population for which the mean is to be estimated. It is assumed that the
units in each set can be ranked visually. From the first set of » units, the unit
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ranked lowest is measured. From the second set of » units, the unit ranked second
lowest is measured. The process is continued until from the n — ¢4 set of n units the
n — th ranked unit is measured. Talcahasi and Wakimoto (1968) warned that in
practice the number of units which are easily ranked cannot be more than four.

A stratified simple random sample (SSRS), (for example see Hansen et al.
1953) is a sampling plan in which a population is divided into L mutually exclusive
and exhaustive strata, and a simple random sample (SRS) of #, elements is taken

and quantified within each stratum /4. The sampling is performed independently
across the strata. In essence, we can think of a SSRS scheme as one consisting of
L separate simple random samples.

A stratified ranked set sample (SRSS) is a sampling plan in which a population
is divided into L mutually exclusive and exhaustivesstrata, and a ranked set
sample (RSS) of n, elements is quantified within each stratum, 2 =1, 2, ..., L. The
sampling is performed independently across the strata. Therefore, we can think of a
SRSS scheme as a collection of L separate ranked set samples.

In this paper, we introduce the concept of SRSS| to estimate the population
mean. This study showed that the estimatorusing SRSS is at least more efficient
than the one using SSRS. In Section 2, we describe some sampling plans, discuss
estimation of population mean using these plans, and give some useful definitions
and general results and results for theamiform distribution. Simulation results from
non-uniform distributions are“given in Section 3. In Section 4, we illustrate the
method using real data. The discussion'is given in Section 5.

2. SAMPLES AND ESTIMATION OF POPULATION MEAN

Suppose that the population is divided into L mutually exclusive and
. * * * * * * * * *
exhaustive strata. Let Xy, Xy Xp 3 X001 Xjingoes Xy, 505 X 15 Xy 200 Xy

be n, independent random samples of size n, each one is taken from each
stratum (h =1, 2,...,L) . Assume that each element X ;ij in the sample has the same
distribution function £} (x) and density function f (x) with mean p, and
variance Gi. For simplicity of notation, we will assume that X, denotes the
quantitative measure of the unit X Zu Then, according to our description
X5 Xpo1s-ws Xy, 1 could be considered as the SRS from the 4 — th stratum. Let

* *

Xhi(l)’Xhi(Z)""’Xhi(n,,) be the ordered statistics of the i — ¢h sample
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XZiI,X;iz,...,XZink (i=12,..n) taken from the s — th stratum. Then,

Xhl(l)’Xhl(Z)""’thh(nh) denotes the RSS for the & — th stratum. If N|,N,,...,N;

represent the number of sampling units within respective strata, and #n;,n,,...,1n;
represent the number of sampling units measured within each stratum, then

L L
N=73% N, will be the total population size, and n= Y n, will be the total
h=1 h=1

sample size.

2.1 Definitions, notations and some useful results
The following notations and results will be used throughout this paper. For all

=12y and h=12,.L, Tty = E( X, ).00 =Var(X,y ) g =E( Xy ):
() Var( ()) forall j=1,2,..,n, and let Th(i):uh(l.)—uh

As in Dell and Clutter (1972), one can showeasily that for a particular stratum
h,(l = 1,2,...,L) ,

Ji(x)=—=2 fip (%)

ny i=1

and hence Zh‘, Faiy = Pk Zh‘, Th( =0 and Z ch —nhch Z T2
i=1 i=1 i=1

The mean p ofthe variable X for the entire population is given by

=—Z Ny, = Z Wik, 2.1.1)
N h=1 h=1

where W, =—-

If within a particular stratum, /4, we suppose to have selected SRS of n,
elements from N, elements in the stratum and each sample element is measured

with respect to some variable X, then the estimate of the mean ph using SRS of
size n,, is given by

X, =13 x,,. (2.1.2)
ny i=1
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2
The mean and variance of X, are known to be E()_(h ) =u, and Var (Xh) ./
M

respectively, assuming N, ’s are large enough. The estimate of the population mean
p using SSRS of size n is defined by

_ 1 L _ L _
Xssrs :th—‘] N, X, :El W, X, (2.1.3)

The mean and the variance of X gg,¢ are known to be E ()_( SSRS ) =p and
v Lo Gi
Var(Xgsps )= 3 Wi | =2 (2.1.4)
h=1 ny
respectively, assuming N,,’s are large enough.

If within a particular stratum /4, we suppose to have selected RSS of 7,
elements from N, elements in the stratum and each sample element is measured
with respect to some variable X, then the'estimate of the mean p, using RSS of

size ,, is given by

Xy =—3% X, (2.1.5)
ny i=1

It can be shown that the'mean,and variance of X i(n,) AT€ E ()? H(m,) ) =u, and

2
v )=O%h Ll
Var(Xh(nh))—nh - 2 Ty, (2.1.6)

respectively, assuming N, ’s are large enough. Therefore, the estimate of the
population mean p using SRSS of size n is defined by

L
XSRSS:_Z N, X, 2 Wi Xi(n,) - 2.1.7)

It can be shown straightforward algebra that the mean and the variance of

Xgpss are E()?SRSS ) = (i.e., and unbiased estimator) and
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= L or 1M
Var(XSRSS):hZ Wy (n—”—n—zZl Thz(,-)J, (2.1.8)
= h p i=

—_

respectively, assuming N, ’s are large enough.

Therefore, the relative efficiency of the estimator of the population mean p
using SRSS with respect to the one using SRSS can be defined by

RE = Var():(ms) = ! (2.1.9)
Var( X gpss ) - 1 i W_,fzh 72
Var()_(SSRS) h=1 n,% i=1 i)

2.2 Results for the uniform distribution
Assume that a population of size N , with a variable X" has a'uniform distribution

U(U,0). Suppose we can divide this population_idto L~ strata with respect to
some characteristics in the population.clf we let &V,,N,,...,N, represent the
number of sampling units within respective stratay and n,,n,,...,n; represent the

L
number of selected sampling units from'respective strata, then N=3 N, and
=1

L
n=73 m,.Assume that the random variable X, has distribution U (0,6, ). Thus,
|

0 02 L L
2 12 N 2 h=1

The mean and variance of the estimate X ¢ of the population mean p using

SSRS of size n ware E()?SSRS ) = % =u and

— L 02
Var(Xgsps )= 2 th( h J (2.2.1)

h=1

respectively.

The mean and variance of the estimate X g4, of the population mean p using

SRSS of size n are E()?SRSS ) = % =u and
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_ L 0?
Var(XSRSS) = Z I/th (6”—,1] (222)
h

Also, if n;, > 2 then,

L 2
Var()? ) hzl th (2}’ ]
RE = (_SSRS) - >, (2.2.3)
Var( X L 0
SRSS 22 th h
h=1 I’lh (nh +1)

which implies that SRSS gives a more efficient unbiased.estimator for the uniform
population mean compared to SSRS.

3. SIMULATION STUDY

The normal and exponential distributions are used.in the simulation. Sample
sizes N =10,20 and 30 and number of strata L =3 /are considered. For each of
the possible combination of distribution, sample size and different choice of
parameter, 2000 data sets were generated. The relative efficiencies of the estimate
of the population mean using SRSS/with respect to SSRS, SRS and RSS are
obtained. All computer programs wete written in Borland TURBO BASIC.

3.1 Result of the Simulation Study

The values obtained by simulation'are given in Table 1. Our simulation indicates
that estimating thespopulation means using. SRSS is more efficient than using
SSRS or SRS. In some cases, when the underlying distribution is normal with
(ny; =1.0, p, =3.0, Wy =5.0), the simulation indicates that estimating the

population mean using SRSS is even more efficient than RSS.
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Table 1
The relative efficiency of the simulation results

Distribution function n RE()_(SRSS,)_(SW) RE()_(SRgg,)_(SRs) RE()_(SRSSa)_(RS‘S)
Normal 10 2.04 7.59 1.50
W =03,W, =03,I; =04, 20 3.19 11.63 1.29
p, =1.0,pu, =3.0,u; =5.0 |30 4.45 16.30 1.25
o, =1.0,0, =1.0,6,=1.0
Normal 10 2.08 3.48 0.72
W, =03,W,=03,W,=04, |20 3.19 5.70 0.65
p =1.0,p, =2.0,u3, =3.0 |30 4.42 7.57 0.67
o, =1.0,0, =1.0,06; =1.0
Normal 10 2.08 7.15 1.28
W =03,W,=03,W;=04, |20 3.38 10.50 1.19
p =1.0,u, =3.0,u;, =5.0 |30 4.32 13:94 1.10
c,=10,0, =1.1,0; =12
Exponential 10 2.82 3.55 1.28
W, =03,W,=03W,=04, |20 3.04 3.78 0.96
p =1.0,u, =3.0,u;, =5.0 |30 3:50 4.17 0.86
Exponential 10 1.95 2.15 0.73
W =03,W,=03W;=04 |20 2.85 3.25 0.71
K =5.0,u, =10.0,u5 =45.00, |30 3.53 4.15 0.74

4. EXAMPLE: Body Mass Index Data

In Table 2 we present three sample of size 7 each, from baseline interview data
for the lowa 65+ Rural Health Study (RHS), which is a longitudinal cohort study
of 3,673 individuals (1,420 men arid 2,253 women) ages 65 or older living in
Washington and Iowa countries of the State of lowa in 1982. This study is one of
four supported by the National Institute on Aging and collectively referred to as
EPESE, (Established Populations for Epidemiologic Studies of the Elderly),
National Institute on Aging, 1986.

In the Iowa 65+ RHS there were 33 diabetic women aged 80 to 85, of whom 14
reported urinary incontinence. The question of interest is to estimate the mean
body mass index (BMI) of diabetic women. The BMI is the ratio of the subject’s
weight (kilograms) divided by height (meters) squared. Note that, the BMI may be
different for women with or without urinary incontinence. Thus, here is a situation
where stratification might work well. The 33 women were divided into two strata,
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the first consists of those women without urinary incontinence and the second con-
sists of those 14 women with urinary incontinence. Four samples of size (n = 7)

each were drawn from those women using SSRS, SRSS, RSS and SRS. Note that
in case of SRSS and RSS the selecting samples are drawn with replacement. The
calculated values of BMI are given in Table 2. These calculations indicate the same
pattern of conclusions that were obtained earlier, and illustrate the method
described in Section 2.
Table 2
Body Mass Index Samples of Diabetic Women Aged 80 to 85 Years
with and without Urinary Incontinence

SRS RSS SSRS SRSS
18.88  18.88 345 2345
19.76  22.88  Stratum 1 %8.95 23.46
20.57 2345 0.17  30.10
25.66 24.38 19.61 19.61
26.01 2630 Stratam 2 JL7_4.07 24.38
28.95 27.31 2749  31.31
33.52  36.65 33.52 31.95
Estimated Mean  24.77  25.69 26.95 26.15
Standard Error 2.03 2.06 1.72 1.67

5. DISCUSSION

The BMI data is a good example where we need stratification to find an
unbiased estimator for the population mean of those diabetic women aged 80 to 85
years. Since the 33 women were'divided into two strata, the first consists of those
women without urinary“incontinence and the second consists of those women with
urinary incontinence. It is clear that the mean of the BMI in each stratum will be
different. Also, women can be ranked visually according to their BMI. In this
situation we recommend using SRSS to estimate the mean BMI of those women.
SRSS will give an unbiased and more efficient estimate of the BMI mean.
Moreover, SRSS can provide an unbiased and more efficient estimate for the mean
of each stratum.

Remark: We could not find a closed form for optimal allocation of units and also
for optimal allocation of resources for 7, using SRSS. However, the near optimal

allocation can be obtained from the formulae obtained by using SSRS, for example
see, Hansen et al. 1953.



Chapter One 9

REFERENCES

1. Brock, D.B., Wineland T. Freeman, D.H., Lemke, J.H., Scherr, P.A. (1986),
Demographic characteristics. In: Established Population for Epidemiologic
Studies of the Elderly. Resource Data Book, Cornoni Huntley, J. Brock D.B.,
Ostfeld, A.M., Taylor, J.O. and Wallace, R.B. (eds). National Institute on
Aging, NM Publication No. 86-2443. U.S. Government Printing Office,
Washington, D.C.

2. Dell T.R. and Clutter J.L. (1972). Ranked Set Sampling Theory with Order
Statistics Background. Biometrics 28, 545-555.

3. Hansen, M.H., Hurwitz, W.N., and Madow, W.G. (1953). Sampling Survey
Methods and Theory, Vols. 1 and 2, Wiley, New York.

4. Mclntyre, G.A. (1952): A method of unbiased selective sampling, using ranked
sets. Australian J. Agri. Research 8, 385-390.

5. Takahasi, K. and Wakimoto, K. (1968): On<unbiased estimates of the
population mean based on the stratified sampling by'means of ordering. Ann.
Inst. Statist. Math., 20, 1-31.



10

Stratified Ranked Set Sample



CHAPTER TWO

Using Ranked Set Sampling for Hypothesis Tests on the Scale
Parameter of the Exponential and Uniform Distributions

Walid Abu-Dayyeh' and Hassan A. Muttlak®
! Department of Statistics, Faculty of Economics,
University of UAE, P.O. Box 17555, Al-Ain, UAE.
? School of Computing & Mathematics, Deakin University,
Geelong Campus, Geelong, Vectoria 3217, Australia.

ABSTRACT

The concept of ranked set sampling (RSS) was suggested by Mclntyre (1952).
Many authors including Takahasi and Wakimoto (1968). Stokes (1980) and
Muttlak and McDonald (1990) have used RSS in estimation.

In this paper we will obtain the uniformly most powerful test (UMPT) and the
likelihood ratio test (LRT) in case of exponential distribution and the UMPT in case
of uniform distribution, using simple random sample (SRS) and then we will adapt
the statistics of these tests to constrict new tests using RSS. It turns out that the use
of RSS gives much better results initerms of the power function compared to SRS.

KEY'WORDS

Ranked set sampling; simple random sample; power of the test, UMPT and
LRT.

1. INTRODUCTION

In many applications it is very difficult or expensive to measure the sampling
units, but the units can be ranked with out any cost. It turns out that in such cases
the use of RSS gives better estimate of the population mean compared to the SRS.
In agricultural and environmental studies, it is possible to rank the sampling units
without actually measuring them. For some such applications see Cobby et al.
(1985), Muttlak and McDonald (1992), Johnson et al. (1993) and Patil and Taillie
(1993). For the sampling method of RSS see Stokes (1986).

Many other uses of RSS have been studied in the literature. Takahasi and
Wakimoto (1968) independently suggested the same method that was considered
by Mclntyre (1952). They proved that the mean of RSS is an unbiased estimator of
the population mean with smaller variance than the variance of the sample mean of
a SRS with the same sample size. Stokes (1980) discussed the estimation of the

11
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variance based on RSS. Muttlak and McDonald (1990a, 1990b) developed RSS
theory when the sampling units are selected with size based probability of
selection.

The object of this paper is to obtain the UMPT for the one sided alternative and
the LRT for the two sided alternative in case of the exponential distribution and the
UMPT for the two sided alternative in case of uniform distribution using SRS and
will adapt these tests to RSS data. It turns out that the tests based on RSS have
higher power than the corresponding tests based on the SRS.

2. EXPONENTIAL DISTRIBUTION

Let X|,X,,....X, be arandom sample from the exponential distribution with
pdf
Lo ifx20
fo(x)=17 .
0 Otherwise
We are interested in testing the hypotheses

H,:0=0, vs. H,:0>6, (1)

It is well known that the UMPT of size' ey for testing (1) is given by

SUMPT = 1 ify L X,sC, @
0 otherwise
2
Without lost of generality ' we may take 6, =1. Then ¢, = 2”2’1_“ , where an

is the chi-square distribution with m degrees of freedom. The power of the test (2)
is given by

n 1 1
Bounpr (6):P9(2 X; >5X%n,locj:P9 (W >6X§n,lajs

i=l
where W is distributed x3,

To obtain the test using RSS let X1, X5, s X1y Xops Xonseor Xop5eenenn ;
X1, X9, X,, bethe n groups of n independent random variables all with the
same cumulative distribution function F (x) Let X i(1) X (2),...,X i(n) be the order

]

statistics of the variables X;),X,,.., X, in the i-th group (i=1,2,..,n) Then

mn
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Xl(l)’XZ(Z)""’X'(i)""’Xn(n) denotes the ranked set sample, where Xl.(l.) is the i-th

7

order statistic in the i-th group. To simplify the notation, X (i) will be denoted by

Y; through out this paper.
To test the same hypothesis (1) using the RSS we propose the following test

{1 YN Y >d
o =

0 otherwise

A3)

where d is determined so that the test ¢, has size o.. To obtain the value of d , we
need the distribution of Y L, Y, under H,. For this purpose we consider the
following transformation: Z, =Y,,Z, =Y, +Y,,Zy=Y{+Y, +Y;,...Z, =2 LY, .
We know that 1,Y,,....,Y, , are independent random variables with joint pdf:

{H?:l m[l—eyi/e]il}e%e

g0 (yl,yz,...,yn)= =>4 (n—i+1)yl- 10,y,>0,i=1,..,n

0 Otherwise
“4)
Then the joint pdf of\Z,,Z,,...,Z, is given by
hy (z”,zz,...,zn)= 2o (21,22 —Z1,23 = 2,005 2 —Z,H) ,

which implies that the pdf of Z, is:

kg (Zn ) =I§” .[OZAJ.OZ 8o (Zlazz —Zy,Z3 —Zz’--wznfl)dzldzz“d %)

TZn-l

Therefore the power function of the test (3) is given by
By (0= £ 12417 k()

To find d , we need to solve

By, (D=0=[] kot(z,)d,, 6)
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It is not easy to find 4 for general » and o . Therefore we will find d for
n=3,4, and 5and o =0.05. For n =3, the pdf of z; is

ke (23):26—323/9 {6223/9 11602570 _4}

20

_2—73e’3z3/e {1362 +100ez; +86, ¢ +2232} ”
20 3

For a=0.05 and n=3 we found that 4 =5.532, using a computer
mathematical program. Therefore, the power of this test is given by

3
By, (e):PG(ZI Y, >dJ:J5.532 ko (23)dz3 . (®)

Similarly, the power function can be written for ‘m=4"and 5. Table (1) shows
the results for o =0.05 and n =4 and 5 and different values.of 0.

It appears from Table (1) that the power of the testsspUMPT and ¢, increases
as 0 increases and also as n increases andithat thespower of ¢, is larger than the
power of QUMPT i.e. using RSS gives higher'power of the test compared to SRS.

Table (1)
Values of f;,77(6) and B, () for different values

of 0 and sample sizes » =3,4 and 5 and o =0.05

0 Bd)UMPT (9) B¢1 (9)

n=3 n=4 n=>5 n=3 n=4 n=>5
1.10 0.076 0.079 0.083 0.080 0.087 0.094
1.25 0.122 0.134 0.146 0.138 0.164 0.191
1.50 0.211 0.242 0.258 0.327 0.402 0.402
2.00 0.391 0.458 0.518 0.503 0.642 0.762
3.00 0.650 0.739 0.807 0.807 0.924 0.977
4.00 0.790 0.868 0.918 0.924 0.984 0.998
5.00 0.866 0.928 0.961 0.967 0.996 0.999
10.0 0.974 0.992 0.998 0.999 0.999 0.999

Next we will consider the LRT for testing the hypothesis
Hy:0=1vs. H, :0=1. ©)]

It is well known that the LRT of size a is given by
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2 2

cp X2nal2 n X2nl-a/2

(I) _ 0 lfT<Zi:1Xi<—2

LRT ]
1 Otherwise

which implies that its power function is given by
2 2
X2n,0 X2nl-a/
B¢UMPT(9): I_Pe(—zz/z <X, <7 12 2)

2 2
X2n,a/2 X2nj-a/2
1-P, (T <W <2 )

where W =Y X, is distributed as 3, .

To test the same hypothesis using the RSS, the following test is proposed:

0, = 0 itk <YLY <k,
1 Otherwise

The power function of the test ¢, is

By, (6):1—P9[k1 <3y, <K2j:1—jl’;f ko(z,)dz,,

i=1

where kg (z,) is defined in(5). To obtain the test of size o we need to find &

and k, to satisfy

By, (1)=& 1—j,f12 kot (2, )d., -

We will take 1- [} ky_y (z,)dz, = /2 and 1-[;> ko (z,)dz, =1-0/2. To
compare the two tests ¢;pr and ¢,, we take =0.05 and n=3,4 and 5. Table
(2) shows the power for both tests for n = 3,4 and 5 and a = 0.05.

Considering Table (2) we conclude that the power of the tests ¢, and ¢,
increases as 0 moves away from 1 in both directions and as n increases and the
power of ¢, is higher than ¢, i.e. using RSS will increase the power of the test.

Also, we notice that ¢, appears to be unbiased test while ¢, is an unbiased test.
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Table (2)
Values of (3, (6) and B, (0) for different values

of 0 and sample sizes n =3,4 and 5 and o =0.05

0 B¢LRT (6) l3¢2 (6)

n=3 n=4 n=>5 n=3 n=4 n=>5
0.05 0.999 0.999 0.999 0.999 0.999 0.999
0.10 0.946 0.995 0.999 0.999 0.999 0.999
0.25 0.450 0.633 0.776 0.822 0.969 0.996
0.50 0.129 0.1768 0.228 0.263 0.437 0.612
0.75 0.055 0.063 0.071 0.079 0.109 0.146
0.90 0.046 0.047 0.048 0.051 0.056 0.061
1.00 0.050 0.050 0.050 0.050 0.050 0.050
1.10 0.061 0.062 0.063 0.070 0.062 0.064
1.25 0.087 0.093 0.100 0.092 0.105 0.122
1.50 0.150 0.172 0.194 0177 0229 0.289
2.00 0.305 0.365 0.421 0.395 0.530 0.661
3.00 0.569 0.665 0.742 0.731 0.878 0.960
4.00 0.730 0.821 0.883 0.884 0.970 0.995
5.00 0.823 0.899 0.943 0.947 0.992 0.999
10.0 0.963 0.988 0.996 0.997 0.999 0.999

3. UNIFORM DISTRIBUTION

Let X,,X,,..,X, ‘be a'random sample from the uniform distribution with
probability densitysfunction

L 0<x<0
Jo (x): 0 .
0 otherwise
We want to test
Hy,:0=0, vs. H,:0%60,. (11)

As was done in case of the exponential distribution we assume that 6, =1

w.l.o.g. Since the UMPT test for (11) exists there is no need to consider the LRT.
The UMPT of side a is given by

(12)

0 otherwise



Chapter Two 17

where X, (n) is the largest ordered statistic. Then the power function of this test is

1 if 0<no
By, (8)=1¢ if nJo <0<1
1+ if 9> 1

n

To test the same hypothesis using the RSS we propose the following test

{1 ifmax{Yl-}<cor maX{Yi}>l
¢; = .
0 otherwise

To find the value of ¢ we must solve the equation

a= Ry (max (¥} <c) =1 (B (¥)<e)

which can be written as

5 a6

Then the power of this tést can be written as

D~

dy[]

1 if 6<c
B¢z(e): T sPeXp<c) ifc<0<1
H?:IPG(Y' )+1 H 1Pe( _1) if 6>1

To compare the two tests ¢, and ¢; we take o0=0.05 and n=3,4 and 5.
Table (3) shows the results for n=3,4 and 5 and o =0.05 with different values of 0.

Considering Table (3) we see that the power of the tests ¢, and ¢; increases

as O moves away from 1 in both directions and as n increases and the power of
¢5 is larger than ¢, i.e. using RSS will increase the power of the test.
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Table (3)
Values of B, () and B, (6) for different values

of 0 and sample sizes » =3,4 and 5 and o =0.05

0 Pou (©) By, (6)

n=3 n=4 n=>5 n=3 n=4 n=>5
0.25 0.999 0.999 0.999 0.999 0.999 0.999
0.50 0.400 0.800 0.999 0.946 0.999 0.999
0.60 0.232 0.386 0.643 0.497 0.999 0.999
0.75 0.119 0.158 0.211 0.194 0.330 0.528
0.90 0.069 0.076 0.085 0.084 0.104 0.129
1.00 0.050 0.050 0.053 0.050 0.053 0.050
1.10 0.286 0.351 0.410 0.298 0.374 0.445
1.25 0.514 0.611 0.689 0.561 0.683 0.779
1.50 0.719 0.812 0.875 0.795 0.899 0.955
2.00 0.881 0.941 0.970 0.947 0.988 0.998
3.00 0.965 0.988 0.996 0.993 0.999 0.999
4.00 0.985 0.997 0.999 0.999 0.999 0.999
5.00 0.992 0.999 0.999 0.999 0.999 0.999
10.0 0.999 0.999 0.999 0.999 0.999 0.999
10.0 0.963 0.988 0.996 0.997 0.999 0.999
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CHAPTER THREE

A Note on Bayesian Estimation using Ranked Set Sample

M. Fraiwan Al-Saleh' and Hassen A. Muttlak®
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ABSTRACT

Ranked set sampling (RSS) as suggested by McIntyre (1952) and Takahasi and
Wakimoto (1968) mar be used in Bayesian estimation«to reduce the Bayes risk.
Bayesian estimation based on a ranked set sample (RSS) is investigated for
exponential and normal distributions. We examine the/Bayesyrisk of the Bayes
estimator using RSS. It appears that as expected, the Bayes risk of the Bayes
estimator using RSS is smaller than that of the' corresponding Bayes estimator
using simple random sample (SRS) of the same sample size.

KEYW ORDS
Order Statistics; Ranked Set Sampling; Bayes Estimators, Bayes Risk

1. INTRDOUCTION

Ranked set sampling,(RSS) was first suggested by MclIntyre (1952) who noted
that RSS is highly beneficial and is much superior to the standard simple random
sampling (SRS) for the estimation of the population mean. In many studies, it is
possible to rank the sampling units rather cheaply without actually measuring
them. See Halls and Dell (1966) and Muttlak and McDonald (1992) for some
examples.

Mclntyre (1952) gave no mathematical theory to support his suggestion.
Takahasi and Wakimoto (1968) supplied the necessary mathematical theory. They
proved that the sample mean of the RSS is an unbiased estimator of the population
mean with smaller variance than the sample mean of a simple random sample
(SRS) with the same sample size.

Mclntyre (1952) and Takahasi and Wakimoto (1968) assumed perfect ranking
of the elements. Dell and Clutter (1972) studied the case in which the ranking may
not be perfect. Stokes (1980) proved that the estimator of the variance based on
RSS data is an asymptotically unbiased estimator of the population variance and
for large sample size, it is more efficient than the usual estimator based on SRS

21



22 A Note on Bayesian Estimation using Ranked Set Sample

data with the same sample size. Muttlak and McDonald (1990a and 1990b)
developed the RSS theory when the experimental units are selected with size-
biased probability of selection. Sinha et al. (1992) considered estimating the mean
and variance of the normal distribution and the mean of the exponential
distribution. Lam et at. (1993) studied the parameters estimation of a two-
parameter exponential distribution using RSS. Stokes (1995) considered estimation
of and a for a family of random variables with cdfs of the form F [uj .
o

In this this paper, Bayes estimation of the normal and exponential means using
RSS is compared to that using SRS and it is shown that the former has smaller
Bayes risk than the latter.

2. BAYESIAN ESTIMATION
Let X1, X050 X1 Xo1 Xon0ees Xopoos Xy oo Xy K2 5o X,,, be m sets of n
independent random variable all having the cdf F1(x{6). Let X 1) X2 Xim)

denote the order statistics of X, Xgyen X;, (i=1,2,...,n). To simplify the

notation we will use ¥ to_ denot¢ the " order statistics of

X, X, X, (1=1,2,..,n) . Thén Y, %,..,Y, , known as to ranked set sample,

wodpos

are independent random variables with densities
-1 - n—i
2, (3, 10) = n(?_lj[F(yi )] [1-F(3110)] £(318)si=L20n (1)

If 6 has a prior,density n(e), then the posterior distribution of 0 given
Y =».Y, =y,,.....Y, =y, is given by
I1 gi(yi |9)7t(9)

i=1

J'[H & (, |9)}n(9)d9

i=1

(0] 31, Ypses ¥y ) =

Thus

:]:

(6)d6

2

{ﬁ[ (»10)] " [1- Fy,|e]’”H y,|9)}n(e)
(B 15 aseees Yy ) = — .
Tt b s o

i=1
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Assume that X, X,,..., X, are independent random variables all having the
same cdf F(x|0). Then the posterior distribution of 6 given

X, =x,X, =x,,..,X, =x, can be written as

* [T /(x10)x(6)
T (G\xl,xz,...,xn)= i=l 3)

| [Hl e Ie)}c(e)de

Let & be an estimator of 0 and suppose that the loss function is L(G,S) . Then
the risk function of & is

R(0.8)=E,(L(6.5)) S

where the expectation is taken with respect of fi The Bayes risk is defined as
E, (R(@,S)) where the expectation is taken with respeet of m. Denote the bayes

risk r(e,n). If the Bayed risk is finite for.\some, 0 , then the Bayed estmator of 0
is the estimator(s) that minimize the'Bayes risk r(8, TC) . See Berger (1985).

3. EXAMPLES
3.1 Exponential Distribution
Let X,,X,,..,X, beiid with pdf f(x|e)%e*"/9;x >0. Let 0 has the prior
1
r( r)em
a=r and B=1. The density of this distribution will be denoted by IG(o.,B).

Then the posterior distribution of © given the SRS x,x,,..,x, is

pdf m(6)1 e¥%:9>0, ie. 0 has an inverse gamma distribution with

1G n+r,; .
>x+1
The SRS Bayes estimator with respect to squared error loss is
A ;+1
Osrs :E(e|x1,xz,-.~,xn)—zL;n+r—l >0.

n+r—1
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The risk of éSRS is

R(éSRSse) = Val’(éSRS)-i-biasz (éSRS ) — 62 (” +1_1)2 —2e(r—l)+]

(n+r—1)
The Bayes risk of éSRS can be shown to be
~ 1
= ;r>2 5
G B ey L ®

Let 1,Y,,....Y, be the RSS. The posterior distribution of 0 given y;,,,...,»,
is

l{ui(nﬂ—i)y,}

1o _eni-l Tt
n(@lybyz,...,y”)ocwljl (l—e y,/e) N ©

For n=2,

1 1
1 (1425, =142,
W(9|ylay2)oce,+3 [e e( 1 2)—6 e( 1 2)]

Thus

(0] .y, )= S r+2, ! L By r+2;——l———
C -G, 142 C -G, 142

Vit Vit
where
T(r+2 I'(r+2
6= e, -T2
(1+2)’1+J’2) (1+2J’1+J’2)

The Bayed estimator of 6 with respect to squared error loss based on RSS is

é _ Cl 2)’1‘*’)’2 +1 _ C2 2)’1‘*’)’2 +1
BT o-c, r+l G -G, r+l

which can be simplified to
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—(r+1) —(r+1)
- 1 (2yl+yz +l) _(2yl+yz +1)
SRS =
r+1 —(r+2) —(r+2)
(2)’1*')’2 +1) _(2)’1‘*')’2 +1)
For n =3 and using (6)
1 Tl)(l+3y1+2yz +3) T)(H}yl +2y2+2y3) —%(H}yﬁ}yz +23)
n(e|ylay27y3)oce,T e —2e +2e
Tl)(l+3y1+2y2 +3)3) —%(H}yl +3y2+3) Tl)(l+3y1 +332+43y3)
—e —e —e
Thus
n(9|yl,y2,y3)= CIG| r+3, !
14+3y; + 295+ 25
1 1
-2C,IG| r+3, +2GIG| r +3,
143y, + 2y, + 25 143y, +3y, + 2y,
+CIG| r+3, ! J—CSIG(r+3,+)
1+3y, +2y, 433 143y, +3y, + 3
1
-C G| r+3, C -2C,+2C,+C,-C; -C
6 ( l+3yl+3y2+3y3ﬂ/[ 1726426+ Gy =G =G
where
T +3 T'(r+3
Cl = ( ) r+3 ’Cz = ( ) r+3°
(143y,+2y, + y3) (143y, +2y, +23)
c F(r+3) c F(r+3)
3= r+3 04 = r+3
(143 +33, +23) (143 +2p, +333) "
F(r+3) F(r+3)
= r+3 26 = r+3
(1433, +3y, +33) (1+3y, +3y, +393) "

Therefore, the Bayes estimator based on RSS is given by
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~ 143y, +2y, +y

aC 143y, +2y, +2); 20 143y, +3y, + 2y,
: r+2 3 r+2

L 143y, +2y, +3y; _c 143y, +3y, + 3
N r+2 r+2

(1] e ac e, -c)
r+

To compare the SRS with the RSS for this example we need to find the Bayes
risk r[éRSS ,6] for the RSS which can be wrtten for n.=2 as

r(éRSS7 ) IIE (GRSSa )zg(yl)g(y2)7t(9)dyldy2de
where
-1 n—i
g(y,-)=n(’:_1][F(y,-)] f(y,-);f(yi):%e*yf/",F(y,) 1-¢%i=1,2
_ 1 170
andn(e)——er+lr(r)e .

Similarly, the Bayes riskican.be written for larger n. To evaluate the above
integral, we use thesBMSL computer program. Table 1 shows the efficiency of RSS
with respect to SRS'for n =2, 3, 4 and 5 with different values of r. Considering
Table (1), it can be seen that the use of RSS reduces the Bayes risk by about 6
times when n = r = 4. Relative precision is also reported for estimating the

population mean using SS(Q*RSS) and SRS()? SRS ) The relative precision for the
MLE estimators using RSS and SRS is also reported.

3.2 Normal Distribution
1 RCORE

Ton

-0 <O <ow, ie. has a standard

Let X,,X,,..,X, be iid with pdf, f(x]6)=

; —0<Xx<0,

92
66/2'

1
N

Let © has the prior pdf, m(6)=

normal distribution.



Chapter Three 27

Assume that the loss function is the squared error loss function then the Bayes
estimator is

6= [ 6n(6]x)de.
The following method will be used to find the Bayes risk with respect to SRS
and RSS

1. Pick a random value of 6 from m(6) call it 6,, where m(6) is our prior
pdf.
2. Select z,,2,,....z, from f(z]6;).

3. Calculate the integral | 0m(0]z)d0 and call it ;.

4. Repeat steps 2 and 3, L times (L is relatively large) and find él,éz,...., 0 -
) ) R R 1 L “pa 2
5. Approximate the risk of 6, as R(G,O1 ) Q > (91 - 61)
i=1

6. Repeat steps 1 to 5 in times for different values of 0 say 6,,605,...,0

>¥m

7. The Bayes risk of 0 can be/approximate as r(é, TC) = 1 > R(é, Bi) .
m =1
Table (2) shows the efficiency of RSSiwith respect to SRS forn=2, 3,4 and 5
and it is also compared to/other methods of estimation. We can see that the RSS
reduces the Bayes risk by about 3 times when n = 4.
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Table 1
Bayes relative efficiency (BRE) of 0 rss With respect of éSRS and

relative precision (PR) of RSS to SRS using other type of estimations
for the exponential distribution1,2

n

2 3 4 5
BRE(éRSS,éSRS);r =3 1.51 1.60 1.72 227
BRE(éRSS,éSRS);r =35 2.52 2.97 3.76 433
BRE (0 pss. Ogps )37 = 4 4.19 4.96 5397 6.81
RP (s> Xszs) 1.33 1.64 1.92 2.14
lim (8,6, ) 1.40 1.81 221 2.62
m—»0

1) Values of RP in the fourth line arexfrom Dell andClutter (1972)
2) The asymptotic RP in the last line represent the limiting RP of MLE
using RSS w.r.t the MLE using, SRS as reported by Stokes (1995).

Table 2
Bayes relative efficiency (BRE) of 0 rss With respect of éSRS and

relative precision (PR) of RSS to SRS using other type of estimations
for the normal distribution1,2

n
2 3 4 5
BRE (0 rss. Osrs ) 1.73 2.35 2.81 3.29
RP (s> Xszs) 1.47 1.91 2.35 2.77
Tim (61200 ) 1.48 1.96 2.44 2.92

1) Values of RP in the fourth line are from Dell andClutter (1972)
2) The asymptotic RP in the last line represent the limiting RP of MLE
using RSS w.r.t the MLE using SRS as reported by Stokes (1995).
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ABSTRACT

Considering situations where units are expensive to measure but can be ordered
relatively cheaply or at no cost without actual measurements of the units under
investigation. Mclntyre (1952) pioneered the studyof the imethod ranked set
sampling (RSS). Considerable attention has beea“paid toythis sampling method in
the statistics literature for the last ten to fifteen years. In this paper we will review
the recent developments in area of RSS, concentrating mainly on the last five to six
years.

1. INTRODUCTION

Mclntyre (1952) was thefirst to propose the method of ranked set sampling
(RSS) to estimate population mean.. Takahasi and Wakimoto (1968) independently
described the same sampling method and presented the mathematical theory, which
supports McIntyre’s intuitive assertion. Dell and Clutter (1972) showed that errors
in ranking reduce(the,efficiency of the RSS mean relative to the SRS mean.
However, the RSS mean remains unbiased and more efficient than the SRS mean
unless the ranking is sojpoor as to yield a random sample, in this case the RSS
estimator performs just as well as the SRS mean.

The RSS method can be summarized as follows: From a population of interest,
n random sets each of size n are selected. The members of each random set are
ranked with respect to the variable of interest by a cost free method e.g. eyeballs.
From the first ordered set, the smallest unit is selected for measurement. From the
second ordered set the second smallest unit is selected for measurement. This
continues until the largest element from the last ordered set is measured. This
process may be repeated 7 times (i.e. » cycles or replications) to yield a sample of
size rn. These rn units form the RSS data.

Let X, X,, ..., X, be a random set with probability density function f (x) with
a finite mean p and variance o’ Let Xi1, Xizsow Xins Xot, Xo2s coes Xong o)
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Xat, Xn2, ey Xun be independent random variables all with the same cumulative
dlstrlbutlon functlon F(x). Let X, Xi@), ..., Xim) be the order statlstlcs of Xi1, Xio,
o Xin (1= , n). Let X iy, denote the i™ order statlstlc from the i" set of 51ze

n. If the cycle is repeated 7 times, let X i.,); denotes the i™ order statistic from the i"

set of size n in the j™ cycle. We will refer to this sampling method, which is due to
Mclntyre (1952), and Takahasi and Wakimoto (1968) as MTW RSS. The unbiased
estimator of the population mean (see Takahasi and Wakimoto, 1968) is defined as

X rss :—ZZX(”,)] : (1)

11/1

In this paper we review the recent developments in the area of ranked set
sampling in the last five to six years. In Section 2, we review the recent
developments in the nonparametric statistics methods using RSS data. In Section 3,
we consider the latest developments in the area of parametric statistics including
parameters estimation and testing hypotheses. The modifications of the MTW RSS
methods are discussed in Section 4. The use of RSS _in the regression estimation
and Bayesian statistics are considered in Sections Stand«6 respectively. The other
works, which cannot fit under any of the previous 'sections, are discussed in the last
section. For classified and extensively reviewed work in the area of RSS from 1952
to 1994 see Patil et al. (1994) and Kaur et al£(1995). Patil et al. (1999) presented a
bibliographic list in most of the work published in the area of RSS up to the end of
the twentieth century.

2. NONPARAMETRIC STATISTICS USING
RANKED SET SAMPLING

Stokes and Sager (1988), were the first to consider a nonparametric setting
using RSS data. They developed the properties of the empirical distribution
function based on RSS»and compared these properties to the usual empirical
distribution function using simple random sample (SRS) data. Bohn and Wolfe
(1992, 1994) developed the Mann-Whitney-Wilcoxon statistic using RSS for both
perfect and imperfect ranking. Kvam and Samaniego (1993, 1994) developed the
estimation of the population distribution function and population mean using
unbalanced RSS data, i.e. the size of the i™ set need not to be the same for all sets
and the various order statistics need not to be represented an equal number of time.
Bohn (1994) and Hettmansperger (1995) considered the one ranked-set sample
problem. They considered procedures called sign-rank and sign statistics
respectively for RSS data. For a review for the early nonparametric work in the
area of RSS see Bohn (1996).

1) Koti and Babu (1996) derived the exact distribution of the RSS sign test
under the null hypothesis i.e. the exact null distribution. They compared
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2)

3)

4)

5)

the power of the sign test based on RSS with the usual SRS sign test for
the double exponential, Cauchy and contaminated normal distributions.
They showed that the RSS sign test is superior to the SRS sign test.
Finally they discussed the problem of imperfect ranking.

Huang (1997) considered the asymptotic properties of the nonparametric
maximum likelihood estimator (NPMLE) of a distribution function using
RSS. He showed that the NPMLE of a distribution function based on RSS
is consistent and converges weakly to normal process. He also developed
the covariance function of the limiting process. Finally he showed that the
NPMLE of a distribution function based on RSS is asymptotically
efficient compared to the usual NPMLE based on SRS.

The Neyman’s optimal allocation requires the sample size corresponding
to each rank to be proportional to its standard deviation, but in most
applications the standard deviation is unknown. The performances of RSS
methods are affected by the allocation_of order statistics in the sample.
Kaur, Patil, and Taillie (1997) considered theeffects of unequal allocation
for RSS with skew distributions on the estimation of the population mean.
They considered two models of({unequal ‘allecation of skew distributions.
The first model is the t-model wherenthe largest order statistics is
quantified t (> 1) times more than'the rest of order statistics. The second
model is the (s, t)-mode where the two largest order statistics are
quantified more thansthe rest by factors of (s, t), 1< s< t, respectively. The
Neyman’s optimal allocation'is performs better than the (s, t)-model,
while the (s, t)=model perform better than the t-model. Finally the t-model
performs better than thesequal allocation model.

The RSS procedure that we described in Section 1 is called the balanced
RSS procedure)(i.e. in the ith set we observe X, (ion) the ith order statistics

in the ith set of size n). But under the generalized version of RSS we
observe X(r»n.)’ so the data set is (X(wl), ey X(rk:nk))' Kim

X

(riny)
and Arnold (1997) considered estimating the distribution function F under
both balanced and unbalanced RSS. They start with a Dirichlet process as
a prior for F. The estimate of distribution function F' is updated (the
posterior distribution function is again a Dirichlet process) based on a
completed data. These two steps are repeated until the estimate of F is
stabilized.

Barabesi (1998) developed a simple and fast method to calculate the exact
distribution of the RSS sign test statistic based on the probability
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generating function. He developed his method using the Mathematica
package.

Chen (1999) was the first to use RSS data to estimate the density function
using the kernel method of density estimation. He studied the properties
of the RSS density estimation and found that the bias of the RSS density
estimate is the same as the SRS estimate of the same size and the variance
of the RSS estimate as a function of the set size decreases as the set size
increases. The mean integrated square error of the pdf f(x) is defined by

MISE(f)=E[[f (x)- (T, where 7(x)is the density estimation of £(x).
The MISE of the RSS estimate of f(x)is found to be smaller than the

SRS estimate whether or not there are errors in ranking. Finally some
simulation studies were carried to find outshow much MISE can be
reduced by using RSS using the normald gamma and extreme value
distributions.

Aragon, Patil and Taillie (1999) reviewed. the work of Stokes and Sager
(1988) on the empirical distribution function using RSS and Bohn (1992)
on the Mann-Whitney-Wilcoxon, test,based on RSS. They proposed a
model for ranking error probability matrix, which can be use for
evaluating RSS-based statistical methods.

Hartlaub and Wolfe (1999) generalized the one- and two-sample location
problems considered in the prévious nonparametric work in the area of
RSS to m-sample'location problem. They developed the RSS procedures
for the m-sample location setting under the restriction that the treatment
effect parameters follow a restricted umbrella pattern. They developed
distribution-free test statistics for both cases where the peak of the
umbrella is known and when it is unknown. They studied the properties of
the null-distribution in the case of known peak of the umbrella. Finally
they discussed finding the critical values for the test statistics for both
cases of known and unknown umbrella peak.

The problem of estimating 6 = p(X > c)using RSS is addressed by Li,

Sinha and Chuiv (1999). They showed that the use of RSS instead of SRS
improves the estimation of © when the distribution is unspecified i.e.
distribution free. They compared the performances of different estimators
of 6 using SRS and RSS methods and concluded that if the underlying
distribution is normal, RSS estimators will outperform the SRS
estimators.
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13)

Statistical inference using RSS depends on the location of measured
observations. Ozturk (1999a) suggested and used a selective design that
determines the location of the measured observations in RSS. The
sampling procedure may be summarized as follows: Select a set of k
elements from a population with a cdf F(x), rank them with respect to the
variable of interest and measure only X, (d,:k) where X, (dy:) is the dl1-st

order statistic in the set. Return the remaining observations to the
population. Then select another set of size k and measure X( dyik) and

again return the remaining observations to the population. Repeat this
process r times to get X(dl,k)l., (doik)i>> (dy k)i fori=1, 2, ..., n. This is
called a selective RSS. The measured X(d] )i 2(dysk)i > (d, k)i L€ 2 cycle
in the selective RSS. If » = k then a cycle in aselective RSS is the same as
a cycle in usual RSS. The set D={d,, d,, w.4'd,;k}pis called s design,

where d,, d,, .., d,.determine the locations’ of the measured

observation in a set of size k. He considered the"one and two-sample sign
test based on selective RSS and{omparedyitsto that based on MTW RSS.
He showed that the selective RSS has higher Pitman efficiency than the
MTW RSS of the same size when the design measured only the middle
observations.

Ozturk (1999b) developed aitwo-sample test using RSS. He showed that
the test is a distribution free test and there is substantial increase in the
efficiency of the test even with error in ranking. But the probability of
type I error is inflated in the presence of errors in ranking. Finally he
showed that, the newly developed test is superior comparing to the two-
sample Mann=Whitney-Wilcoxon RSS test if the underlying distribution
has a heavy and long tail distribution and the number of observations in
each cycle is small.

Presnell and Bohn (1999) developed the U-statistics using RSS data for
one and two sample cases. They showed that their statistics are
asymptotically efficient compared to their counterpart the SRS U-
statistics, whether or not there are errors in ranking. They pointed out
some errors in ranked set sampling literatures. Finally they came up with
counterexamples to show that it is not necessary that perfect ranking will
lead to more efficient estimators than imperfect ranking.

Chen (2000) investigated the properties of the sample quantiles of RSS.
He showed that the RSS quantiles are strongly consistent estimator for
any set size and obtained the asymptotic normality for a large sample size.
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He also obtained the Bahadur representation of the RSS quantiles. The
confidence interval and testing of hypotheses for the population quantiles
were developed using RSS data. The newly developed RSS quantiles
were compared with the usual SRS quantiles via their relative efficiency.
The gain in efficiency by using RSS was shown to be very large, the
largest being when the inference is on the median. Finally it was noticed
that the gain in efficiency is decreases if we move away from the median
to the extreme quantiles.

Ozturk and Wolfe (2000) investigated the effect of different RSS
protocols on sign test statistic. These RSS protocols are sequential, mid-
range and fixed RSS designs. He showed that the sequential and mid-
range RSS are optimal if only one observation from each set is measured.
The fixed RSS design is optimal if only the*middle-order statistic is
measured. The sequential RSS protocol can’be summarized as follows:
Randomly selects cn units from an infinite population.and partitions these
units into ¢ set each of size » units. In gach set, rank'the units with respect
to a variable of interest. Fromw the first set measure the
observations X(l), ey X(,), where t = n/c is an integer. From the second

set, the observations X, , X jare measured. This process
continues until the observations, X .1y, .., X, are measured from the

last set. The cycle.may be repeated r times. For the mid-range RSS
protocol, the observations, atiequal distance from the middle rank are
measured in each set. Finally in fixed RSS protocol the same order

statistics in each, setvaré measured. For an integer fe {1, ey n} , let

D, = {dp . dt} berthe set of order statistics to be measured from each

set of size n units.

3. PARAMETRIC STATISTICS BASED ON
RANKED SET SAMPLING

3.1 Parameter Estimation using RSS

Even though RSS method is nonparametric in nature several authors considered

using RSS data to estimate the parameters of well-known distributions. Lam et al.
(1994) considered the estimation of the parameters of two-parameter exponential
distribution. Ni Chuiv et al. (1994) studied the estimation of the location parameter
of the Cauchy Distribution. Fei et al. (1994) explored the estimation of the
parameters for the two-parameter weibull and extreme-value distributions using
RSS. Sinha et al. (1994) considered the estimation of a gamma mean based on RSS
Lam et al. (1995) considered the estimation of the location and scale parameter of
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the logistic distribution using RSS. See Ni Chuiv and Sinha (1998) for a review of
some development in the parametric estimation using RSS.

1)

2)

3)

Stokes (1995) studied the maximum likelihood estimators under RSS of
the parameters of the location-scale family having cumulative distribution

function (cdf) of the form F((x—p)/o)with F known. Stokes (1995)

considered several examples and demonstrated the dominance of the
mle’s under RSS over other estimators. The best linear unbiased
estimators (BLUESs) of the location and scale parameters were proposed in
the same study and shown to do nearly as well as their maximum
likelihood counterparts in most cases.

Bhoj and Ahsanullah (1996) considered estimation of the parameters of
the generalized geometric distribution using” RSS. They obtained the
minimum variance linear unbiased estimatots, (MVUE) of the parameters
pw and o for the generalized geometric ‘distribution of the form

f(x)=po b ((x—p)/c+a)p71, p=ac<x<u+(h—a)c based on
RSS. The MVUE of p and o dased on . RSS were shown to be more
efficient than the MVUE based on n_ordered statistics given by Downton

(1954). Further the MVUE"of the population mean p based on RSS is
more efficient than the usual RSSyestimator of the population mean.

Sinha, B., Sinha, A" and Purkayastha (1996) proposed some best linear
unbiased estimators (BLUEs) of the parameters of the normal and
exponential distributions under RSS and some modifications of it. They
first addressed ‘the issue of how best to use the RSS, namely
X(l.;n), i=1 ..., mto estimate p and came up with a BLUE of p which is

given by [y, = {Z X(i;n)/vi}/Zl/vi , where v;is the variance of the
i=1 i=1

i™ order statistics in a sample of size n from a standard normal population.
They derived the BLUE of pn based on a partial RSS, namely
X( i=1, .., I, where /<n. Also, they considered selecting the

i;n)’
median of the i sample in estimating p. To estimate the variance of the
normal distribution they proposed several estimators using RSS and some
of its modifications. Most of the newly proposed estimators are more
efficient than SRS estimators. But [i,,,, and the estimator based on the
median of the i" sample are more efficient than the mean based on the
MTW RSS. They proposed several estimators for the exponential
parameter 6, the first being BLUE for 0 based on the RSS, which is more
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efficient than MTW RSS estimator for 0. The other estimators are based
on partial RSS.

Barnett and Moore (1997) extended the work of Stokes (1995) and Sinha
et al. (1996) to come up with an optimal ranked-set of the location and
scale parameters when the nuisance parameter is unknown and the
distribution need not to be symmetric. They showed that their estimators
are more efficient than the estimators suggested by Stokes (1995) and
Sinha et al. (1996) in the case of perfect ranking for the normal and
exponential distributions. Unlike Stokes (1995) and Sinha et al. (1996)
they considered the case of imperfect ranking and came up with BLUEs
for the parameters.

Bhoj (1997a) obtained the minimum variance unbiased estimator
(MVUE) of the location and scale paramefers of the extreme value
distribution using RSS. He compared these estimators with the ordered
least squared estimates given by Lieblein and Zelend(1956). The MVUE
turned out to dominate their order least squared” counterparts. He also
introduced an unbiased estimator for the population mean and showed it
be more efficient than the MTW RSS. Finally he used a modification of
RSS to come up with a more efficient estimator for the scale parameter in
case of small sample size.

Li and Ni (1997) discussed the efficiency of using RSS to estimate the
parameters of the/normal, ‘exponential two-parameter exponential and
Cauchy distributions compared to the usual estimators using SRS. They
established thatiusing the right modifications of RSS would often result in
a more efficient estimator for some parameters of those distributions.

As we saw many authors used the BLUE based on RSS to estimate the
population mean and other parameters of interest instead of the MTW
RSS estimator. However, the underlying distribution should be known to
use the BLUE method. Tam, Yu, and Fung (1998) investigated the
sensitivity of the BLUE to the misspecification of the underling
distribution. They considered several distributions and compared their
performance under both the usual RSS and the BLUE based on RSS. It
truned out that in general the sensitivity of the BLUE depend on the
kurtosis of the underling distribution.

The exponential distribution is very widely used in modeling real life
problem. Bhoj (1999a) discussed estimating the exponential distribution
parameter using three RSS methods. These methods are MTW RSS,
NRSS suggested by Bhoj (1997¢) and MRSS introduced by Bhoj (1999b).
He compared these estimators among themselves and with the estimator
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based on the ordered least squares. He found that the estimator based on
NRSS is the most efficient one.

9) Bhoj (1999a) considers the estimation of the scale parameter of the
Rayleigh distribution. He used the MTW RSS, NRSS suggested by Bhoj
(1997b) and other modification of RSS method to estimate the parameter
of interest. The newly suggested estimators were compared to the least
squares estimator based on order observations. And found to be more
efficient.

10) Chen (2000) generalized Stokes’s (1995) results for multi-parameter
families. He proved that the Fisher information matrix under RSS is equal
to the Fisher information matrix under SRS minus an additional positive
definite matrix. This showed that the maximum likelihood estimators
under RSS are always more efficient than their counterparts based on
SRS. He studied the effect of the errors .in sanking and considered
different models. Finally the effect of the undedying distribution is
considered.

Many aspects of RSS have been considered in the literature. Most of the work
has been devoted to estimation of the population,mean p, very little has been done
in the estimation of the population variance'6”. Stokes (1980) treated this problem
and suggested an estimator for’ o ‘which\ asymptotically unbiased and more
efficient than the usual SRS unbiased estimator for c°.

Yu, Lam, and Sinha (1999) addressed the issue of variance estimation using
RSS for the normal distribution. They suggested several unbiased estimators for o°
based on the balanced andiwunbalanced RSS data. They proposed several estimators
for o* based on single“eyele, and compared these estimators to Stokes’s (1980)
estimator. The new estimators truned out to be more efficient. In the case of more
than one cycle they combined information from different cycles in different ways
and proposed several unbiased estimators for o”. Finally they considered the
problem of unequal replications (unbalanced RSS) and came up with suitable
unbiased estimator for 6°.

3.2 Testing Hypotheses using RSS
We now consider the work that has been done in the area of hypothesis testing
using RSS.

1) In Abu-Dayyeh and Muttlak (1996) some hypothesis testing for the
exponential and uniform distributions are considered. For the exponential

distribution with pdf f5(x)=0" e*'®, they considered testing the
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hypothesis H,: 6=0, vs. H,:0>0,. They proposed a test based on
RSS and compared it with the uniformly most powerful test (UMPT) of
size o based on SRS. It truned out that their suggested test is more
powerful than the UMPT. Also, they derived the likelihood ratio test
(LRT) for the hypothesis H,: 0 =1 vs. H,:0#1based on RSS data and

found it to be more powerful than SRS test. For the uniform distribution
with the pdf f, (x)=0"", 0<x<0, they considered the following
hypothesis is H,: 0=0, vs. H,:0#0,.In comparison with the UMPT
based on SRS, they found their proposed test to be more powerful.

Muttlak and Abu-Dayyeh (1998) considered testing some hypotheses
about the population mean p and variance o” of the normal distribution.
For the population mean, they considered thé case of o” is known and
unknown, in testing the hypothesis H, :p = g, vs. H, :p # p,. They
proposed test statistics based on RSS for both cases. They showed their
proposed test statistics are more powerful than.the SRS UMPT. A similar
conclusion was reached when they compared their proposed test of the

hypothesis H,:c> =c2 vs. H,i1c" 3, with the SRS UMPT he test

o

based on RSS UMPT of thé same hypothesis.

Shen and Yuan (1996) proposed a test for the normal mean based on
modified partial ranked setisample when the variance is known. They
showed that this test has \more power as compared to the traditional
normal test. This test is similar to the test derived by Shen (1994). Both
tests are found to be more powerful than the usual normal test using SRS.

4. MODIFIED RANKED SET SAMPLING METHODS

Several modifications of the RSS method have been proposed. These

modifications were found to be necessary because RSS is often difficult to apply in
the field. It is also subject t errors in ranking, which reduce its efficiency. Thus the
proposed modifications are aimed at remedying these problems. And some times
only to increase the efficiency of the estimators of the parameters under
consideration.

1)

Muttlak (1996¢) suggested a modification for RSS called pair RSS, which
may be summarized as follows: In the case of even set size select k = n/2
sets of size n units and rank the units within each set with respect to a
variable of interest. From the first set select the smallest and the largest
for measurement. From the second set select the second smallest and the
second largest for measurement. Continue until the units with the k™
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smallest and (k+1)" largest from the k™ set are chosen for measurement.
For the case of odd set size select L = (n+1)/2 random sets of size » units.
From L-1 sets and repeat the above procedure. From one set select for
measurement the median of the set. He used the proposed pair RSS to
estimate the population mean, showed it to be unbiased, and has smaller
variance the usual SRS mean.

Samawi, Ahmed, and Abu-Dayyeh (1996) studied the properties of the
extreme ranked set sampling (ERSS) in estimating the population mean.
The ERSS procedure can be summarized as follows: Select n random sets
of size n units from the population and rank the units within each set with
respect to a variable of interest by visual inspection. If the set size n is
even, select from n/2 sets the smallest unit and from the other n/2 sets the
largest unit for actual measurement. If the set’size is odd, select from
(n-1)/2 sets the smallest unit, from the other{(n-1)/2, the largest unit, and
from one set the median of the sample for actual measurement. The cycle
may be repeated 7 times to get nr unitsi These nrsunits form the ERSS
data. Let X; () and X; ¢, be the smallest.and the largest of the i" set
respectively (i = 1, 2,..., n). If the cycle is repeated r times, the estimator
of the population mean using ERSS"is,defined in the case of an even set
size as

Xerssl ——Z(Z (1),"‘ Z Xt(n)/j

nrg=i\ i=1

where L = n/2. In the case of an odd set size, the estimator of the
population mean. is defined as

Kerssay= — Z [ZXza)/ + Z i(n)j +X((n+1)/2)/]

nroj=1 i=L+

where L= (n-1)/2 and X; (n+1)2) is the median of set i = (n+1)/2. They
showed that the ERSS estimators are more efficient than usual SRS mean
and unbiased if the underlying distribution is symmetric. Also, it is more
efficient than RSS estimator for some probability distribution functions, e.
g. uniform distribution.

Bhoj (1997b) proposed a modification to the MTW RSS called it new
ranked set sampling (NRSS). The method is simply select n sets of size
2m units where n=2m. The 2m units of each set are ranked among
themselves by visual inspection or any cost free method. Select from each
ordered set two units for actual measurement. The choice of the two units
from each set depended on the underlying distribution and the
parameter(s) to be estimated. He used this method estimate the location



42

4)

S)

6)

Recent Developments in Ranked Set Sampling

and scale parameters of the rectangular and logistic distributions. The new
method improved the efficiency of the estimators considered with respect
to the MTW RSS method.

Bhoj (1997¢c) proposed another modification to the MTW RSS, called
modified ranked set sampling (MRSS). In this sampling method we select
only two order statistics instead of n as we do in the MTW RSS. We
select n/2 jth order statistics and n/2 k™ order statistics. The choice of the
j™ and k™ order statistics depend on the underlying distribution and the
parameter(s) to be estimated. He used this method estimate the parameter
of the uniform and logistic distributions. Again using the MRSS method
improved the efficiency of the estimators considered in this study.

Muttlak (1997) suggested using the median ranked set sampling (MRSS)
to estimate the population mean. The MRSS iethod can be summarized
as follows: Select n random sets of size » ufiits from the population under
study and rank the units within each set with respéct to a variable of
interest. If the set size # is odd, from ¢ach samplesclect for measurement
the ((n + 1)/2)" smallest rank (the median of the'sample). If the set size is
even, select for measurement from.each of.the first n/2 sets, the (n/2) ™
smallest unit and from the second n/2 sets the ((n +2)/2) ™ smallest unit.
The cycle may be repeated’r times to get nr units. These nr units form the
MRSS data. If the set(size/is odd, let Xj+1y2) be the median of the
it sample (i =1, 2, <n) i.e. the ((n—i-l)/Z)th order statistic of the i™ set. If
the set size is even let X,z 'be the (n/2)th order statistic of the i set
(i=1,2, ..., L= n/2) and Xj(n+2)2) be the ((n+2)/2)" order statistic of the i"
set (i = L+1, L%2, ...5m)«The estimator of the population mean based on
MRSS isdefined inithe case of an odd set size by

j— ron

1
X 1= = 2 2 Xiey2)) >
nrojZiici

and in the case of an even set size, it is defined as

i=

— 1 r L n
X mrss2™ — Z[ Xy + 2 Xi((n+2)/2)jj
nr j=1\i=1 i=L+1

where L = n/2. He showed MRSS estimators are unbiased for the
population mean and more efficient than the RSS estimator is if the
underlying distribution is symmetric.

The MTW RSS is an equal allocation scheme in the sense that all of the »
order statistics are replicated equal number of times, namely, » number of
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times. But it is quite possible that the ith order statistic is replicated ri
number of times, i = 1, 2,..., n. Yu, Lam and Sinha (1997) considered
estimation of the population mean under the above sampling procedure.
They proposed an estimator for the population mean as:

n m;

. o . . 1
fpss =— 2 2 Xy, /1; with its variance var(flpes) =— G(Zm) ¥, .
n =1 j= n i

=

It is not difficult to see that var(figg) < var(X ) for the possible
location of ri.

Muttlak (1999a and 1999b) considered two phase sampling, in the first
phase, units are selected with probability proportional to their size. In the
second phase unites are selected using MRSS or ERSS to increase the
efficiency of the estimators relative to SRS.In both papers he considered
estimating the population mean and the population size using MRSS and
ERSS.

Al-Saleh and Al-kadiri (1999) investigated a double ranked set sampling
(DRSS) approach to RSS. This ‘appreach simply consists of applying the
RSS technique to the resulting RSSsamples. For example if the set size
n = 2, then to obtain a DRSS of size 2, 8 randomly selected elements are
divided into 4 sets of size 2 cach. ‘Applying the RSS procedure to this
gives obtain 2 RSSsofisize 2 each. Applying the procedure again to the
two sets gives ong set of size 2, which is called Double RSS sample. It
turns out that<all identities that are valid for RSS continue to be valid in
the case of DRSS. The efficiency of the method in estimating the
population meamsis higher than that of RSS. For example, for the uniform
distribution with n =3, the efficiency of DRSS is 3.03 while it is 2.0 for
RSS; for n = 4'it is 4.71 while it is 2.5 for RSS. The difficulty in ranking
in the second stage is also investigated. It was shown using the concept of
“Level of Distinguishability” that the ranking in the second stage is much
easier than in the second stage; thus no extra effort is needed. That makes
the method of practical use.

Al-Saleh and Al-Omari (1999) considered the multistage version of RSS
and introduced the concept of steady state RSS and steady state
efficiency, which is simply the limit of the efficiency as the number of
stages gets large. The usefulness of this concept in Monte Carlo
simulation was explored. The new technique was illustrated here by
considering the yield of olive trees. The data, which was collected by the
second Author, represents a useful application of RSS since ranking of the
variable of interest is much easier than the actual measurement of this
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variable. The chosen ranker judged visually, the smallest and the largest
olive yields of two contiguous randomly selected trees in a field of trees
in West Jordan. The process was repeated by the same ranker until he got
multi stage ranked set sample (MSRSS) with 3 stages (i.e. s = 3) of size
n = 2. The whole cycle was repeated » = 4 times, to give 4 MSRSS of size
2 each. The exact olive yield of each of the 64 trees used for the study was
then exactly quantified. Hence it was possible to obtain the accuracy of
the judgment ranking. This method turned out to be very useful in this
application.

Hossain and Muttlak (1999) proposed another modification for RSS
called paired ranked set sampling (PRSS). In the PRSS procedure, select
two sets each of size n units and rank the units within each set by visual
inspection. Select for actual measurements the kth smallest units from the
first set, where 1< k < n is pre-determined. From the second set select the
(n-k+1)th smallest unit for actual measurement. The cycle may be
repeated r times to obtain a sample of'size 2njunits. They used PRSS
procedure to come up with MVUE for'thespopulation mean and standard
deviation. They compared the PRSS estimators to the SRS and the usual
RSS estimators for population, mean and variance using various
distributions namely the rectangular, normal, logistic, double exponential
and exponential distributions.! They showed that the PRSS estimators are
more efficient than the SRS@stimators and most of the RSS estimators for
the distributions considered.

In the MTW RSS procedure we select # sets of size n units each, order the
units within eachyset'bysvisual inspection, and select the ith smallest unit
from the<ithuset for actual measurement. Li, Sinha and Perron (1999)
proposed to select » < n order statistics, independently from » sets with

distinct indices 'k, ..., k, denoted by k where  is a subset of (1, ..., n).
For example for a given r first select » indices (k;, ..., k,.) from (1, ..., n)
at random without replacement, and then select X(;; ) from random set of
size n (as if from the first set) and select X, ) form another random set
of size n (as if from the second set) and so on. Select X, ) from the rth

random set (as if from the rth set). They study the properties of the
estimators of pu and 62 based on the new random selection sample
(X(lkl), o X)) ). They study both the parametric and nonparametric

properties of the newly developed estimators for p and o2 for the normal,
exponential and logistic distributions.
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5. REGRESSION ESTIMATION USING
RAKED SET SAMPLING

RSS utilizes cost free auxiliary information to rank randomly selected units
with respect to a variable of interest before measuring a subset of these units.
These measured units are chosen, on the basis of the ranking information, this
makes the RSS estimator of the population mean more efficient than the SRS
estimator with the same sample size. Patil et al. (1993) were the first to compare
RSS estimator to the SRS regression estimator of the population mean and showed
that it is more efficient unless the correlation coefficient between the variable of

interest and the auxiliary variable is high i.e. |p|>0.85. They assumed that

variable of interest and the auxiliary variable jointly following the bivariate normal
distribution.

1) Muttlak (1995) presents a RSS method to simiple linear regression line. In
that method, a sample of n pairs of observations (¥, y)),(x2,¥22))s

(%> V() are obtained where the y;; 18 the i"gmallest value measured

of the dependent variable in_a potential sample size »n andx,the

corresponding observed values of the independent variable, i = 1, ..., n.
He proposed estimators ofsthe slopé and intercept. The estimation of the
parameters of the one-way design of experiment lay-out and multiple
regression models using RSS are considered by Muttlak (1996a, 1996b)
respectively. He showed thatsestimators of the parameters of interest
based on RSS are more efficient than their counterpart SRS estimators. He
used real data tojillustratethe computations.

2) Samawi and ‘Muttlak (1996) used the RSS to estimate the ratio of two
population means. They showed that using RSS would increase the
efficiency of the'ratio estimator of RSS data as compared to the SRS ratio
estimator.

3) Yuand Lam (1997) considered the case when the variable of interest Y is
difficult to rank and measure, but there is a concomitant variable X that
can be used to estimate the rank of Y. They proposed regression-type RSS
estimators of the mean of the population for variable Y when the
population mean of X is known and when it is unknown. Under the
assumption that Y and X are jointly following the bivariate normal
distribution, they showed that their estimators are more efficient than the

RSS and SRS estimators unless |p| <0.40. Finally they considered the
case when the normality assumption does not hold and pointed out that
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the results still hold if the shape of variable X only slightly departs from
symmetry.

4) Following the footsteps of Patil et al. (1993), Muttlak (1998) compared
the median RSS estimator to the SRS regression and RSS estimators of
the population mean. He showed that the median RSS estimator is more

efficient than SRS regression estimator is unless is |p| >0.90. Also, the

median RSS estimator dominates the RSS estimator under the assumption
that the main and auxiliary variables are jointly following the bivariate
normal distribution.

5) Barreto and Barnett (1999) considered a different approach from the one
considered by Muttlak (1995) to estimate the slope and the intercept of the
simple linear regression line. They considered<m; samples of size m; at

each value of the independent variable x; ,dfrom«which they choose and
measure the RSSy; 14y, Vi 22)> o Yigimm)» =l .., n. Clearly they

finish up with n RSS samples one atseach value of the independent
variable. The best linear unbiased estimators for the slope and intercept
are proposed based on the RSS 'data’and shown to be more efficient for
normal data than the usual simple linear regression estimators.

6. BAYESIAN STATISTICS WITH RANKED SET SAMPLING

Al-Saleh and Muttlak (1998) were the first to consider the Bayesian estimation
using RSS. In this study the Bayesian estimation based on RSS was
investigated for exponential and normal distribution. Given a RSS from the
exponential distribution and using the inverse gamma prior for the mean of the
distribution, the Bayes estimator was derived. The Bayes risk of this estimator
was compared to the Bayes risk of the corresponding estimator using SRS. It
turned out that the Bayes estimator with ranked set sampling is more efficient
than that with SRS. Depending on the parameters of the prior and the set size,
the efficiency can be as large as 6.8 for set size 5 and as low as 1.5 for set size
2. Similar results are obtained for the normal distribution. The Authors
realized the complication of the close form of the Bayes estimate. For
example, for the estimation of the exponential mean 6, when the prior is
inverse gamma with a =7, f =1, the closed form of the Bayes estimator for a

RSS sample of size 2 takes the form

1y +y, +D)77 — @2y +2y, +1)0D

0= .
P2y +y, #1772y 2y, + 1)
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3)

4)
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Kim and Arnold (1999) considered a generalized version of RSS, Bayesian
parameter estimation of some specified parameters under both balanced and
generalized RSS was accomplished using the Gibbs sampler. An algorithm
was provided. The Authors considered the case of the exponential mean with
gamma prior. Their numerical results show that the RSS is superior to the
SRS.

Kvam and Tiwari (1999) considered the Bayes estimation of the distribution
function from RSS data. They used the Singular ordered Dirichlet distribution
as a prior. They derived the Bayes estimator of the distribution function as
well as the generalized MLE, using the mean squared error loss function. No
close form was provided in either case. The Authors used the Gibbs sampling
technique to approximate the estimators. The methods were illustrated with
data from the Natural environmental Research eouncil of Great Britain,
representing water discharge of food on the Nidd Riverdn Yorkshire, England.

Lavine (1999) examined the RSS procedure from a Bayesian point of view. He
determined whether RSS provides advantages over simple random sampling,
and explored some optimality questions. The following is a summary of the
main results of the paper:

Let X be the data from an experiment with density / and let p(0)be the

prior density of @ then the quantity

fx19)
JS(x)

is used to measure the,expected utility of a sample. The author stated and
proved the following theorem:

E(I(X | p))=[[p(©)f (x| 0)log———

For any prior p and sample size n >0, there exists a collection of ranks
such that the expected information in a RSS Y..Y, ,---.Y, is

Nslyst st Rotno

n

greater than or equal to the expected information in a simple random sample of
size n. The author provided an example to show that it is not necessarily true
for arbitrarily selected ranks, that RSS sampling is more informative than SRS.

Al-Saleh, Al-Shrafat, and Muttlak (2000) considered the Bayesian estimation
based on RSS. They showed that the Bayes risk of the Bayes estimator based

on SRS is the average Bayes risk of all possible n” RSS plans plus a positive
quantity. So, it was concluded that there exists at least one RSS plan, for
which the Bayes estimator dominates the Bayes estimator based on SRS. i.e.,
the Bayes risk of the Bayes estimator with respect to RSS is smaller than the
Bayes risk of the Bayes estimator with respect to SRS for at least one RSS
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plan. If /' belongs to the exponential family then a dominant RSS plan is the
balanced one. Milk yields of 403 sheep was collected and used to evaluate
RSS and Bayesian RSS.

It was noted by Al-Saleh and AbuHawwas (2000) that the RSS Bayes
estimators have very complicated closed forms even for small sample sizes.
Their computations in the simple exponential case for sample sizes of 2 and 3
demonstrated this fact. This is due to the fact that the likelihood equation
becomes very complicated, thus making the posterior also complicated no
matter how simple the prior may be. These complications are due to the fact
that there is no minimal sufficient statistic of lower dimension than the
dimension of the data itself. This lower dimension minimal sufficient statistic
usually exists in the case of SRS. In this paper the Authors used the concept of
multiple imputation proposed by Rubin (1987), to obtain a formula that relates
the posterior of the parameter using RSS to that using the full data. This
formula facilitates the study of some of the theoretical properties of Bayes
estimators and also provides clues for approximating the complicated exact
forms.

7. OTHER WORKS BASED ON RANKED SET SAMPLING

Almost all the RSS works reviewed\so far assume that we are sampling from an

infinite population.

1)

Patil, Sinha and Taillie’ (1995) were first to consider RSS and sampling from a
. . . . 1 7
finite population. They showed that RSS sampling mean flpgg=—2" > Xiiny
nr = j=1 ’
from a finite population‘is an unbiased estimator for the population p. They
derived more than, one expression for the variance of [ip¢s. The final
expression is given by
. 1 | N=-1-nr , _
var =—q— o -V,
(Hgss) nr{ N1 Y}
nl(n—1)!
N(N-1)..(N-2n+1)
I'(x - w). The entries of the matrix 'y are functions of the population size N
and the size of the set n, but do not depend on the population values x. When
the population follows a linear or quadratic trend, they derived an explicit form
for var(figg) - Finally they noticed that the efficiency of the RSS depends on
the number cycles r unlike the infinite population case.

where, N is the population size, v = y,andy=(x - p)
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Let X, ..., X, and Yy, ..., Y, be a SRS without replacement from a finite
population. Takahasi and Futatsuya (1998) showed that the joint distribution
of X and X, is positively likelihood ratio dependent and Y ) is negatively

regression dependent on X ;), where X;), X, and Y, are the i"and j" order

statistics. They used these results to show that when sampling without
replacement from a finite population the efficiency of RSS estimator of the
population mean with respect to SRS estimator is bounded below by one.

Barnett (1999) investigated the use of RSS method in estimating parameters of
environmental variables. He considered various RSS estimators for the
population mean. These estimators are the sample mean of SRS ( X'), the

mean of MTW RSS (}RSS ), the estimator proposed.by Kaur et al. (1997) }r
and the estimator suggested by Barnett and Moere (1997) u} . He explored
the various properties of the above estimators usingthe logfiormal and extreme
value distributions. In all case he showed that p} achieved highest efficiency.

The amount of gain over X and X . depend on the underlying distribution.

Mode, Conquest and Marker (1999) investigated the conditions under which
the RSS method will be a cost-efficient sampling method for environmental
and ecological filed studies compare to SRS. They assumed that the ranking of
the units is not cost fiee, but itywill cost money. They present the ratios of
measuring to ranking (cost for¢the normal and exponential distributions with
and without errorstin ranking. They also presented the ratio of measuring to
ranking cost for real life problem.

Samawi (1999)1is the first to use RSS in the area of simulation. He showed
that the efficiency of Monte Carlo methods of integral estimation could be
substantially improved by using ranked simulated samples (RSIS) in place of
uniform simulated samples (USIS). The author considered the integral of the

1
form 0 = [k(u)du . Note that © is simply E(k(U), where U ~U(0, 1). Usual
0

Monte Carlo methods simulate n values u,u,,---,u, from U(0, 1) and
approximate 0 by the average of these values. In this paper instead, a RSS

sample u),u,), U, 1s simulated from the uniform distribution. This can be

n

done by taking U; from f;, where f; is the density of the ith order statistics

of a sample of size n from the uniform distribution. f; is actually the density
of a beta random variable with parameters i & n—i+1. It turns that the
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average of these RSS values is a more efficient estimator than the usual
estimator. Different Monte Carlo methods such as Crude, Antithetic, Control
Variate and Importance sampling methods are investigated and found to
benefit from this new sampling scheme.

6) Al-Saleh and Samawi (2000) used the idea of MSRSS and Steady state RSS
introduced by Al-Saleh and Al-Omari (1999) to approximate integrals via
Monte Carlo methods. This method provides substantial improvement over the
usual Monte Carlo methods. The suggested procedure for estimating

1
0 = [k(u)du consists of generating an independent sample, say
0

i—1 i
m o, —<x<—
Ur,uy,---U? from [ (x)= m m

0o , ow.

This sample is called a steady state simulated sample (SRSIS). The average of
this sample is used to estimate the above integralsinstead of a sample from the
standard uniform distribution (USIS). The generation of SRSIS costs no extra
computer time. It is shown that the estimator of .0 using SRSIS is unbiased with
variance strictly less than that using USIS; and hence is more efficient. The

1
efficiency for evaluating the quantity J'exp(uz)du ranges from 1348 for n=50 to
0
33719 for n=300. This actually shows how powerful and time saving this method is
in approximating complicated integrals. Different Monte Carlo methods such as
Crude, Antithetic, Control Variate, and Importance sampling methods were
investigated and found terbenefit from this new sampling scheme.
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CHAPTER FIVE

Random Ranked Set Samples

'I. Rahimov and H.A. Muttlak
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ABSTRACT

Ranked set sampling (RSS) as suggested by Mclntyre (1952) uses fixed set size
and number of cycles (or replications). In real life however, we may encounter
problems that requiring random set size or number of cycles or both. In dealing
with such problems we suggest several unbiased estimatofs of the population mean
using random ranked set sampling (RRSS) method. The efficiencies of the
estimators of the population mean under RRSS'and RSS are compared. The results
show, under certain conditions, the efficiency of|estimators is improved by using
RRSS. The asymptotic properties of the newly suggested estimators are also
considered.

KEY WORDS

Asymptotic properties; discrete uniform distribution; efficiency; random
number of replications; random set Size; ranked set sampling.

1. INTRODUCTION

The ranked set sampling (RSS) has attracted number of authors as an efficient
sampling method, particularly in the area of environmental and ecological
investigations. The RSS proposed by Mclntyre (1952) is a sampling method
proven to be more efficient when units are difficult and costly to measure, but are
easy and cheap to rank with respect to a variable of interest without actual
measurement. One can often tell which tree is the tallest without measuring all the
trees. The RSS method can be summarized as follows: From a population of
interest, k random sets each of size k are selected. The members of each random set
are ranked with respect to the variable of interest by a cost free method e.g. eye

'I. Rahimov is Professor of Probability and Statistics and H.A. Muttlak is Associate
Professor of Statistics, Department of Mathematical Sciences, King Fahd University of
Petroleum & Minerals, Dhahran 31261, Saudi Arabia. The authors are indebted to King
Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, for excellent research
facilities.
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inspection. From the first ordered set, the smallest unit is selected for
measurement. From the second ordered set, the second smallest unit is selected for
measurement. This continues until the largest element from the last ordered set is
measured. This process may be repeated r times (i.e. » cycles or replications) to
yield a sample of size rk.

The RSS is based on fixed set sizes and number of replications. But in some
applications we might be faced with problems where k, r, or both cannot be fixed.
The example considered by Muttlak and McDonald (1992) demonstrates the need
for at least r to be random. The line intercept (transect) is a widely used sampling
method in ecological and environmental studies. Units are plants, animal species
and etc. The RSS method will apply after the units are sampled using the line
transect in the first phase. We know that the number of units n; (say) that are
intercepted by the line can not be fixed. Muttlak and McDonald (1992) assumed

that n; > k*r . Obviously, this assumption will be violated ift most applications and

hence we cannot use RSS. As we can see, this situation ¢an beshandled easily using
the random ranked set sampling (RRSS) method by letting either r or k to be
random.

Takahasi and Wakimoto (1968) supplied, mathematical theory to support
Mclntyre’s (1952) suggestion. Stokes.and Sager (1988) developed the properties of
the empirical distribution function‘based on'RSS and compared these properties to
the usual empirical distribution function using simple random sample (SRS) data.
Bohn and Wolfe (1992, 1994) developed the Mann-Whitney-Wilcoxon statistic
using RSS for both perfect rankingfand ranking with errors. Kvam and Samaniego
(1993, 1994) developedythe estimation of the population distribution function and
population mean using unbalanced RSS data i.e. the size of the i set need not be
the same for all sets and“the various order statistics need not be represented an
equal number of time. Koti and Babu (1996) derived the exact null distribution of
the RSS sign test. Huang (1997) considers the asymptotic properties of the
nonparametric maximum likelihood estimator (NPMLE) of a distribution function
using RSS. Kim and Arnold (1999a, 1999b) considered estimating the distribution
function F and Bayesian parameter estimation for specified parameter under both
balanced and unbalanced RSS. Hartlaub and Wolfe (1999) generalized the one-
and two-sample location problems considered in the previous nonparametric work
in the area of RSS to m-sample location problem. Presnell and Bohn (1999)
developed the U-statistics using RSS data for one and two sample cases. Ozturk
(2000) investigated the effect of different RSS protocols on sign test statistic.

Several authors considered some modifications of the RSS method either to
improve the efficiency of the estimators or (and) to make the RSS method easier to
implement in the field. Samawi et al. (1996) studied the properties of the extreme
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ranked set sampling (ERSS) in estimating the population mean. Muttlak (1997)
suggested the use of median ranked ret sampling (MRSS) to estimate the
population mean.

Li et al. (1999) introduced the notion of random selection of m sets out of
k sets, m < k, where k is the set size in the usual RSS method. They studied the
properties of the estimators of the population mean and variance based on the new
randomly selected sample.

For classified and extensively reviewed work in the area of RSS from 1952 to
1994 see Patil et al. (1994) and Kaur et al. (1995). Finally for bibliography in the
area of RSS see Patil et al. (1999).

In this paper we provided a new direction of RSS via the notion of random
ranked set sampling (RRSS). In Section 2 the idea of RRSS is introduced in the
case of one replication i.e. single cycle. The cases of rreplications with random set
size and fixed set size with random number of replications are discussed in
Sections 3 and 4 respectively. The general case 0f RRSS with random set sizes and
replications is considered in Section 5. The asymptetic properties of the estimator
of the population mean suggested for the general case of RRSS is established in
Section 6. In Section 7 we calculate ‘the“efficiency of the newly suggested
estimators for specific probability distributions and compare these to the RSS.
Some concluding remarks are given in the last Section.

2. SINGLE CYCLE WITH RANDOM SET SIZE

We consider the following family of random variables
X115 X125 X103 Xoo X0, Xy ps5 Xy Xinooos X5 s X, X 4550 Xy Where

12

X,-j,i,j =1,2,..;0 e A=1{2,3,...} are independent and identically distributed

random variables with edf F(x), pdf f(x), mean p and variance . Let v be a

random variable taking values from A = {2,3,...} .Let X l.((‘i;, X l.((vz)), v X l.((‘;)) be the

order statistics of X;,X;5,....,X,,,i =1,2,...,¢. To simplify the notations for any

iv>
feA, we will use yl-([):Xi((g, i=1,2, .., ¢. It is easy to see that

yi(é),i =1,2,...,¢ are independent but not identically distributed random variables.
We propose
1

= _1$ w
y(v)——Zy,- (1)
V=]
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as an estimator of the population mean p. Assume from now on that the random

variable v and the family of random variables X ,5 ) are independent. We denote

also the cdf, pdf, mean and variance of y") by F,(x), f,(x), n,, and o7,
respectively. It follows from the definition of yi(é) forany /e A that

14
f(X)=ZZIf/,'(X). 2
The properties of the estimator y,, are:

(@) Y(v)is an unbiased estimator of population mean p with a variance
i

We can easily proof (i) by using the total probability formula and equation (2).
For any ¢ we have

E%% ggjmﬁwathuw ",
then
E(G) = EEL S 9P 25 5O1P(v = 1) = . 3)
Vol /=1 Zz -1

This shows that },,)is anwunbiased estimator of population mean p for any

random variable v."Now we consider the proof of (ii). Again by using the total
probability formula weican write

an%—ZEﬂ Zym —uPlv=£6Pv=10)

—ZE{ZUW EGyMPPv=1),
then V()= E[ ZG/,] If denote (5(/) = ZG/, , then we get

— 1
V(y(v)) = E|:; cF(zv)j| . (4)

Let us consider particular cases of the formula (4) for given distributions of v.
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Example 1: Assume that v has geometric distribution truncated at one with a
parameter p. In this case we obtain V'()(,,) in equation (4) as

— 1 4,
VG =r X—4' 70, (%)
=y
where q = 1-p.

Example 2: Let v have a binomial distribution truncated at zero and one with
parameters n and p i.e. P(v:k):P(Q:k|§>l), k=23,..,nwhere & is a
binomial random variable of the same parameters. In this case the variance of
V(¥ is

(
_ q"n! n 1 p
V(¥ = (6)
) 1_qn _npqn S0 (n=0)! ¢ [ \} O

Example 3: Let us assume that v has a uniform distribution on the set {2, 3,..., N}.
In this case the variance V(y(,,) is given'by

N1,
V(¥) = Ezf(e) ‘ (7)

. — . — 1 &
To compare the proposed estimator y(,,to the RSS estimator, y) = - Vi »
i=1
where ;) is the i order statistic from the i set of fixed size k, k =2, 3,..., N, it is

1 LS .
easy to see that V(yy) )= G(k), where c(k) Zcii . As shown by Takahasi
k iz

. 1 . .
and Wakimoto (1968), G(Zk) > G(Zk +1y and consequently ;G(zk) is also decreasing on
k. Using these results and equation (7) we may state the following proposition.
Proposition 1: There exist 2<t<N such that V(y))> V(),)) for k<t and

V(¥ < V() for t <k<N.

It is clear that the number t depends on the form of the initial density function
f(x). In Section 7 we will consider different concrete distributions to obtain the
value .
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3. FIXED NUMBER OF CYCLES WITH RANDOM SET SIZE

Let v, v,, .., v,are independent and identically distributed random

variables taking values from A . If the process of Section 2 is repeated m times, i.e.
we replicate the cycle m times with set sizes v,, where i = 1, 2,..., m, we will

obtain a sequence of estimators y, i,y 5., » - It is clear that y,;,i>1 are

independent and identically distributed with the following mean and variance
respectively

Vi

_ — 1 .
E(,)=u, V(yvﬂ-):E{ cfvv)} i=1,2,...m (8)
Also, they have the common characteristic function

o(t) = E[e’% } = Eh <pF,Vf’<z)} , ©)
-

for i >1, where go(jv")(t) is the characteristic function of y;Vf) , the j™ order statistic

with set size V,. We proposed as an estimatorfor the population mean p as

;(m) :;Z‘iy\/ii : (10)

It is not difficult to.show that i(m) is an unbiased estimator for the population
mean p with a variance
= 1 1
V()’(m)):_E{_G(V,)] (11)
m |V,
To compare the proposed estimator )__/(m) with a similar estimator in the usual
RSS case where v, =v,=..=v, =k, we have again to make comparison

1 . . .
between E {— G(Zv‘):| and G(zk) . For example, this comparison may use Proposition
V; !

1 in the case when the random variables v,,i>1 have common discrete uniform
distribution.
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4. RANDOM NUMBER OF CYCLES WITH FIXED SET SIZE

Assume now that the set size is fixed and equal to k. From the usual (fixed set
size) RSS, we have that y, is an unbiased estimator of the population mean p.

Let the number of replications 6 be a random variable taking values from A and
independent of ;. We consider

(12)

<l
=

|
jIN \g|
=
=

as an estimator for p. Since 6 and Yy are independent it is easy to show that
):/( &) 18 an unbiased estimator for p with variance

2
= 1
wnm=%§Eh}. (13)

Example 4: Let us assume that 6 has a“wmiform_distribution on the set
{2, 3,..., m}. Then the variance of V(ik)) is given by,
m o]

2
= G(k)
L = —.
0w = =1 &7

(14)

Let ):/(,) denote the estimator of the RSS method with r replications. Then the

2

— — (e} —
variance of ., is giveny/ (Ygy) :li_];)' We can compare the variance of y,

which is given in equation (14) with the variance of i,). We can see that the

sl b

m-=1;2j r

proposed estimator has smaller variance if

5. RANDOM NUMBER OF CYCLES WITH RANDOM SET SIZE

Let © be a random variable independent of y,,;,i >1 and taking values from A .

Then we propose

= 18 _
Vo) :aiglyv,i’ (15)

as an estimator for p. Since 0 and Yy, ; are independent we can show that
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#Din]-r e[ b)) - ) -

ie. 5(9) is an unbiased estimator for p. To find the variance of 5(9) we again use

the total probability formula and obtain

_ 1.6 2
V(¥e)=ELE {ag(fw —H)}

6 E _1 % E [(V W _H)J
62 L vl v;J .
Since E[y,;]= E[yv/_j] =u, we have

= 1 1
V(¥e)) =E[6}E{V—[G(2vi)} (16)

Example 5: Let 6 be a random variable having a Poisson distribution with
parameter A>0 truncated at zero and one, i.e. P(O=m)=P(§= m|<§J >1), m>2,

where § is a Poisson random variable of the parameter A. In this case we obtain that

E{lJ: : T(A)T(X)_Z—
0] & -1- j=2d'J

Using the fact that T'(X)= l(e}‘ —1-21), we obtain the variance as

)\. lt_ _
J.e 1 udu.
0 u

V(y )=E O,
© [Vi m} 17

Example 6: Let 0 have a uniform distribution on the set {2, 3,..., m}. In this case
we have

V(?(e)) ——_1 Z —E[ G(v )}
Jj=2 1

If in addition, the random variables v,,i>1also have a common uniform
distribution on the set {2, 3, ..., N} as in example 3, we obtain

V(30)) = A, By » (17)
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where 4 =—— > — and B =—
m IJZZJ NN sz (/)

For comparison we consider the RSS unbiased estimator J:’(r) with fixed set size

k, 2 <k <N and number of replication r, 2 < r < m. The variance of ):/(,) is given by
2 o2

Sk
V(y (,)) = k . Thus we have to compare A, with 1/r and By with Sty . In the
-

latter case the comparison is based on Proposition 1. The following proposition is
helpful in comparing the RRSS with the usual RSS method

Proposition 2: Let ¢, = 4, —r’l,r =2,3,...,m, then

2+m.

(a) &.>0 for r > 2 ;
2m+1

2m +2m? +1-2m—1
m-—2 ’

(b) €, <0 for r<

To prove the proposition we consider the sum

(m-De, =Y Ly Loy v,
j=2 Jr j=r+l JU
It is not difficult to see that
r—m-—1
I, > — r—j)==,and [ e
172 ,Zl( N= 27 2+

If we use the oppositeinequalities, then we obtain

r—-m-1

I <£,and I < (m—r).
Using the bound for I; and I, in the previous equality we can obtain bounds
forr.

The efficiency of the random ranked set sampling (RRSS) with random set size
and number of replications with respect to RSS with set size k and r replications
may be defined as

kr) G(Zk) /vk—A, By G(zk) —rkA,, By
t(k,r) = = .
’ 2 2

Sk Tk Sk



66 Random Ranked Set Samples

Evaluation of function t(k, r) for different probability distributions will be
considered in Section 7.

6. ASYMPTOTIC PROPERTIES

In this section we will prove that under the very natural assumptions the

. = . . = 15 _
estimator  yo) is asymptotically normal. Recall that yg = y > Vy.i and
i=1

— 1 3 o, . - . L
Vyi =" ;V’) . As mentioned before y,;, i=>1 are independent and identically

Vi j=1

o . — _ 1
distributed random variables such that EJ[ yvii] =u, B = V( yvi,-) = E[V— 0(2\,[)] and

1

have characteristic function given in equation (9). Since 0(2”) > G(Zn +y»>n21and v,
are random variables taking values from A , wé find that B*<E |:G(2Vv):|<6(21) =c’.

Thus, if the initial distribution of X 5’0 hagwa finite variance, then B> <.

Theorem: If 6% <o and 6 — o ift probability then

P(Bilx/é():/(e) - u) < x) N \/;_ ]E e 2y

T

Proof. Let W, = B"lx/é (§(9) =), then by total probability formula we have

E [eifw() } =
/

M8

0
s —ellgl
: IE{exp{B—\/zil(yv,i—u)}}P(O—é)—E {@[B\/@H ;

where () = E{exp[it()_zvii —u)]} . Since B?<w, we can write following

representation for ¢(¢) :
2p2
_ _ B
00 = 1+iE (3~ ) ==+ 5(0), (18)

where &(f) >0as ¢—>0. Then if 6—>ooin probability, then &©07"?)—>0in
probability. In fact for any & >0 there is a t,> 0 such that |8(l‘)| <& when |t| <t,.
Thus
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P{‘a(l/\/é)’%i}=P{’s(1/\/§)’>6,1/\/§£t0}+P“a(1/\/§)’>8,1/\/§>tu}. (19)

It is easy to see that the first probability on the right side of equation (19) is
equal to zero and the second is less than p(x/@ <1/ to)which tends to zero when

0—L > . Using equation (18) and the simple formula In(a) =o—1+o(a—1),

o — 1, we obtain that
2

_ t t
01 =4
n(P( ,—ej > +7(8)

where 7(0)—2—>0as 6—~Z >0 . Consequently
) 0
ol —— || —Zoe?, (20)
HBJé H
6 t
B\o

Shiryaev, (1996), Theorem 3, p 187 and remark on p 258). We conclude from (20)

that
; 0
Elo| —— ——>e"2/2
HB@ H

ie. B\ (;e —u)is asymptotically normal as 6 —2—o0 .

as 60— > . Since <1, by the dominated convergence theorem (see

7. EXAMPLES

In this section we will consider comparing the RRSS with the RSS for
estimating the population mean p if the parent distribution is known to be normal,
exponential, double exponential or logistic. Also, we are assuming that the set size
v is a uniform random variable defined on the set [2, 3, ..., N] and the number of
replications 0 is following a uniform distribution on the set [2, 3, ..., m].

We calculate the value of 1, 2<1t< N as suggested by Proposition 1, which
will give V(yyy)> V(¥ for different parent distributions. Table 1 shows the

values of twith the corresponding V() as if 1= N with the values of
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V(¥)) for set size k = 2, 3, 4, 5 for the above probability distributions. It is clear

that the RRSS will do better than the RSS with set size k=3, for example if t=5
for most of the distributions considered in this study.

Table 1
The value of the random set size T along the corresponding variance
V(¥)) of RRSS as if N =1 and the RSS variance V(y,)

for different set size k and different probability distributions

Distribution 3 3 k 2 5
V(34) | 03408 | 0.1742 | 0.1065 | 0.0722
Normal T 3 5 9 14
V(¥) | 02575 | 0.1734 | 01053 | 0.0708
V(34) | 03750 [70:203% | 0.1303 | 0.0913
Exponential T 3 S 9 13
V() [10.2894 | 0.2001 | 0.1248 | 0.0911
V(3 )0| 08480 | 0.1814 | 0.1128 | 0.0776
Logistic T 3 4 9 14
V(35) | 02647 | 02141 | 0.1104 | 0.0748
V(3) | 07368 | 0.3854 | 0.2453 | 0.1719
Double Exponential T 3 5 9 14
V(3w) | 0.5611 | 0.3848 | 0.2385 | 0.1630

The value of the efficiency t(k, ) of RRSS with respect to RSS is evaluated
fork=3,5 r=3,5 N =10, 15 and m = 10, 20. Table 2 shows different values
t(k, r) for the normal, exponential, double exponential and logistic distributions.

We observe that the RRSS improves the efficiency of estimating the population
mean if the values of N and m are moderately large. For example, if N = m =10
and r = k = 3, the RRSS is about 66% more efficient than the RSS.
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Table 2

The efficiency of the RRSS t(k, r) with respect to

RSS for different probability distributions

N m 3
3 | 5 3 5
Normal
10 10 0.655 0.410 0.146 -0.423
20 0.774 0.624 0.455 0.092
10 0.755 0.591 0.408 0.014
15 20 0.844 0.739 0.623 0.371
Exponential
10 10 0.640 0.399 0:196 -0.340
20 0.770 0.618 0.487 0.145
5 10 0.746 0.577 0.435 0.058
20 0.838 0.730 0.639 0.399
Logistic
10 10 0.643 0.404 0.165 -0.392
20 07772 0.620 0.467 0.112
5 10 0.751 0.585 0.418 0.029
20 0.841 0.735 0.628 0.381
Double Exponential
10 10 0.636 0.394 0.184 - 0.361
20 0.768 0.613 0.479 0.132
5 10 0.744 0.574 0.426 0.044
20 0.837 0.728 0.634 0.390

8. CONCLUDING COMMENTS

In this paper we have considered the case of random set size and/or random
number of replications. The reason for considering such a method is to resolve the
problem of unfixed number of units that we might come cross in real life problems
like the line intercept (transect) example given in Section 1. It has been shown that
under certain conditions the efficiency of the estimator of the population mean may
be improved by using RRSS instead of RSS. The following conclusions are drawn:

69
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1. In the case of single cycle with random set size we might be able to
improve the efficiency of the estimator of the population mean by using
RRSS instead of RSS by choosing the suitable distribution for the set size.
The result of Table 1 confirms this fact in the case of choosing the discrete
uniform distribution.

2. If the set size is fixed and the number of replications is random we can

easily show that the RRSS is more efficient than RSS, if the number of
replications are following the discrete uniform distribution.

3. The results of Table 2 show that in the case of random set size v and

number of cycles 0, the efficiency is substantially increased if the
underlying for both v and 6 is discrete uniform.

The final recommendation is to use RRSS to handle some practical problems

and/or to increase the efficiency of the estimator of the population mean.

10.
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CHAPTER SIX

Extreme ranked set sampling: A comparison with
regression and ranked set sampling estimators

Hassen A. Muttlak
Department of Mathematical Sciences,
King Fahd University of Petroleum & Minerals,
Dhahran 31261, Saudi Arabia

ABSTRACT

Ranked set sampling (RSS), as suggested by Mclntyre (1952), assumed perfect
ranking i.e. there will be no errors in ranking the units with'respect to the variable
of interest. In fact, for most practical applications, it i§dot easy to rank the units
without errors in ranking. As pointed out by Dell and Clutter'(1972) there will be a
loss in efficiency, i.e. RSS will give a larger variance due to the errors in ranking
the units. To reduce the errors in ranking,in estimating the population mean, the
extreme ranked set sampling (ERSS) procedure is used and compared to its
counterpart RSS and regression estimators. The regression estimator uses an
auxiliary variable to estimate the population mean. Turns out that the ERSS
estimator is more efficient than theirégression estimator for most cases considered
in this study unless the correlation)between the variable of interest and the
auxiliary is more than 0.80. In addition, the ERSS and RSS estimators are
comparable if the ranking of the variable of interest is done using a concomitant
variable. ERSS isused to estimate the population mean of a variable of interest
when the ranking of this variable is acquired through a concomitant variable.
Finally, ERSS is used to,estimate the population mean of the variable of interest in
the presence of errors in ranking and compared with RSS and simple random
sampling (SRS) estimators.

KEYWORDS
Auxiliary variable; concomitant variable; efficiency; errors in ranking; simple
random sampling.

1. INTRODUCTION

Ranked set sampling (RSS) was suggested by Mclntyre (1952) without the
mathematical theory to support his suggestion. Takahasi and Wakimoto (1968)
supplied the mathematical theory. They proved that the sample mean of the ranked
set sample (RSS) is an unbiased estimator of the population mean. In addition, it is
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more efficient than the sample mean of a simple random sample (SRS) with the
same sample size.

Dell and Clutter (1972) studied the case in which the ranking may not be
perfect i.e. there are errors in ranking the units with respect to the variable of
interest. They showed that the mean of the RSS is an unbiased estimator of the
population mean, whether or not there are errors in ranking, but there will be a loss
in efficiency due to these errors.

Stokes (1977) considered the case when the variable of interest X is difficult to
measure and order, but there is a concomitant variable Y which is correlated with
X that can be used to judge the order of the variable Y.

Patil, Sinha, and Taillie (1993) showed the estimator of the population mean
using RSS is considerably more efficient than the SRS régression estimator unless
the correlation between the variable of interest and<the concomitant variable is
more than 0.85.

Samawi, Abu-Dayyeh and Ahmed (1996) suggested using extreme ranked set
sampling (ERSS) to estimate the population mean of the*variable of interest. They
showed that the ERSS estimator is an unbiased estimator of the population mean if
the underlying distribution is symmetric and thatuit is more efficient than the SRS
estimator.

In this paper, the performancesof the ERSS procedure for estimating the
population mean is compared to the regression and the RSS estimators. If the
variable of interest and the auxiliary variable follow a bivariate normal distribution,
it has been found that“the 'ERSS estimator is more efficient than the regression
estimator unless the correlation between the two variables | p |>0.8.In addition, if
the units are ranked using a’concomitant variable and the cycle is repeated once the
RSS and the ERSS estimators are more efficient than the regression estimator
provided that | p | < 0.80. Nevertheless, if the cycle is repeated more than once and
|p| < 0.80, the three methods are comparable. ERSS is used to estimate the
population mean of a variable of interest when it is difficult to measure or rank, but
there is a concomitant variable available which can be used to rank the variable of
interest. We assumed that the variable of interest and the auxiliary follow a
bivariate normal distribution since the regression and ERSS estimators are
unbiased under bivariate normality and to simplify the calculations. Computer
simulation results are given to compare the efficiency of ERSS estimator of the
population mean with its counterparts SRS and RSS in the presence of errors in
raking the variable of interest for some probability distributions.
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2. SAMPLING METHODS

2.1 Ranked set sampling

The ranked set sampling (RSS) method can be summarized as follows: Select n
random samples of size n units and rank the units within each sample with respect
to a variable of interest by a visual inspection. Then select for actual measurement
the smallest unit from the first sample. From the second sample, select for actual
measurement the second smallest unit. The procedure is continued until the largest
from the n™ sample is selected for measurement. In this way, we obtain a total of n
measured units, one from each sample. The cycle may be repeated r times until nr
units have been measured. These nr units form the RSS data.

Let X, X,, ..., X, be a random sample with probability density function f (x)
with a finite mean p and variance o’ Let Xi1, Xi2, ooy Xins Xo1s X022, ooy Xong o Xals
X, ...y Xy be independent random variables all awvith the same cumulative
distribution function F(x). Let X (;.,) denote the i"™ order stafistic from the i™ sample
of size n (i =1, 2..., n) and let X.,) j denote the i™ order Statisti€ from the i® sample
of size n in the j1h cycle (j =1, 2, ..., r). The unbiased estimator of the population
mean is defined as

— 1 n r
Xpss =—2 2 X(i:n)j :
nri=1 j=1

The variance of X7ss is given.by
— 1 n )
Var(ers) = T z G(i:n) 5
nori=
where 6, = E [ Xy~ BCX ()T

2.2 Ranked set sampling with concomitant variable

Suppose that the variable of interest X is difficult to measure and to order, but
there is available a concomitant variable Y, which is correlated with X. We may
use the variable Y to estimate the rank of X variable as follows: Select n samples
of size n bivariate units from the population and rank each sample with respect to
the variable Y by visual inspection. Select for actual measurement, from the first
sample of size n the X associated with the smallest Y. From the second sample of
size n, select for actual measurement the X associated with the second smallest Y.
We continue this way until the X associated with the largest Y from the n™ sample
is selected for actual measurement. The cycle may be repeated r times until nr X’s
are selected for actual measurement. Note that ranking of the variable X will be
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with errors in ranking i.e. X [iy is the i judgment order statistic from the i
sample of size n in the j1h cycle.

Assume that (X, Y) has a bivariate normal and the regression of X on Y is
linear. Following Stokes (1977), we can write

PO
K :“x+G_(Y<i:n>j_“y)+8v’ M
y

where Y ;. ) j is the i™ order statistic of the i™ sample of size n units assuming the
ranking of the units with respect to the variable Y is perfect in the j t cycle and €

is the error term with mean equal to zero. The mean of the variable of interest X
with ranking based on the concomitant variable Y can be written as

n

J— l r
Xrsse =—2 2 X[i:n]j : (2)

nr = j=1

The variance of Xrssc s given by

Var()?,m ) = % n csfC (1 —p? ) + pzf’z‘ ici(m) . 3)

nr Gy i=1

2.3 Extreme ranked set sampling

RSS as suggested by MeIntyre (1952) and Takahasi and Wakimoto (1968) can
be modified to introduce! a new sampling method called extreme ranked set
sampling (ERSS). In the:ERSS procedure, select n random samples of size n units
from the population,and tank the units within each sample with respect to a
variable of interest by visual inspection. If the sample size n is even, select from
n/2 samples the smallest unit and from the other n/2 samples the largest unit for
actual measurement. If the sample size is odd, select from (n-1)/2 samples the
smallest unit, from the other (n-1)/2 the largest unit and from one sample the
median of the sample for actual measurement. The cycle may be repeated r times
to get nr units. These nr units form the ERSS data.

We can note that the ERSS can be performed in practical applications with less
errors in ranking the units since all we have to do is to find the largest or the
smallest of the sample and measure it, comparing to its counterpart RSS. The
ERSS method is very easy to apply in the field and will save time in performing
the ranking of the units with respect to the variable of interest. In addition, this
method will reduce the errors in ranking and hence increase the efficiency of the
ERSS method.
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Let Xi (1), Xi 2), ---» Xi ) be the order statistics of X;;, Xip,..., Xjn (1 = ., ).
If the cycle is repeated once, let X ;) and X; ) be the smallest and the largest of the
i" sample respectively (i=1, 2, ..., n). The estimator of the population mean using
ERSS with r cycles can be deﬁned in the case of an even sample size as

Xersst = nr [Z z i(1)j + Z z l(”)jj

i=1 j=1 i=L;+1 j=1

where L = n/2. In the case of an odd sample size, the estimator of the population
mean can be defined as

Xerssa = nr [Z z i(1)j + z z Xl(l’l)j + Z Xt((n+l)/2)/J

i=1 j=1 i=L,+2 j=1

where L= (n-1)/2 and X (n+1y) is the median of samiple i.= (n+1)/2 if the sample
size is odd. To simplify the notation, let X (o). j denote the smallést of the i' sample
i=1,2, 1) and the largest of the i sample (i = L,*14L,+2, ..., n) in the j' ]
cycle (j = ., 1) if the sample size n is even."Also denote the smallest of the i™
sample (i = 1, 2, ..., L), the median of the.i™ sample /(1 = (n+1)/2) and the largest
of the i" sample (i = L,+2, L,+3, ..., n) inthej"cycle if the sample size n is odd.
The estimator of the population meansthen can be written as

Xe"“ :_ZZX(IE)] :
nr =1 j=1

The variance of X ¢r55 Can be written as

Var()?erw) ! 20(18) >

where o, = E [X(l-:e)— E(X(,-;e) )}2

It can be shown that X e is an unbiased estimator of the population mean if
the underline distribution is symmetric. In addition, it is more efficient than the

sample mean ()? m) of simple random sample (SRS) with the same sample size.

The analogues of equation (1), (2) and (3) are

po
X[i:e]j =H,t > . (Y(z‘:e)j _“y)+8ij’
y
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and
- 1 2 2\, por
Var(Xerssc):T no, (l_p )+ 2x ch(i:e) .
nr Gy i=1

Finally, the ERSS estimator for the population mean will not necessarily be
unbiased if the judgment ranking is not perfect.

3. COMPARISON OF THE ERSS ESTIMATOR WITH THE
REGRESSION AND RSS ESTIMATORS

Suppose that (X, Y) follow a bivariate normal distribution and if the mean of an
auxiliary variable Y is known. The linear regression ofsthe variable X on the
variable Y is defined

X, =By +B Y, +g;, i=1, 2, ..., nr,

where By and B, are the intercept and thée slepe of the regression line respectively
and g; is the random error component withsexpected value of zero. The linear
regression estimator of the population mean (L) of the variable of interest X is

Xir=X +B;(n, =Y),

where X and Y are the sample means of the variable of interest X and the
auxiliary variable Y respectivelys'based on sample size nr. In addition, p, is the

population mean of the'auxaliary Y and [3 | is the least square estimator of f3;.

In most applications,ithe population mean of the auxiliary variable is unknown
and we usually estimate it using the method of double sampling. To estimate the
population mean p, of the auxiliary variable Y, we need to select a large random
sample of size n’r (say). In addition, we need a random sample of size nr units to
study the variable of interest X. The regression estimator of the population mean
(px) of the variable of interest X can be defined using the double sampling method
to estimate the mean () of the auxiliary Y as

Xipa=X + Bl (?d - Y),

where Y4 is an unbiased estimator of the population mean of the auxiliary variable
Y (uy). Sukhatme and Sukhatme (1970, p. 221) showed that X4 is an unbiased
estimator of the population mean () of the variable of interest X with variance
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2
var()_(,,,d)= 0)2‘ (l—pz)(i—%](hr nr1—3]+ 02" ,

nr

if (X, Y) follows a bivariate normal distribution.

Let us assume that the ranking on the variable of interest is perfect. The relative
efficiency for X, with respect to X« can be found as

o (n (L),
:var(}mg): (1 P )( n j(1+nr—3j+n

var(X ) ] Zn: 2 im)
ni=

effy =eff (}lrd,}rss)

The relative efficiency for X orrs with respect to X jafcan easily be shown to be

2\pr<l 1 1
it 22 s )

n
var(X erss ) g o2
"

eff =eff (}lrd,}erss):

z(ie)
=1
The values of eff, and eff, are,summarized in Table 1 for both RSS and

ERSS. Calculations were done using sample sizes of n=4, 5, 6 and 7, cyclesr =1,
2,4, 5, o and with values of p=+025, £0.5, +0.75, £0.90.

Table 1
Summary of the relative efficiency values, for estimating the population mean
using RSS and ERSS'methods with respect to the regression estimator
if the population mean of the auxiliary is unknown

RSS ERSS
1 2 3 5 e 1 2 3 5 s
effl eff2
p=+025
4 389 257 242 234 223|337 222 209 202 19
5 337 293 280 272 263|319 255 244 237 229
6 3.68 330 3.19 311 3.02] 291 249 240 233 228
7 412 3.65 356 349 340 3.13 279 271 265 2.59
p=1+0.50
4 323 217 205 198 191|279 188 178 1.72 1.65
5 305 245 235 229 222|265 213 205 199 1.93
6 3.19 274 265 260 2521240 2.07 200 195 190
7 340 3.03 295 289 282|259 231 224 220 2.15
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Table 1 (continued)

RSS ERSS
1 2 3 5 o0 1 2 3 5 o0
effl eff2
p=+075
4 213 151 144 140 136 1.84 131 125 1.21 1.18
5 201 166 160 157 152 175 144 139 136 132
6 208 182 177 1.74 1.69| 157 138 134 131 1.28
7 220 198 194 190 186 1.67 1.51 147 145 141
p=+090
4 126 099 096 094 093 1.09 086 083 0.81 0.80
5 1.19 1.04 101 099 098 1.03 090 0.88 0.86 0.85
6 120 1.09 107 1.05 1.04( 091 082 081 079 0.78

7 124 115 1.13 1.12 1.10 ] 095 088 «0.86 0.85 0.84

Considering Table 1 we can see that a gain.in efficiency«is obtained by using

ERSS instead of the regression estimator for different values of n and r. For
example, forn =6, r =1 and p = + 0.25, the relative efficiency is 2.91.

Finally, if the ranking of the variable - of,interest X is done using the

concomitant variable Y, the relative efficiency of X yssc with respect to Xipa can

be found as

o, 1),
_ Var(}w) :(1 P )( n j[l+nr—3j+n

Sl T
var(X yssc) (1 o’ )+ P 3 02(., :
n 1:1 z(n

The relative efficiency of Xerrse with respect to Xira can be found as

I e A
_ var(Xuna) n nr-3) n
= — - 2 n .
var(X erssc ) (1 - p2 )+ P > c53([&))
n =1

Results of eff; and eff; are summarised in Table 2 for both ERSS and RSS.

Again, calculations were done using sample sizes of n=4, 5, 6 and 7, cyclesr =1,
2, 3,4, 5, o and with values of p=+0.25, +£0.5, +£0.75, £0.80. A gain in
efficiency is obtained by using ERSS with ranking done using a concomitant

variable for different values of n, r = 1, and for | p | < 0.80. For example, if n = 6,

r=1and p = £ 0.25, the relative efficiency is 1.25.
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Table 2
Summary of the relative efficiency values, for estimating the population mean
using RSS and ERSS methods with respect to the regression estimator
if the population mean of the auxiliary is unknown.

RSS ERSS
1 2 3 5 © 1 2 3 5 ©
eff1 effz
p=10.25
4 172 113 1.07 1.03 099 | 1.71 1.13 1.06 1.03 0.98
5 138 1.10 1.05 1.03 099 (| 1.37 1.10 1.05 1.03 0098
6 126 1.08 1.04 1.02 099 | 1.25 1.07 1.04 1.01 0098
7 120 1.07 1.04 1.02 099 || 1.19 1.06 1.03 1.02 0098
p=10.50
4 161 108 1.02 099 095 1| 158 106 «1.01 097 0.93
5 131 105 1.01 098 095 129 1.04 1.02 098 0.94
6 121 1.05 1.01 098 096 || 1.17  1.02°5099 0.95 0.93
7 1.15 1.03 1.00 098 0.96 || 1.127 =1:00= 098 0.96 0.93
p=+,0.75
4 134 095 091 0.88 0.85 1:27% 090 0.86 0.84 0.81
5 1.13 094 090 0.88+ 0:86 || 1.08 0.89 0.86 0.84 0.82
6 106 093 091 0.89. 087097 085 0.83 0.81 0.79
7 103 093 091,089 0871095 08 0.84 0.82 0.80
p=1+0.80
4 125 091 0:87,0.85 0.83 | 1.17 0.85 082 0.79 0.77
5 107 090 _ 087, 085 083 1.01 084 0.82 0.80 0.78
6 101 089, 0872085 0.83( 091 080 0.78 0.76 0.75
7 098 089 0.87 0.85 08308 081 0.79 0.78 0.76

4. ERSS ESTIMATOR WITH CONCOMITANT VARIABLES

To compare the two estimators X rscand Xersse With respect to Xy, it is
assumed that the two variables X and Y follow the bivariate normal distribution.
The benefit of using the concomitant variables will depend upon the correlation
between the variable of interest X and the concomitant variable Y. If X and Y are

independent the estimators Xsse and X ersse will have the same variance as X s .

The relative efficiency of X ysse with respect to X o5 can be defined as
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Var(}m) B ci / nr

eff;"s.?c = ~,
Var(ersc ) 1 p2 6)26

This can be simplified to
1

2 .
2y, P ¢ 2
(l_p )+7[§Gz(i:n)

effl‘ ssC =

The relative efficiency of X ersse with respect to X o5 can be found as

eff _ Var(}srs ) _ l
S erssc — 3% B t e .
var(X erssc ) (1 _ p2 ) +P > 03(;:e>
n =

Results of eff,,. and eff,,, are summarized in Table 3 for both RSS and

ERSS. Calculations were done with sample sizes n = 3, 4, 5, 6 and 7 and with
values of p=+0.25,+0.5,£0.75,+0.90 .

Table 3
Summary of the relative efficiency values, for estimating the population mean
using RSS and ERSS methods with concomitant variables.

p=2%0.25 p=20.50 p=2x0.75 p=10.90

n

eff;’ssc e]j(;’VSSL’ eff;SSC ef]‘erssc eff;"SSC ef]‘erssc eﬁ(;’ssc eﬁ(;:rssc
3 1.025 1.025 1.109 1.109 1.287 1.287 1.631 1.631
4 1.037 1.033 1.168 1.146 1.477 1.400 1.873 1.699
5 1.042 1.038 1.190 1.171 1.561 1.489 | 2.073 1.899
6 1.045 1.038 1.207 1.171 1.628 1.489 | 2.251 1.897
7 1.047 1.041 1.220 1.188 1.684 1.554 | 2410 2.056

A gain in efficiency is obtained by using ERSS with a concomitant variable to
estimate the population mean for different values of n. For example, if n = 6 and
p =1 0.90, the relative efficiency of the ERSS estimator is 1.897.

5. ERSS WITH ERRORS IN RANKING

Ranked set sampling with errors in ranking (RSSE) is considered by Dell and
Clutter (1972); that is the quantified observation from the i" sample in the jth cycle
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may not be the i order statistic but rather the i™ “judgment order statistic”. Let X i

a1 be the i judgment order statistic from the i" sample of size n in the j" cycle (to
distinguish it from the actual order statistic X .,))). Assuming the cycle is repeated
once, the unbiased estimator of the population mean using RSSE is defined as
follows

1
erse :;ZIX[i:n] >
i=

Dell and Clutter (1972) showed that X, , is an unbiased estimator of the

population mean with smaller variance than X, the sample mean of SRS with the

e

same size.

Let

12
Xersse :;ZIX[i:e] P
i=

be an estimator of the population mean based on ERSS with errors in ranking. The
properties of X are

(a) X,

ersse

is unbiased estimatorsef the population mean if the distribution is
symmetric about the population mean p and the error in ranking following a

normal with mean 0 andvariance Gz and

(b) Var (f( eme) is less'than Van (f( o ) .

It is easy to prove (i) and (i1) using results by and Takahasi and Wakimoto
(1968), Dell and Clutter (1972) and Samawi et al. (1996).

The ERSS and RSS'with errors in ranking were simulated in computer trials.
Four probability distributions were considered for the population: normal, gamma,
uniform, and weibull. Five Thousand random numbers were generated. For each
computer simulation trials were run with n = 4, 6 and 8. The model for these
simulations was the same as the model considered by Dell and Clutter (1972); the
elements are ranked on the basis of elements that are equal to true values generated
from the above probability distributions plus random error components assumed to

be distributed normally with mean 0 and variance o7 .

A sample of size n elements was generated from a normal distribution with
mean 0 and standard deviation o,, and added to the n elements generated from the

parent distribution. When this had been accomplished the ERSS and RSS methods
were used to rank the units. Estimates for the mean, variance and mean square
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errors (MSE) were found for the ERSS and RSS data after 5,000 elements had
been compute.

The efficiency of estimating the population mean using ERSS with errors in
ranking with respect to SRS is defined as follows

Var(f(m,)

Var( ersse ) ’

if the distribution is symmetric, otherwise i.e. if the distribution is not symmetric

ff;:rss eﬁ( SrS 2 ersse)

Var()}m )

fferss eﬁ( S7S° ersse) W) .

The efficiency of RSS with errors in ranking with respéct to SRS is defined as
Var ()Z' ors )

eff s = eﬁ( s me) W,

were X, isthe sample of RSS with'errors in ranking data with only one cycle.

Results of these simulations are’summarised in Table 4 for both ERSS and
RSS. For each population simulationsiwere run with sample of sizes n =4, 6 and 8
and with values of ¢, =0.0,0.25, 0.5, I and 1.5.
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Table 4

Summary of efficiency values from computer simulation
for four distributions, for estimating the mean of the population

using ERSS and RSS with errors in ranking

ERSS RSS
C, Sample Size Sample Size
4 6 8 4 6 8
Uniform (0, 4)
0.00 3.13 5.45 8.44 2.50 3.50 4.50
0.25 2.98 5.27 7.67 2.40 3.20 3.65
0.50 1.90 2.34 2.89 1.53 1.66 1.78
0.75 1.23 1.31 1.37 1.17 1.18 1.19
1.00 1.06 1.08 1.09 1.02 1.06 1.04
1.50 1.00 1.02 1.03 1.00 1.01 1.02
Normal (2, 1)
0.00 2.10 2.34 2.66 235 3.18 3.98
0.25 2.01 2.32 2.52 2.27 3.06 3.87
0.50 1.98 2.26 2.38 212 2.79 3.33
0.75 1.68 1.73 1.92 75 2.04 2.23
1.00 1.40 1.47 151 1.42 1.46 1.57
1.50 1.12 1.18 121 1.14 1.08 1.13
Gamma (3)
0.00 1.62 1.30 0:88 2.19 3.08 3.42
0.25 1.49 122 0.86 2.12 2.82 3.50
0.50 1.55 1.20 0.82 2.09 2.80 3.33
0.75 1.41 118 0.77 1.88 2.58 2.77
1.00 1.26 1.03 0.75 1.62 1.98 2.15
1.50 1.07 0.99 0.71 1.25 1.31 1.35
Weibull (2, 3)
0.00 2.05 2.17 1.82 2.38 3.31 3.93
0.25 2.04 2.15 1.80 2.27 3.17 3.81
0.50 1.92 2.00 1.77 2.20 2.82 3.56
0.75 1.72 1.76 1.49 1.93 2.40 2.67
1.00 1.46 1.47 1.28 1.57 1.72 1.83
1.50 1.15 1.22 1.16 1.16 1.25 1.22
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6. RESULTS AND DISCUSSION

In this paper, the bivariate normal distribution is considered, because it is the
most widely use in the regression models. Additionally this assumption makes the
calculations of the relative efficiency much easier.

Considering the results in Tables 1 and 2 the following conclusions are made:
The relative efficiency obtained using ERSS to estimate the population mean of the
variable of interest depends upon the sample size n, the number of cycles r and the
value of the correlation coefficient p between the variable of interest and the
auxiliary variable. If the ranking of the variable of interest is perfect (Table 1) the
ERSS estimator is superior to its counterpart, the regression estimator, unless the
value of |p|> 0.80. If the ranking of the variable of interest is done using a
concomitant variable (Tables 2) and the number of cycles is 1, the ERSS estimator
is more efficient (unless the value of |p |> 0.80 then.the regression estimator is
more efficient). But if r > 1 and the value of | p|< 0:80 there is not much
difference between the two estimators. Finally, if |p’> 0:80 and r > 1 the
regression estimator is superior.

In the basis of Table 3 we could conclude that: The relative efficiency obtained
using ERSS increases as | p | and /or n ifcréases. The relative efficiency obtained
using ERSS with a concomitant variable is\very close to that of RSS if | p |<0.8
and /or n <6.

Considering Table 4 the following conclusions can be made: A gain efficiency
obtained using ERSS with errors insranking if the underline distribution is
symmetric around p. For example, for n = 6 and o,= 0.5, the efficiency of the

ERRS 2.34 for estimating theypopulation mean of a uniform distribution. The
efficiency of ERSSwdecreases as the value of o, is increases. If the parent

distribution is uniformythe gain in efficiency using ERSS with or without errors in
raking is much higher than its counterpart RSS.

As we know, in real life applications it is not easy or sometimes impossible to
rank the units without errors in ranking, especially if the sample size is more than 5
or 6 units. The recommendation is to use the ERSS with an even sample size if it is
difficult to rank the units using RSS. Since it is very easy to find the largest or the
smallest of the i sample with minimum errors in ranking.
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CHAPTER SEVEN

Variance Estimation for the Location-scale Family
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ABSTRACT

The ranked set sampling (RSS) has been shown as.an efficient method in
estimating the population mean and other parameters ofinterest of certain
probability distributions. Very little, has however beenidone in estimating the
population variance using RSS. In this paper, several unbiased estimators of the
population variance are proposed for thedocation-scale family distributions using
RSS and some its modifications. The proposed,estimators are compared to the
usual simple random sampling «(SRS) festimators for several probability
distributions. Most of these proposed estimators are proven to be more efficient
then the usual SRS estimators.

KEY WORDS

Median ranked set sampling; order statistic; relative precision and simple
random sampling.

1. INTRODUCTION

The ranked sample sampling (RSS) method as suggested by Mclntyre (1952)
and used to estimate mean pasture yield can be summarized as follows: Select m
random samples of size m units and rank the units within each sample with respect
to a variable of interest by a visual inspection or any other cost free method. Then
select for actual measurement the smallest unit from the first sample. From the
second sample, select for actual measurement the second smallest unit. The
procedure is continued until the largest unit from the m™ sample is selected for
measurement. In this way, we obtain a total of m measured units, one from each
sample. The cycle may be repeated r times until mr units have been measured.
These mr units form the RSS data.

89
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Various authors have studied many aspects of RSS. For more details see Patil
et al. (1995) and Sinha, et al. (1996). Most of the work done on the RSS is devoted
to estimate the population mean p. Little has been done in estimating the

population variance o using RSS.

Stoke (1980) showed that the estimator of o’ based on RSS data is

asymptotically unbiased estimator of . Further, if mr is large enough it is more
efficient than the usual estimator based on simple random sample (SRS).

Stokes (1995) considered estimation of w and c for the family of random

variables with probability distribution function of the form 1 f [uj using the
c c

maximum likelihood method.

Finally, Yu et al. (1999) considered estimating, the variance of a normal

population using RSS. They proposed several estimators for o° and compared the
performances of these estimators.

In this paper, we consider estimafingwthe population variance o2 of the
location-scale family having a probabilitys distribution function of the form

f(x,0,)0) = g((x—G)/ k)/ )\ . Estiimating, c® is considered when the location

parameter 6 known and when, it is. unknown. Under both cases, we proposed
several unbiased estimators using. RSS and some of its modifications. These
estimators are then compared with the usual SRS estimators via their variances
when the underlying distributions”are normal, logistic, and student t and double
exponential to thedisual estimators using SRS. It turns out that most of the newly
suggested estimators are more efficient than the usual estimators based on SRS.

2. VARIANCE ESTIMATION IN CASE OF KNOWN
LOCATION PARAMETER

Let X, X,, ..., X, where n = mr be a random sample with distribution function
S(x,0,h) = g((x-6)/A)/ %, (2.1)

where 0 is a location parameter, A is a scale parameter and g is a probability
distribution. Suppose without lost of generality that the value of the location
parameter O is zero. The well-known method of moment estimator for the
population variance is

&5 = %éXf : 2.2)
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with variance
()= B(x)- () |

Let X, X,..., X;, be a SRS of size m with probability distribution function f(x)
with finite mean and variance. Let X, Xi2,..., Xim; X215 X22, ey Xoms v Xmls
Xinzse-s Xmm be independent random variables all with the same cumulative
distribution function F(x). Let X, ;denotes the ith order statistic from the ith
sample of size m (i = 1,2,..., m) in the jth cycle (j = 1,2,..., r). Takahasi and
Wakimoto (1968) defined the unbiased estimator of the population mean using
RSS to be

l,:l = Z Z X(z)/ 5
mr j=1i=1
with variance
R 1 m
V= — 2 Sy »
mor =1

where o)) = E| X, ~ E(X,, )T :

We propose the following unbiased.estimator of ¢® which is based on RSS
data from a population with probability distribution as defined in equation (2.1)
with =0

R 1 rom
5oy = — X YK 2.3)
rm j=1i=|
with variance
R 1 rom 2 1 rom 4 2 2
V(GZ)Z—ZZVXI“ :—ZZ|:EX1"_(EX1“) >
02 (rm)2 ot ( ()./) (rm)z et ( ()./) ( ()./)

where X;); is the ith order statistic of a SRS of size m of the jth cycle from the
above population.

We now consider some modifications of RSS. The smallest, largest or the
median of the ith sample i = 1,2,..., m, will be selected for measurement instead of
selecting the ith smallest of the ith sample as we have done for the usual RSS.
Again we replicate the selection procedure r times to get a sample of size n = rm
units.

We propose the following unbiased estimator of o?, which is based on the
smallest order statistic ( Xy, k=1,2, ..., n =mr) of a SRS of size m with r cycles
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2
A2 Oy n 2
6= —N s x2 (2.4)
O nEMml) &

with variance

o) [ et

where 6% = V(X) =A%c), X~ f(x,0,1), o5 =V(M), M ~ f(x,0,1) and M,,
is the i™ order statistic of a SRS of size m from f(x,0,1). Finally, note that

o =(V(X))’ and of =(V(M))’ .

Now using the largest order statistic of a SRS of size m with r cycles the
following unbiased estimator for the population varianee .6° is proposed

2
) Sy

Co4 = )y X(zm)k ) (2.5)

nE(M2,) i
with variance

v(6h)= m [E(X(“m)k)—(E(X(Zm)k)) }

The median ranked set'sampling MRSS can be summarized as follows: Select
m random samples of size myunits from the population and rank the units within
each sample with respect to'a variable of interest. If the sample size m is odd, from
each sample select for measurement the ((m + 1)/2)™ smallest rank (the median of
the sample). If the sample size is even, select for measurement from the first m/2
sample the (m/2)™ smallest rank and from the second m/2 sample the ((m +2)/2)™"
smallest rank. The cycle may be repeated r times to get mr units. Let
X meayk = X[”’—“)k’k =1,2,...,n = mr denote the median of the ith sample from the

2

jth cycle if the sample size m is odd. If the sample size is even let
X medyk = X(’"]k m/2 times and X ,,,.4); = X(m 1) ) m/2 times for the j cycle. The

2 2

unbiased estimator for o2 using MRSS if the probability distribution is symmetric
in the case of even sample size can be defined as following:
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2

. G, n
0(2)5 =5 > X (Zmed)k (2.6)
n E(Mmed:m ) k=1
with variance
4 2
A2 o 4 2
V(6ps) = % |:E(X(med)k ) _(E(X(med)k )) } .

n (E(Mmed:m ))

We will use the variances to compare the estimators given in equations
(2.2-2.6) by the relative precision of &, to §,, which is defined as follows:
V&)
V@)

RP(8,,8,) =

The relative precision of the estimators using RSS and some modification of
RSS equations (2.3-2.6) with respect to SRS estimator equation (2.2) is calculated
for the distributions: logistic, normal, student't.and double exponential. Table 1
shows the relative precision for sample size m = 2, 3, 4, 5, 6 and replication r = 5
and 10.

From Table 1, we can see that the,estimators of the population variance using
RSS or some of its modification will improve, the relative precision for most of the

cases considered in this studysFor eéxample for m = 4 and r = 5, the RP(63;,653,

values for the logistic, notmal, student t and double exponential distributions are
1.572, 1.614, 1.632 and 1477, respectively. Considering Table 1 the following
remarks can be made:

1. Using RSS orysome of its modification will improved the efficiency of the
newly suggested, estimators over the SRS estimator for the distribution
considered with the exception of using the median for the normal
distribution.

2. Increasing the sample size m will increase the relative precision for almost
all the cases considered.

3. Increasing the number of cycle r more than 5 will not increase the relative
precision.

3. VARIANCE ESTIMATION IN CASE OF UNKNOWN
LOCATION PARAMETER

Let X, X5, ..., X, where n = rm be a random sample with probability
distribution function as defined in equation (2.1). The sample variance is used to

estimate the population variance o’ using SRS, which is
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A2 | - —\2
52 = lz(X—x) 3.1)
with a variance (Stuart and Ord, 1994, P. 370)

v(8h) = [me-(2)o"]

where 1, 1is the population 4™ central moment.

Now we will consider unbiased estimators based on RSS. The first estimator
we call the McIntyre modified estimator is defined as follows:

2 1 rom

- ¥ (X )’ (3:2)
S M? }

Jj=li=1
mirm-1)5 "
with variance

2
V(6122 = n - {(mr—lj Z ZM(:‘);‘
(mr—l)(m(mr—1)+r2 Mi:mj Lo

i=1

rom 2 2 mr — 1 r m
+42 2 1,00t 4(— My M)
Jj=li=1 mr Li=1

j=li=

4m romomo 0 X(m=1)—(mr—1)% & m
+ 220 O@)i00s),; T 2260

mr)? isliel s=i mr)? j=li=l
(mr)

where ), = E (X 0 M) )k s My = E(X (i>j) L&, = V(X (i>j)-

The following two unbiased estimators are based on the smallest and the largest
order statistic of sample of size m with r cycles. First, let consider the estimator
based on the smallest order statistic

") 5 <

— \2
=—0 X - X , 3.3
O13 -1V, El( )k (l)) (3.3)

with variance
4
~2y_ 9 3\ 12
V(6}3) = ey [M —( o )Vl;m } ,

L:m
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- 1z . .
where Xay=— 2 Xqy» W :V(M(l)k), u, is the population 4" central
n k=1

moment and the other terms are as defined is Section 2. Now for the largest order
statistic, we propose the estimator
2
~2 (o L - 2
Oy="—"— X (X(m)k —X(m)) > (3.4)
M-1)V,., k=1

with variance

4
A G u m—
V(6124) = " g kzl I:“4 - (m_j) Vn%:m :| >

=V(M(m)k) and thé other terms as defined

m:m

— 1x
where Xy =—2 X s V)
n k=1

before.

Finally, using MRSS and assuming that_the ¢underlining distribution is
symmetric when the sample size is even we propose the following unbiased
estimator:

2 n

~D Oy e 2
6h=—0 S (X X imeay) 3.5)
° (l’l - 1)\]mcd:m kZ::l( Y N ) (

with variance

4
A2 N GO m=3 2
V(GIS - ) |:”4 _( m—l) med:m |
n

med:m
— 1 n
where X (med) == 2 Xeare » Vineam = V(M (med)k) and other terms as defined
n k=l

before.

As was done in Section 2, we use the variances to compare the estimators given
in equations (3.1-3.5). The relative precision of the estimators using RSS and some
its modifications equations (3.2-3.5) with respect to SRS estimator equation (3.1)
is calculated for the distributions: logistic, normal, student t and double
exponential. Table 2 shows the relative precision for sample size m =2, 3,4, 5, 6
and replication r = 5 and 10.

From Table 2, we can see that the estimators of the population variance using
RSS will improve the relative precision for all the cases considered in this study.

For example for m =5 and r = 5, the RP(61,,67,) values for the logistic, normal,
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double exponential and student t distributions are 1.367, 1.311, 8.313 and 1.120,
respectively. In addition, the median estimator is more efficient than the SRS
estimator for all the distributions considered except for the normal distribution.
However, the other estimators based on the smallest and largest order statistics are
not doing well as compared to the estimator based on SRS.

4. CONCLUSIONS

RSS method is very efficient and widely used method in estimating the
population mean. However, little has been done for estimating the population
variance. The question is if we collect our data using RSS method to estimate the
population mean or some other parameters of interest can we use this data to
estimate the population variance. In this paper, we have proposed several unbiased
estimators of the population variance, using the method>of RSS and some of its
modifications for the location-scale parameter family‘of distributions. Our results
clearly indicate the superiority of RSS estimators over.the usual SRS estimators.
Except for the normal distribution, MRSS estimator dominates the SRS estimator
for all other distribution considered.

The estimators based on respectively(the. first'and the last order statistics (i.e.
the smallest and the largest) haven been shownite do quite well for the case of
known location parameter.

The estimators proposed in this’ study are all unbiased for estimating the
population variance of the docation-scale family distributions, but the amount of
improvement in the relative precision depends on the underlining distribution.

Finally, we note that the relative precision of the proposed estimators under each
of RSS, MRSS, smallest and largest methods increase with the increasing sample
size m. However, theyRSS is more difficult to perform than the other methods for
large sample sizes, makes,the proposed estimators under MRSS, smallest and largest
are more appealing than RSS in case where they perform better.
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Table 1
The relative precision of the estimators based on RSS with respect to

SRS estimator for the population variance for the logistic, normal, double
exponential and student t distributions when the location’ parameter is known
RP(63,,65,) RP(643,65,) RP(644,6¢,) RP(G35,5¢,)
m T R T R
5 | 10 5 | 10 507 10 5 | 10
Logistic distribution
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.061 1.061 1.259 1259 1.259 1.259 1.234 1.234
1.131 1.131 1.572 14572 1.572 1.572 1.234 1.234
1.199 1.199 1.882 1.882 1.882 1.882 1.344 1.344
1.267 1.267 | 2.175 |.2.475 | 2.175 | 2.175 1.344 1.344
ormal distribution
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.082 1.082 1.268 1.268 1.268 1.268 | 0983 | 0.983
1.179 1.179 1.614 1.614 1.614 1.614 | 0983 | 0.983
1.279 1.279 1.974 1.974 1.974 1.974 | 0984 | 0.984
1.379 1.379 | 2.329 | 2329 | 2.329 | 2.329 | 0.984 | 0.984
uble exponential distribution
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.049 1.049 1.294 1.294 1.294 1.294 1.205 1.205
1.102 1.102 1.632 1.632 1.632 1.632 1.205 1.205
1.155 1.155 1.962 1.962 1.962 1.962 1.352 1.352
1.256 1256 | 2275 | 2275 | 2275 | 2.275 1.352 1.352
tudent t distribution
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.031 1.031 1.225 1.225 1.225 1.225 | 2.671 2.671
1.060 1.060 1.477 1.477 1.477 1.477 | 2.671 2.671
1.087 1.087 1.708 1.708 1.708 1.708 | 3.150 | 3.150
1.112 1.112 1.912 1.912 1.912 1.912 | 3.150 | 3.150

TN | |WR | Z[N | |w(
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Table 2
The relative precision of the estimators based on RSS
with respect to SRS estimator for the population variance for the
logistic, normal, double exponential and student t distributions
when the location parameter is unknown
RP(81,,6%,) | RP(6%.6%) | RP(&1.671) | RP(87s5.67)
r r r r
5 | 10 5 | 10 5 | 10 5 | 10
istic distribution
1.177 | 1.083 | 0.963 | 0.961 | 0.963 | 0.961 | 0.963 | 0.961
1.248 | 1.150 | 0.896 | 0.894 | 0.896 | 0.894 | 1.225 | 1.228
1.308 | 1.216 | 0.856 | 0.854 | 0.856 | 0.854 | 1.237 | 1.242
1.367 | 1.281 | 0.830 | 0.829 | 0.830 |°0.829 | 1.332 | 1.338
1.424 | 1.344 | 0.813 | 0.812 | 0.843 | 0.812 4 1.348 | 1.353
ormal distribution
1.024 | 1.011 | 0.976 | 0.973 | 0976 | 0.973 | 0.976 | 0.973
1.113 | 1.097 | 0.955 | 0.950 110:955%70.950 | 0.986 | 0.985
1.211 | 1.195 | 0.939 | 0.932 "}.0.939"| 0.932 | 0.983 | 0.981
1.311 | 1.295 | 0.926 4 0.917 [10.926 | 0.917 | 0.987 | 0.986
1.410 | 1.397 | 0.914}.0:905,| 0914 | 0.905 | 0.987 | 0.985
ouble exponential distribution
2.628 | 2.595 |[1.456 |71.492 | 1.456 | 1.492 | 1.456 | 1.492
4.414 | 42155 1.905 }¢2.001 | 1.905 | 2.001 | 1.183 | 1.195
6.313 | 6.151 ["2.280 | 2.447 | 2.280 | 2.447 | 1.243 | 1.259
8313 | 8.062 2592 | 2.831 | 2.592 | 2.831 | 1.310 | 1.332
10.41 | 10.05,| 2.854 | 3.166 | 2.854 | 3.166 | 1.321 | 1.344
tudent t distribution
1.040 | 1.079 | 0.495 | 0.487 | 0.495 | 0.487 | 0.495 | 0.487
1.069 | 1.109 | 0.301 | 0.294 | 0.301 | 0.294 | 2.432 | 2.556
1.095 | 1.132 | 0.227 | 0.221 | 0.227 | 0.221 | 1.511 | 1.538
1.120 | 1.172 | 0.188 | 0.183 | 0.188 | 0.183 | 2.796 | 2.977
1.143 | 1.154 | 0.164 | 0.159 | 0.164 | 0.159 | 1.982 | 2.050

-
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CHAPTER EIGHT

New Median Ranked Set Sampling

Dinesh S. Bhoj
Department of Mathematical Sciences
Rutgers University, USA

ABSTRACT

A new median ranked set sampling (NMRSS) procedure is proposed to
estimate the mean of a population. The estimator based on NMRSS is compared
with estimators based on other ranked set sampling procedures. It is shown that the
relative precisions of the estimator based on NMRSSfare higher than those based
on other ranked set sampling methods for unimodal symmetric distributions around
the mean. The NMRSS method also works™quite well® for moderate skew
distributions.

KEY WORDS

Mean square error; modified ranked set sampling; ordered observations; ranked
set sampling; relative precision; unbiased estimator; variance.

1. INTRODUCTION

Ranked set sampling,(RSS) was first introduced by McIntyre (1952) in relation
to estimating pasture yields. This is a cost-efficient alternative to simple random
sampling (SRS) if observations are rather cheaply or cost free ranked without
actually measuring them. Dell and Clutter (1972) and Takahasi and Wakimoto
(1968) provided mathematical foundation for RSS. They showed that the sample
mean of the RSS is an unbiased estimator for the population mean with smaller
variance than that of the sample mean of SRS with the same sample size. Dell and
Clutter (1972) also showed that the estimator for the population mean based on
RSS is at least as efficient as the SRS estimator even when there are ranking errors.

The procedure of selection of RSS involves drawing of n random samples with
n units in each sample. The n units in each sample are ranked with respect to a
variable of interest. Then the unit with the lowest rank is measured from the first
sample, the unit with the second lowest rank is measured from the second sample,
and this procedure is continued until the unit with the highest rank is quantified
from the n™ sample. The n’ ordered observations in the n samples can be displayed
as:

99
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X(11)X12)---X(1n)

X(21)X(22) - X(2n)

X(n)X(n2) -+ X(nn)
only X1y X(22) o v Xum) M€ accurately measured and they constitute the RSS

data. If n is small, the cycle may be repeated r times to increase the sample size.
For convenience, we assume that r = 1. McIntyre (1952) proposed the estimator
n= Zx(,-,-)/n for the population mean L.

2. MODIFIED RANKED SET SAMPLING

The RSS procedure has been modified by somesauthors (Bhoj (1997) and
Muttlak (1997)) which has further reduced the variance .of the estimator for the
mean. Bhoj (1997) proposed a general modified ranked set sampling in the
parametric setting. In this scheme he proposed to select only‘two order statistics for
even n=2m. He suggests to select the j™ order statistie*from the first m samples and
k™ order statistic from the last m samples.. The'choices of the j™ and k™ order
statistics depend on the distribution under'consideration and the parameter(s) to be
estimated. If one is interested in estimating the mean of a symmetrical distribution
around mean, the modified ranked set“sampling procedure becomes the median
ranked set sampling (MRSS). . Muttlak (1997) proposed to use MRSS procedure for
symmetrical and also for skew distributions.

In MRSS procedurey we draw n random samples of size n from the population
and rank n observations in,each sample. If n is odd, we measure the observation
with rank (n+1)/2 from“each sample. If n is even, we measure m™ order statistic
from the first m samples and (m+1)™ order statistic from the last m samples. Then
our estimator for p is

= i{i X (im) + i x(mm)} , for even n,

i=1 i=m+1

X » foroddn,
1

where k=(n+1)/2.

Let y; denote the variance of Yy = (x(ii)— n)/ o, where o2 is the variance of

the population. Then the variance of 1 is given by
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Var(t) = (v, + vms1)o>/ 2n, for even n,

vio2/n, for odd n.
The following results hold for [1.

a) [ is an unbiased estimator for p if the distribution is symmetric about p.

b) Var(p)< Var(ﬁ) for n>2 if the symmetric distribution about p is
unimodal. For n=2, RSS and MRSS are identical and hence
Var(Q) = Var(u) .

c) For any distribution, Var(ﬁt)<Var(;), where X is the sample mean based

on SRS.
d) If the distribution is asymmetric about p, {1 is a’biased estimator for p. In

this case, Muttlak (1997) demonstrated that for most distributions, the mean
square error (MSE) of [1 is less than Var(x). for small.sample sizes.

3. NEW MEDIAN RANKED SET SAMPLING

The accuracy of 1 over p is compared by computing the relative precision,
RP, =Var(w)/Var(t), where [4is an unbiased estimator for p. The MRSS

procedure does not perform well for‘even n as compared to odd n. To exemplify
this characteristic of MRSSgwe present in Table 1 the values of RP; for the logistic
distribution along with the relative{percentage increases (RPI) in RP;. The RPI in
RP, is defined as

RP; for n = Rpypfor (n—1)

100, n>2.
RP; for (n—1)
Table 1
RP; and RPI for the logistic distribution
N 2 3 4 5 6 7
RP, | 1.0000 | 1.3876 | 14276 | 1.6154 | 1.6556 | 1.7742
RPI - 38.76 2.87 13.17 2.49 7.16

It is clear that the values of RPI are higher when we move from even to odd
values of n, and they are lower when we switch from odd to even values of n.
Therefore, in this section we propose a new median ranked set sampling (NMRSS)
for even n=2m. In this procedure, we draw first m samples of size (n-1) and last m
samples of size (n+1). As in RSS or MRSS, we order the observations in each
sample with visual inspection or methods not requiring actual measurements. Then
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we quantify the median from each sample for estimating the population mean.
Thus our NMRSS data are x),i=1,2,..m from samples of size (n-1) and

X(im+1y,L=m+1,..,n from samples of size (n+1). Now we propose an estimator

m n
H*_WZX(im)/M+(1-W) 2 x(imﬂ)/ma
i=1 j

i=m+1

where w=(n-1)/2n. The  variance  of p* is given by

Var(u*)={w2vm(n_1>/ m+(1-W)2vm+1<n+1>)/m}02» where 77, denotes the

variance of the m™ order statistic from a sample of size n;. In the next section we
compare the three estimators of p based on three ranked set sampling procedures.

4. COMPARISON OF ESTIMATOR

In this section we compare the estimators I and p* ‘with the estimator p, an
unbiased estimator for p. 0 and p* are unbiased estimators for p if the
distribution is symmetric about u. For asymmetrie“distributions, (i and u* are
biased estimators. In this case, for comparison, we use mean square error (MSE) of

the estimator, where
MSE = Variance + (bias)>. We have.¢computed the two relative precisions
RP = Var(tl) , for'a symmetric distribution,
Var(p)
= L(HA) , for a skew distribution,
MSE ()
Var(p e
and RP> = ar() , for a symmetric distribution,
Var(p*)
= L(“) , for a skew distribution.
MSE(w*)

The values of RP; and RP, are presented in Table 2 for some distributions and
three sample sizes. The moments of order statistics for these distributions are
readily available; see Harter and Balakrishnan (1996). We can draw the following
conclusions:
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Table 2
Relative precisions of the estimators i and p*
Distribution | RP, RP,

n=2 n=4 n==6 n=2 n=4 n==o6
Normal 1.000 1.182  1.275 1.083 1.216  1.293
Logistic 1.000 1.427 1.656 1.230 1.515 1.701
Laplace 1.000 1.884  2.533 1.484  2.161  2.722
Gamma (3) 1.000  1.209 1.049  1.165 1.209  1.023
Gamma (5) 1.000 1.198  1.120  1.131 1.208 1.106
Weibull (2) 1.000 1.104 1.061 1.054 1.110  1.053
Weibull (40 1.000 1.122  1.184  1.045 1.146  1.196
Extreme Value 1.000 1.297 1.192 1208 1.318 1.173

a) For unimodal symmetric distributions around p4the new median ranked set

sampling is better than the median ranked set sampling procedure.

b) For moderate skew distributions, NMRSS.is better.than®MRSS for small n.

c) For extremely skew distributions, NMRSS is better than MRSS for n=2. We
checked this for Exponential, Pareto(5) and Weibull (.5) distributions. The
values of RP, for these distributions,are, respectively, 1.334, 1.875 and
2.671.

d) Both MRSS and NMRSS aré not suitable for a rectangular distribution (not
given in Table 2). This is ‘expected since the optimal choices in this case are
the extreme order statistics; seeBhoj (1997) and Bhoj and Ahsanullah
(1996).

e) The values of RP; ‘and RP; increase with n for symmetrical distributions
around . The values of RP, and RP; are higher for n=4 when compared to

n=2 for moderate'skew distributions. However, for n> 6, the values of RP,
and RP, decrease as n increases. Although Var(u*) is smaller than
Var((1), the bias in pu* increases faster than bias in [i as n increases.
Therefore MSE (p*) may be higher than MSE (i) for some skew
distributions for n > 6.

We revise Table 1 where we have computed RPI for the logistic distribution
with MRSS procedure. The values of RPI in RP, with NMRSS for n=3,4,5,6 and 7
are, respectively, 12.80, 9.17, 6.64, 5.31 and 4.29. This clearly shows that NMRSS
procedure works well for even n.

Based on the computations of relative precisions, we recommend the NMRSS
procedure for even values of n when the samples are drawn from unimodal
symmetric distributions. For moderate skew distributions, NMRSS may be
recommended for n =2 and 4. Most importantly for most skew distributions we
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can recommend the NMRSS procedure with n=2. In order to increase the sample
size, the cycle may be repeated r> 2 times.
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ABSTRACT

Different quality control charts for the sample mean are developed using pair
ranked set sampling (PRSS), and selected ranked sets$ampling (SRSS). These new
charts are compared to the usual control charts based on" simple random sampling
(SRS) data. The charts based on PRSS and [SRSS areshown to have smaller
average run length (ARL) than the classical chartiespecially if the process starts to
get out of control. Through this studyswe are assuming that the underlying
distribution is normal.

KEY WORDS

Average run length, ranked set, sampling, lower confidence limit, simple
random sampling and uppet confidence limit.

1:INTRODUCTION

This study is concerned with the idea of developing quality control charts using
pair ranked set sampling (RSS) and selected ranked set sampling (SRSS) data.
These newly developed control charts are considered as alternatives, and more
efficient methods than the usual control charts based on the simple random
sampling (SRS) method.

The RSS method was first suggested by Mclntyre (1952) who noted that it is
highly beneficial and superior to the standard simple random sampling (SRS) for
estimation of the population mean. Takahasi and Wakimoto (1968) supplied the
necessary mathematical theory. Dell and Clutter (1972) studied the case in which
the ranking may not be perfect, i.e. there are errors in ranking the unit with respect
to the variable of interest.

As pointed out by Dell and Clutter (1972) there will be loss in efficiency
depending on the amount of errors in ranking the units. To overcome this problem,
or at least to reduce the errors in ranking the units selected from the population,

105
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Samawi et al. (1996) studied the properties of estimating the population mean
using the extreme ranked set sampling method, Muttlak (1997) suggested the
median ranked set sampling method and Hossain and Muttlak (1999) and (2001)
respectively suggested using pair ranked set sampling (PRSS) and selected ranked
set sampling (SRSS).

Muttlak and Al-Sabah (2001) developed quality control charts for the sample
mean using ranked set sampling, median ranked set sampling and extreme ranked
set sampling. They compared the newly developed charts using average run length
(ARL) to the Shewhart control chart. They showed that the newly charts are more
efficient than the Shewhart charts i.e. they have smaller average run length. Finally
they collected a real life data set and used to construct quality control charts for the
newly suggested control charts.

In this paper the pair ranked set sampling (PRSS), and selected ranked set
sampling (SRSS) will be used to develop control charts for the population mean.
These charts are compared to the well-known quality control’charts for variables
using the usual simple random sampling (SRS)data; see fof example Montgomery
(1995). The control charts for PRSS and SRSS /data are shown to have smaller
average run length (ARL) then the usual ¢ontrol charts'based on SRS data.

2. SAMPLING METHODS

2.1 Ranked Set Sampling (RSS)

The RSS procedure cande summarized as follows: Select n random sets, each
of size n units from the populationyand rank the units within each set with respect
to a variable of interesty Then an actual measurement is taken from the unit with
the smallest rank from the first set. From the second set, an actual measurement is
taken from the unit with“the second smallest rank, and the procedure is continued
until the unit with thelargest rank is chosen for actual measurement from the nth
set. In this way, we obtain a sample of » measured units, one from each set. The
cycle may be repeated r times until nr units have been measured. These nr units are
forming the RSS data.

Let X, (i) denote the ith order statistic from the ith set of size n in the jth cycle.

Then the unbiased estimator of the population mean, see Takahasi and Wakimoto
(1968) using RSS data based on the jti cycle is defined as:

12 .
ers,_/ =;i§1X(i:n)_/ 5J =L2,..,r. (1)

The variance of X, ; is given by
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Var(Xm, j ) = Lz

n
n i=

0(2[:/1) > (2)

2 2
where o7, :E[X(i:n) —E(X(i:n))] .

2.2 Ranked set sampling with concomitant variable

Suppose that the variable of interest X is difficult to measure and to order, but
there is a concomitant variable Y, which is correlated with X. The variable Y may
be used to acquire the rank of X as follows: Select n’ bivariate units from the
population and group them into n sets of size n each. From the first set of size n,
the X associated with the smallest Y is measured. From the second set of size n the
X associated with the second smallest Y is measured. We continue this way until
the X associated with the largest Y from the nth set’is measured. The cycle is
repeated 7 times until n7 Xs have been measured. Note that ranking of the variable
X will be with errors in ranking i.e. X;.,; ; is theyith judgment order statistic from

the ith set of size n in the jth cycle of size r. This'method.is called imperfect ranked
set sampling (IRSS).

Assume that (X, Y) has a bivariate normal‘distribution and the regression of X
on Y is linear. Then following Stokes (1977) we can write

X =p+ pox Y e 3)
GJ’

where Y and ¢ are independent and'e has mean 0 and variance cfc (1- pz) , p is the
correlation betweenwX. and. Y and HysH,, 04,0, are the means and standard

deviations of the variables X and Y.

Let ¥, ; and X, ; be the ith smallest value of Y and the corresponding

value of X obtained from the itk set in the jth cycle respectively. We can write the
above equation
PO, . L
Xiiny 7 = e +c5— Yoy, —B)*e;, =1 2,,n =12, r 4
y
The unbiased estimator of the mean of the variable of interest X with ranking

based on the concomitant variable Y, i.e. using IRSS method, can be written for the
Jth cycle as
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— 1xn .
Xirs, j =;i§1X[i:n],j;] =12,..,r. (5)
The variance of X, irss,; (see Stokes, 1977) is given by
2 2
— Gx n
Var(Xirss,j):_[(1_p2)+p—226§(i:n)]' (6)
n no;, i=l

2.3 Pair Ranked Set Sampling (PRSS)

In the paired ranked set sampling (PRSS) method, two sets of n random
elements are required to obtain a sample of size two. At first n elements are
selected randomly and ordered, the k-th smallest element of the set is considered
for measurement, where 1<k <n is pre-determined, see Hossain and Muttlak
(1999). Similarly, second set of size n elements is{againfselected randomly and
ordered, and the (n-k+1)-th smallest of the set is measured. The procedure can be
repeated r times to obtain a sample of size 2r.(Note that in‘the usual RSS method
the sample size is required to be a multiple of n and"in the PRSS method it is
required to be a multiple of 2 and does not'depend on the choice of the set size n.

Once the value of k is determined, an ‘estimator of the population mean p for
the jth cycle can be written as

_ 1 .
Xprssj = E(X(k:n)lj + X(k':n)Zj);J 4 19 2""! r (7)

where k'=n—k+1. Clearlysforfa symmetric distribution X . is an unbiased

prssj
estimator for p with variance

GZ 2

var(X = ?G(k:n) . (®)

prssj )

where cs(zk:n) =E [Xjwm— EX (k:n))]z and t is known constant depending on the

underlying distribution, t = 1 for normal distribution. For more details see Hossain
and Muttlak (1999).

2.4. Selected Ranked Set Sampling (SRSS)

Consider the situation where, instead of selecting n random sets of size n
elements each as in the RSS, only £ < n random set of size n elements are selected,
and instead of measuring the ith smallest order statistic of the ith set, n;;, smallest
order statistic of the ith set is considered for measurement. The values of
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nysny,..,n, (1S <ny, <..<n ;<n)
are required to be determined beforehand, see Hossain and Muttlak (2001).

The procedure of selected ranked set sampling (SRSS) can be described as
follows: At first, a set of n > k elements is randomly selected and they are ordered
by visual inspection and the n;-th smallest is selected for measurements. Another
set of n elements is randomly selected and they are ordered and the n,-th smallest
element is measured, and the procedure is continued until the n-th smallest is
measured.

Once the values of n;,n,,...,n;, and ¢;,i=1,2,...,k are determined (see Hossain
and Muttlak, 2001), the SRSS method will be use to collect the data. Let
Xnmy jsj=1,2,...r 18 the nig order statistics of the niy, set ofisize 7 in the jth cycle. If

the underlining distribution is normal an unbiased estimatorf the population mean
p for the jth cycle is

— k

XSVSbj = iglciX(n,:n)j (9)
with
S) =820, m)
¢ = 5
Do

where o, ., and G(Zn[:n) are the expected value and the variance of the n, -th order

statistics for standard normal respectively. Also,

2
k o, . ko, k
Si=2 ;n,.n),S2:Z_ 2"’")“93:2 and DS=S1S3_S22
i=l cS(n,-:n) i=l cS(ni:n) i=1 cF(n,-:n)

The variance of X, can be shown to be

Var()? STssj )

S
=92 2L 10
D (10)

N

where 0 is the value of the scale parameter for the underlying distribution. For
more details see Hossain and Muttlak (2001).
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3. QUALITY CONTROL CHARTS

3.1. Quality Control Chart using SRS
Let X, for i=1,2,..,nand j=1,2,..,r denote the ith unit in the jth SRS of

size n and X;; ~N(u, o?). If the population mean pand variance o° are known

then the Shewhart control chart for

— 12 .
Xj:;ZiXij;J:I,L...,r (11)
is given by
c
UCL=p+3—
Jn
CL=p
LCL=p-3-2 (12)

Jn

where UCL, CL and LCL denote the upper central limit, central limit and lower
central limit respectively. The sample,means X jod = 1,2,...,7 can be plotted in the

above charts.

For this chart the average run length (ARL) is equal to 1/a, where a is the
probability of type I error if the process is under control. But if the process starts to
get out of control then ARL= 1/B4where [ is the probability of type II error, see
Montgomery (1995).

In most real life'problems pand variance o are unknown. We use the
collected data to estimate pand o, obviously the unbiased estimator for pis

X=13%,. (13)
roj=1
But
E:lﬁsj (14)
roj=1

J = 2. . . =
2 (X —Xj)2 is a biased estimate forc. We can use S/c, as
n—1iz

where Sj :\/

an unbiased estimator for o, where c¢ycan be shown to equal
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(2/ n_l)zl"(n——2). We may now define the control limits for the sample
IM(n-1)/2]
mean )_(j to be
UCL =X+
epln
CL=X
LCL :§— 35 (15)

After establishing the above chart, the sample means X IE j=L2,.. rare

plotted in the chart. For more details see Montgomery(1995).

3.2. Quality Control Charts using PRSS

The PRSS mean X sy OF the jth cycle defined onSeetion 2.3 can be plotted on

the control chart based on PRSS

UCL =p+3c X
CL =pn
LCL=p-30y (16)
prss
o> 2
where o %, =\ 3 Sl and oy, as defined in Section 2.3.

We use the average tun length (ARL) to compare the PRSS control charts to
the Shewhart control chart. The ARL assumes that the process is under control
with mean p,and standard deviation &, , and at some point in time the process

may start to get out of control ie. the mean is shifted from p,to
u, +6c,/ \/_ =p. We are assuming that the process is following the normal
distribution with mean p,and variance o2 if the process is under control, and the

shift on the process mean is & = £|p— u0| . If 5=0 the process is under control
c

o

and in this case if the point is outside the control limits it is a false alarm.
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The simulation is done only for the rule: a point out of control limits, see
Champ and Woodall (1987). For each value of & we simulate 1,000,000
replications. We calculate the values of the limits in equation (16) using the results
of the order statistics for the standard normal distribution, see for example Harter
and Balakrishnan (1996).

Ranking the variable of interest without errors in ranking the units is called
perfect ranking. But if the units cannot be raked perfectly or the ranking is done on
a concomitant variable we call that imperfect ranking, see Section 2.2. Since the
perfect ranking and SRS are special cases of the imperfect ranking with p=1and

p=0 respectively, we will consider the case of imperfect ranked set sampling
(IPRSS) with different values of p . Following the same procedure that we used in

Section 1.2, we only need equation (6) to perform our.simulation, which can be
written as

2
_ O«

var(X,) = [ (1=p) + P70 e | (17)

where G is the variance of the variable of{interest Xeand Gz( k) 18 the variance of

the k-th order statistic of a standard normal distribution.

The control chart given in equation (16) is based on the perfect PRSS, we need
to modify it to the case of imperfect ranking by substituting for the variance of

Xipsy glven in equation (17) to get

UCL =n+3c3;
iprss
CL =p
LCL=p-3c3 (18)

iprss

2
where © Ty = \/G—;[(l—p2)+pzc§(,ﬁn)} . Note that if the ranking of the units is

done perfectly, i.e. there are no errors in ranking then we set p=1 in equation
(18).

In our simulation we considered both X and Y as standard normal random
variable, this implies Gi =1. The computer simulations are run
forp=0,0.25,0.5,0.75,0.9,1.0 ,n =3, 4, 5, 6 and for =0, 0.1, 0.2, 0.3, 0.4, 0.8,

1.2, 1.6, 2.0, 2.4, 3.2. Results are shown in Tables 1- 4. Considering these results
the following remarks are made.
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1. If the process is under control, i.e. 6 = 0, PRSS reduces the false alarm to
ARL= 355.89. But in the case PRSS we are only measuring two units, one
form each set of size n, i.e. a sample size of 2. For example if n=4 for all
other cases we have to measure 4 units, one from each set of size 4, but for
the case of PRSS we are only measuring 2 units, one unit from two sets of
size 4 units.

2. The PRSS method is dominated SRS if the process starts to get out of
control i.e. >0, for example if 6=0.4 and n = 4 the ARL using PRSS is 99
as compare to 200.01, for SRS.

3. If the sample size increases there will not be much of a change in the ARL
if 3=0. But the ARL will keep decreasing if 6>0, for example if the sample
size is 5 and 6=0.4 the ARL is 81 as compared to 99 in the case of n=4.

4. Imperfect ranking decreases the efficiency of PRSS and the ARL will be
larger which depend on the values of p. But PRSS is still doing better than
SRS method by having smaller ARL for the same value of p.

5. The ARL for the PRSS will decrease muchifaster than/SRS if 5 increases.

3.3 Quality Control Charts using SRSS
The SRSS mean X, . of the jth cyclé defined onsSection 2.4 can be plotted on

STSSj

the control chart based on SRSS, which can bé defined as follows:
UCL=p+3c3;

CL =p
LCL=p-3c3 (19)

STSS)

oy
where 65 =, /67 2¢O, ) -
srss. i=1 L

As we did in the pervious sections, we used the ARL to compare the selected
ranked set sampling (SRSS) control charts to the other control charts. We used the
same values for 6, p and n that we used in the previous sections, and we run our

simulation for 1,000, 000 replications. Following the same procedure that we used
in Section 3.2, but here we use SRSS instead of PRSS i.e. imperfect selected
ranked set sampling (ISRSS). The analogues of equations (17) and (18) are

_ k
var(X ;) = 0, [(1 —pH)+p’ zl c?cﬁ(n,:f,)} (20)

and



114 Statistical Quality Control based on Pair and Selected Ranked Set Sampling

UCL=p+303
CL =p
LCL=p-30; 20

isrss

k
where o7 = \/ci {(1—p2)+p220izc§(ni:n)} and cﬁ(n[:n) is the variance of the
o =

n;y, order statistic of a standard normal distribution.

We considered in our simulation both X and Y as standard normal random
variable. The computer simulation is run for the same values of p, & and n that

considered before and for different values of k. Results are shown in Tables 5- 14.
Considering the results of Tables 5-14, the following remarks can be made:

1. If the process under control i.e. 8 = 0 SRSS"is, deminated SRS and PRSS
methods in reducing the number of false.alarm, i.e. reéducing ARL. Please
note that in SRSS we are only measuring K units out of the n units in each
set, where k < n.

2. If the number of measured units k remains constant, but the sample size n
increases then the ARL will be decrease’as n increases. For example if
8=0.4, k=2 and if n=3, 4,5, or 6 then the corresponding ARL is 133.51,
120.51, 110.79, 103.62 respectively, In the other we do not see this pattern
if n remains constant.and’k increases.

3. The SRSS reduces the ARLiover SRS and PRSS for must cases considered
in this study if the process starts to get out of control.

4. Imperfect ranking decreases the efficiency of SRSS, as it is the case for
other methods.

4. CONCLUSIONS AND RECOMMENDATIONS

The ranked set sampling has attracted a number of authors as an efficient
sampling method. The RSS method that proved to be more efficient when units are
difficult and costly to measure, but are easy and cheap to rank with respect to a
variable of interest without actual measurement. In this study we used two
modifications of RSS to develop several quality control charts for the variables of
interest using the sample mean. These charts are compared with the classical
control charts using simple random sampling data. It is clear that all the newly
developed charts are more efficient than the classical control chart. The following
are some specific conclusions.

1. All the newly developed control charts dominate the classical charts. If the
process starts to get out of control by reducing the number of average run
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length (ARL) substantially. But number of false alarms is not reduced by
the same amount if the process is under control.

2. Errors in ranking will reduce the ARL for both cases considered. The
amount of reduction in the ARL will depend on the amount of errors
committed in ranking the units of the variable of interest. For example if we
are using a concomitant variable to rank our variable, then the ARL will
depend on the correlation between the two variables.

Finally we recommend using the PRSS and/ or SRSS to build the quality

control charts. Since they are reducing the ARL comparing to SRS method.
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Table 1
ARL values when n=3 using PRSS
Q
o 0.0 0.25 0.50 0.75 0.90 1.00

0.0 | 370.24 | 369.89 | 368.25 | 367.08 | 362.18 | 355.89
0.1 347.63 | 350.53 | 354.31 | 346.62 | 336.38 | 321.85
0.2 | 310.71 | 309.44 | 298.88 | 288.37 | 270.55 | 250.92
0.3 | 251.51 | 247.35 | 241.02 | 22541 | 204.66 | 184.51
0.4 | 20036 | 197.06 | 18541 | 162.02 | 13947 | 118.60
0.8 71.51 69.04 61.35 4791 36.78 28.12
1.2 27.84 26.53 22.79 16.70 12.09 8.83

1.6 12.39 11.75 9.92 7.07 5.06 3.70

2.0 6.30 5.98 5.03 3.61 2.65 2.02

24 3.64 3.47 2.95 2.19 169

1.39
3.2 1.73 1.66 1.48 1.25 1.11 1.04
Table 2
ARL values when,n=4 using PRSS
Q
0 0.0 0.25 0.50 0.75 0.90 1.00

0.0 | 370.12 | 369.524] 369719 | 366.84 | 36441 | 351.63
0.1 345.54 | 349.04 [ 347.94 | 339.99 | 330.49 | 308.13
0.2 | 311.08 | 300.48 |_300:53 | 279.65 | 258.41 | 230.08
03 | 251.76 | 251.72 |1238.22 | 212.24 | 182.88 | 151.45
04 | 201.12 ["19597 182.83 | 155.20 | 126.15 98.99
0.8 71456 68.60 59.71 43.78 30.88 20.97
1.2 27.82 26.38 22.02 14.98 9.83 6.33

1.6 12.38 11.65 9.53 6.30 4.11 2.71
2.0 6.30 5.92 4.84 3.24 2.21 1.59
24 3.65 3.44 2.85 2.00 1.48 1.19
3.2 1.73 1.65 1.45 1.19 1.06 1.01
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Table 3
ARL values when n=5 using PRSS
Q
o 0.0 0.25 0.50 0.75 0.90 1.00

0.0 | 369.80 | 368.46 | 370.50 | 367.84 | 367.92 | 355.40

0.1 352.84 | 348.85 | 348.22 | 339.38 | 328.12 | 304.61

0.2 | 308.58 | 305.24 | 298.86 | 274.41 | 247.83 | 208.77

0.3 | 252.14 | 250.15 | 23547 | 207.47 | 170.65 | 130.62

0.4 | 19999 | 195.60 | 180.46 | 147.37 | 114.38 81.09

0.8 71.55 68.49 58.15 40.54 26.02 15.18

1.2 27.82 26.24 2141 13.60 8.05 4.47

1.6 12.39 11.59 9.23 5.70 3.39 2.02

2.0 6.30 5.88 4.68 2.95 1.88 1.30

24 3.65 3.41 2.76 1.85 1:32 1.07

32 1.73 1.64 1.42 1.15 1.03 1.00

Table 4
ARL values when,n=6 using PRSS
Q

0 0.0 0.25 0.50 0.75 0.90 1.00
0.0 | 370.04 | 371.35¢] 369:86 | 367.38 | 365.68 | 354.12
0.1 352.76 | 352.92 [1348.23 | 339.98 | 323.76 | 294.75
0.2 | 307.94 | 307.06 |_ 29546 | 272.13 | 239.73 | 193.56
0.3 | 253.67 | 248.76 | 234.94 | 201.68 | 161.39 | 116.45
0.4 | 200.51 [1196:2204| 179.64 | 144.66 | 106.93 69.67
0.8 7141 68:22 57.43 38.64 23.29 12.12
1.2 27.84 26.12 20.95 12.83 7.11 3.57
1.6 12.38 11.53 9.05 5.37 3.02 1.70
2.0 6.31 5.85 4.59 2.80 1.72 1.18
24 3.64 3.40 2.72 1.77 1.25 1.03
3.2 1.73 1.64 1.41 1.13 1.02 1.00

117
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Table 5
ARL values when n =3 and k=2 using SRSS
Q
o 0.0 0.25 0.50 0.75 0.90 1.00

0.0 370.6 370.22 | 369.13 | 362.63 | 330.69 | 324.73
0.1 352.87 | 352.83 | 350.06 | 339.51 | 321.79 | 299.90
0.2 | 307.90 | 307.07 | 301.88 | 286.28 | 266.81 | 245.59
0.3 | 252.54 | 250.54 | 242.22 | 225.58 | 204.78 | 184.75
0.4 | 200.18 | 197.29 | 188.62 | 168.77 | 151.01 | 133.51
0.8 71.63 69.54 63.27 52.56 44.29 36.96
1.2 27.83 26.79 23.83 18.89 15.11 12.36
1.6 12.38 11.88 10.40 8.07 6.37 5.17
2.0 6.31 6.04 5.28 4.10 3.27 2.69
24 3.65 3.56 3.08 245 2:01 1.71
3.2 1.73 1.68 1.53 1.32 1.19 1.11

Table 6
ARL values when n = 4.and k=2 using SRSS
Q
0 0.0 0.25 0.50 0.75 0.90 1.00

0.0 | 373.01 | 370.014] 36962 | 359.51 | 334.67 | 311.88
0.1 354.50 | 353.99 [1350.55 | 335.67 | 314.99 | 284.88
0.2 | 309.60 | 308.89 |_.302:21 | 284.37 | 257.01 | 229.46
0.3 | 252.04 | 250.26 |/241.70 | 218.66 | 193.21 | 168.30
04 | 201.30 [19772+| 186.29 | 163.99 | 144.67 | 120.51
0.8 7138 64:43 62.30 49.81 39.29 31.41
1.2 27.78 26.60 23.19 17.54 13.22 10.23
1.6 12.39 11.79 10.10 7.46 5.58 4.27
2.0 6.30 5.99 5.12 3.80 2.88 2.27
24 3.64 3.48 3.00 2.29 1.810 1.50
3.2 1.73 1.67 1.50 1.27 1.14 1.06
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Table 7
ARL values when 4 = and k= 3 using SRSS
Q
o 0.0 0.25 0.50 0.75 0.90 1.00

0.0 | 370.22 | 369.97 | 368.89 | 365.15 | 355.64 | 334.57

0.1 352.85 | 352.13 | 348.52 | 33831 | 317.94 | 29143

0.2 | 311.52 | 308.78 | 299.70 | 282.13 | 25345 | 221.51

0.3 | 25631 | 25335 | 24342 | 218.19 | 187.41 | 157.68

0.4 | 203.84 | 200.06 | 186.94 | 160.30 | 133.80 | 108.81

0.8 74.17 71.54 63.19 48.44 36.50 27.30

1.2 29.08 27.77 23.71 17.14 12.25 8.81

1.6 13.04 12.35 10.36 7.31 5.15 3.72

2.0 6.64 6.28 5.26 3.73 2.70 2.03

24 3.83 3.63 3.08 2.26 172 1.39

3.2 1.79 1.72 1.53 1.26 1.11 1.04

Table 8
ARL values when n =5,and k=2 using SRSS
Q

0 0.0 0.25 0.50 0.75 0.90 1.00
0.0 | 370.05 | 369.944] 36595 | 358.34 | 335.26 | 298.28
0.1 353.24 | 35220 | 348.81 | 336.12 | 308.75 | 272.75
0.2 | 308.85 | 304.66 |_.299:13 | 277.84 | 249.34 | 216.69
0.3 | 253.81 | 250.91 |/ 240.36 | 214.86 | 187.16 | 157.44
0.4 | 199.58 1119635+ 18539 | 160.21 | 13448 | 110.79
0.8 7131 69.01 61.29 47.62 36.53 27.85
1.2 27.81 26.54 22.82 16.65 12.11 8.90
1.6 12.38 11.76 9.91 7.07 5.06 3.72
2.0 6.30 5.97 5.03 3.61 2.65 2.02
24 3.65 3.46 2.95 2.19 1.69 1.38
3.2 1.73 1.66 1.49 1.24 1.11 1.04
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Table 9
ARL values when n=5 and k=3 using SRSS
Q
o 0.0 0.25 0.50 0.75 0.90 1.00

0.0 | 372.87 | 369.86 367.7 363.01 | 348.57 | 323.29
0.1 354.60 | 352.99 | 347.10 | 335.60 | 309.47 | 271.09
0.2 | 311.36 | 307.58 | 300.10 | 275.48 | 241.55 | 199.83
0.3 | 256.38 | 25342 | 241.39 | 213.75 | 176.78 | 139.21
0.4 | 205.00 | 200.51 | 188.55 | 158.24 | 126.23 96.11
0.8 75.54 72.46 63.45 47.20 33.93 23.87
1.2 29.82 28.33 23.86 16.68 11.36 7.72
1.6 13.42 12.66 10.47 7.11 4.80 3.294
2.0 6.84 6.44 5.31 3.64 2.53 1.83
24 3.94 3.72 3.10 2.21 1:63 1.29
3.2 1.83 1.75 1.54 1.25 1.09 1.02

Table 10
ARL values when n =5 and k=4 using SRSS
Q
0 0.0 0.25 0.50 0.75 0.90 1.00

0.0 | 37247 | 368.644] 366:99 | 364.26 | 362.16 | 348.20
0.1 351.33 | 349.21 [348.03 | 342.50 | 329.94 | 308.25
0.2 | 309.05 | 308.45 |_.300-75 | 284.07 | 258.36 | 227.41
0.3 | 255.13 | 253.04 |/240.86 | 215.86 | 185.43 | 152.76
0.4 | 202.01 [19894.+ 18496 | 158.21 | 128.18 | 100.14
0.8 73470 70.93 61.74 45.38 31.92 21.52
1.2 29.01 27.46 22.94 15.59 10.21 6.52
1.6 12.96 12.22 9.98 6.58 4.26 2.78
2.0 6.62 6.21 5.06 3.37 2.28 1.62
24 3.82 3.59 2.97 2.07 1.51 1.20
3.2 1.79 1.71 1.49 1.21 1.06 1.01
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Table 11
ARL values when n =6 and k=2 using SRSS
Q
o 0.0 0.25 0.50 0.75 0.90 1.00

0.0 | 372.52 | 371.78 | 369.95 | 358.49 | 332.95 | 289.92

0.1 353.23 | 351.98 | 347.21 | 332.45 | 307.07 | 265.01

0.2 | 307.35 | 305.87 | 296.31 | 278.10 | 246.38 | 207.39

0.3 | 25390 | 249.65 | 241.71 | 212.74 | 181.76 | 149.27

0.4 | 200.14 | 196.75 | 183.30 | 157.925 | 12991 | 103.62

0.8 71.42 68.96 60.83 46.29 34.38 25.34

1.2 27.84 26.48 22.50 16.05 11.29 7.98

1.6 12.39 11.72 9.77 6.79 4.72 3.34

2.0 6.31 5.96 4.96 3.47 2.46 1.85

24 3.64 3.45 291 2.12 161 1.30

3.2 1.73 1.66 1.47 1.22 1.09 1.03

Table 12
ARL values when n =6,and k=3 using SRSS
Q

0 0.0 0.25 0.50 0.75 0.90 1.00
0.0 | 370.04 | 369.764| 367:89 | 362.41 | 346.92 | 310.48
0.1 352.78 | 354.77 [°349.78 | 332.40 | 302.54 | 254.29
0.2 | 311.22 | 308.40 | _ 30011 | 273.01 | 233.97 | 185.00
0.3 | 258.84 | 254.20 | 243.29 | 210.07 | 170.27 | 128.22
0.4 | 206.11 |“203:18«| 187.42 | 155.27 | 120.69 87.55
0.8 76133 73.30 63.72 46.44 32.18 21.68
1.2 30.32 28.76 24.06 16.36 10.78 7.01
1.6 13.66 12.85 10.53 6.98 4.55 3.01
2.0 6.97 6.55 5.35 3.57 242 1.71
24 4.02 3.78 3.12 2.17 1.58 1.24
3.2 1.86 1.78 1.545 1.24 1.08 1.01
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Table 13
ARL values when n = 6 and k= 4 using SRSS
Q
o 0.0 0.25 0.50 0.75 0.90 1.00

0.0 | 369.57 | 363.87 | 359.21 | 354.24 | 350.95 | 342.11
0.1 331.08 | 329.61 | 330.43 | 32541 | 316.20 | 300.93
0.2 | 290.38 | 288.79 | 282.81 | 268.14 | 245.72 | 21643
0.3 | 24096 | 237.41 | 22743 | 20243 | 174.16 | 143.19
0.4 | 202.58 | 187.45 | 175.75 | 148.52 | 120.01 91.92
0.8 73.87 67.60 58.56 42.56 29.17 18.91
1.2 29.01 26.42 21.90 14.64 9.28 5.66
1.6 12.99 11.83 9.60 6.20 3.90 2.46
2.0 6.61 6.06 4.90 3.21 2.12 1.47
24 3.82 3.53 2.89 1.99 1043 1.14
3.2 1.79 1.69 1.47 1.19 1.05 1.01

Table 14
ARL values when n = 6.and k=5 using SRSS
Q
0 0.0 0.25 0.50 0.75 0.90 1.00

0.0 | 370.04 | 369.054] 36840 | 366.27 | 364.19 | 352.12
0.1 352.54 | 35543 [°353.29 | 340.82 | 325.04 | 299.51
0.2 | 310.23 | 309.37 |_.302:17 | 278.18 | 250.93 | 209.47
0.3 | 256.30 J 253.28 |/242.37 | 209.18 | 175.66 | 135.92
04 | 203.48 | 200.58+| 186.31 | 153.12 | 119.64 86.12
0.8 75401 71,83 61.48 43.32 28.36 17.12
1.2 29.57 27.83 22.84 14.75 8.93 5.12
1.6 13.25 12.39 9.93 6.21 3.75 1.39
2.0 6.75 6.30 5.04 3.20 2.04 1.11
24 3.89 3.65 2.95 1.98 1.47 1.02
3.2 1.81 1.73 1.49 1.43 1.04 1.00




CHAPTER TEN

Modified Ranked Set Sampling Methods

Hassen A. Muttlak
Department Mathematical Sciences
KFUPM, Dhahran 31261, Saudi Arabia

ABSTRACT

The ranked set sampling method (RSS) as suggested by McIntyre (1952) may
be modified to yield new sampling methods with improved. Several modifications
for the RSS are introduced by several authors such as extreme ranked set sampling
(ERSS), suggested by Samawi et al. (1996), median rankedsset sampling (MRSS),
suggested by Muttlak (1997), etc. In this study a fewhother modifications for the
RSS are introduced and compared to the RSS, ERSS and MRSS. It turns out that
for probability distributions considered in this study,,we can always improve upon
the efficiency of RSS by using some sort of modification for the RSS method.

KEY WORDS

Extreme ranked set sampling, median ranked set sampling, simple random
sampling, percentile ranked sampling and relative precision.

1. INTRODUCTION

Ranked set sampling (RSS) was first suggested by Mclntyre (1952) without the
mathematical theory, to support his suggestion. Takahasi and Wakimoto (1968)
supplied the necessary mathematical theory. They proved that the sample mean of
the ranked set sample (RSS) is an unbiased estimator of the population mean with
smaller variance than the sample mean of a simple random sample (SRS) with the
same sample size. Dell and Clutter (1972) studied the case in which the ranking
may not be perfect i.e., there are errors in ranking the units. Muttlak (1996)
suggested using pair ranked set sampling instead of RSS. This can be used when it
is difficult to select a large number of units from the population of interest. Samawi
et al. (1996) suggested using extreme ranked set sampling (ERSS) to estimate the
population mean. They showed that the ERSS estimator is an unbiased estimator of
the population mean if the underlying distribution is symmetric and it is more
efficient than the SRS estimator. Muttlak (1997) suggested using median ranked
set sampling (MRSS) to estimate the population mean more efficiently than the
usual RSS method. For review and more bibliography on the RSS see Patil et al.
(1999).
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124 Modified Ranked Set Sampling Methods

In this paper, a further modification of the RSS method is considered, namely,
percentile ranked sampling (PRSS) with different values of 0 < p <1. The newly

suggested sampling method is compared with RSS, ERSS and MRSS. It is shown
that for the probability distributions considered in this study, we can always
improve the relative precision and reduce the errors in ranking by using the
modified sampling method instead of the usual RSS method.

2. NOTIONS AND SOME USEFUL RESULTS

Let X;, X», ..., X, be a random sample with probability density function f(x)
with a finite mean p and variance o’ Let Xit, Xy ooy Xy Xo1, Xo2,y veey Xops vees
Xt Xn2s -, Xpn be independent random variables all with the same cumulative
distribution function F(x). Let X (.,) denotes the i™ order statistic from the i"
sample of size n (i =1, 2, ..., n). The unbiased estimator of the population mean
using RSS is defined as

J— 1 n
X =3 X
ni=1

The variance of X7ss is given by

2
6([:n) >

M=

Var(}rss) = Lz
n i

Il
—_

where 6(2,-:,,) =E [Xgn— E(X(i:n))]z'

Let X ;. ¢, denote the smallest of the i sample (i = 1, 2, ..., L= n/2) and the
largest of the it samplen(@=L+1, L+2, .., n) if the sample size n is even. Also
denote the smallest ofithe i sample (i = 1, 2, ..., L= (n-1)/2), the median of the i"
sample (i = (n+1)/2) and'the largest of the i™ sample (i = L;+2, L+3, ..., n) if the
sample size n is odd. The estimator of the population mean based on ERSS with
one cycle can be written as

J— 1 n
Xerrs :_ZX(i:e) .
n =1

The variance of X5 can be written as

=

1

2
n i

Var(Xerrs) = G(zi:e) N

Il
—_

where G(Zm) =E [Xjo— E(X(p )I> . For more details, see Samawi et al (1996).
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Let X (i. m), denote the median of the i sample if the sample size is odd, and the
(n/2)™ order statistic of the i sample (i = 1, 2, ..., L=1/2 ) and the ((n+2)/2)™ order
statistic of the i sample (i = L+1, L+2, ..., n) if the sample size is even. The
estimator of the population mean using MRSS then can be written as

=

Xmrss = X(i: m) -
i=1

1

S |-
I

The variance of X, __can be written as

mrss

=

1
_2,
n i

v 2
Var(erss ) = G(i:m)

1

where G(Zi:m) =E [Xim— E(X(l-:m))]2 . For more details, see Muttlak (1997).
3. PERCENTILE RANKED SET SAMPLING

In the percentile ranked set sampling (PRSS) procedure, select n random
samples of size n units from the population and'rank. the units within each sample
with respect to a variable of interest. ,If the [sample size is even, select for
measurement from the first n/2 samples the (p(n+1))th smallest rank and from the
second n/2 samples the (q(n+1))™ smallest rank, where 0 <p <1 and q = 1-p. If the
sample size is odd, select from the first (a-1)/2 samples the (p(n-+1))" smallest rank
and from the other (n-1)/2 samples’the (q(n+1))™ smallest rank, and from one
sample the median for that sample forfactual measurement. The cycle may be
repeated r times to get nr units. These nr units form the PRSS data.

Let X1, X2, v, Xini0Xo159X%5, ooy Xons o3 Xat, Xn2, --» Xun e independent
random variables ‘all"with.the same cumulative distribution function F(x). Let X;
ety and X qamr1y) denote the (p(n+1))™ order statistic (q(n+1))™ order statistic of
the i" sample respectively (i = 1, 2, ..., n), where 0 < p <1 and q = 1-p. The
estimator of the population mean using percentile ranked set sample (PRSS) with
one cycle can be defined in the case of an even sample size as

_ 1( 4 n
Xprssl = _[in(p(rwrl)) + z Xi(q(”’*l))j ’
n\ iz i=L+1

where L; = n/2. In the case of an odd sample size, the estimator of the population

mean can be defined as
— 1( L

Xprss2 = = X Xipnery +
i=1 i

i=

n
- 2 Xy +Xi((n+1)/2)j7
n L,+2
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where L,= (n-1)/2 and X (n+1y) is the median of sample i = (n+1)/2
The variance of X prss can be written as

1 »
P”b = 2 zc(iip)
n =l

var(X

where G(Zi: n=E [Xipn— E(X p))]z. Here X;., is the p(nﬂ)th order statistic of

the i sample.

Let X5 denote the sample mean of simple random sample (SRS) of size n.
The properties of X

prss

1. X prss 18 an unbiased estimator of the population mean p if the underling
distribution is symmetric about the population phand

2. Var(X,,,)isless than Var ( X ).

prss
3. If the distribution is not symmetric about p than the mean square error
(MSE) of X, is less than the varianceiof. X s .

prss

It is not difficult to prove (1)«(3) using the results by Takahasi and Wakimoto
(1968), Samawi et al (1996) and Muttlak (1997).

To compare the proposed estimators for the population mean using PRSS with
RSS, ERSS, MRSS and SRS methods, eight probability distribution functions were
considered: rectangular, normaly.exponential, gamma, weibull, double exponential,
inverse Gaussian andslognormal. The variance or the mean square error of the
sample means for the RSS, ERSS, MRSS and PRSS with different values of p were
calculated for the above distributions using the moments of the order statistics, see
Harter and Balakrishnan (1996) and Balakrishnan and Chen (1997). The relative
precision (RP) of estimating the population mean using any of the RSS based
methods with respect to the usual estimator using SRS is defined as following

RP(}sm s}rss ) = M ,
Var(X rss)

if the distribution is symmetric and

Var(}m )

RP(}srs 5 }rss ) = — N
MSE(X}'SS )

if the distribution is not symmetric.
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Results are summarized by the relative precision (RP) and the bias in Tables I-I1T
for RSS ERSS, MRSS and PRSS with p = 20%, 30% and 40%. For each population
calculations were done with sample size n = 8 in Table I, n =9 in Table II and n=10
inn Table III. Considering the results in Tables I-IIL, a gain in efficiency is obtained
by using PRSS for different values of n and for all the distributions considered in this
study. For example, for n = 10 in Table III and p = 0.3 the relative precision (RP) of
the PRSS is 5.329 for estimating the population mean of a weibull distribution with
shape parameter 2.5.

4. PERCENTILE RANKED SET SAMPLING
WITH ERRORS IN RANKING

Dell and Clutter (1972) considered the case in which there are errors in
ranking; that is, the quantified observation from the i sample in the j™ cycle may
be not the i™ order statistic but rather the i™ judgment ordef statistic. They showed
that the sample mean of RSS with errors in ranking is an unbiased estimator of the
population mean p, regardless of the errors inranking and'has a smaller variance
than the usual estimator based on SRS with the same sample size.

Let X; pm+1); and X (que1) denote the [p(n+1)]th and [q(n+1)]™ judgment order
statistics respectively, of the i" sample.(i =142, ...,n), where 0 <p <1 and q = 1-p.
If the cycle is repeated once, the estimator of the population mean using percentile
ranked set sample (PRSS) with errors in ranking can be defined in the case of an
even sample size as

1L n
X prssel = _[ZXi[p(n+l)]+ 2 Xi[q(n+l)]J’
n\ i=1 i=L+1

where L; = n/2. In the case of an odd sample size, the estimator of the population
mean can be defined as

~ 1( L
XprsseZ = ; ZlXi[p(n+l)] +

i=

n
2 Xipgn) +Xi[(n+1)/2]Ja
=1, 12

=L,
where L,= (n-1)/2 and X jn+1); is the judgment median of sample i = (n+1)/2.

The variance of X, can be written as

~ 1 n 5
Var(Xprsse) = }1_2 Zl G[i:p]
i=

2
where c[zi:p] =K [X[i:p]— E(X[i:p])J . Here Xj;.,; is the Per)" judgment order

statistic of the i™ sample.
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Let Xgs denote the sample means of simple random sample (SRS) of size n.
The properties of X prsse AIC

1. X prsse 18 an unbiased estimator of the population mean p if the underling

distribution is symmetric about p and
2. Var (X, )is less than Var ( X ys).

prsse
3. If the distribution is not symmetric about p than the mean square error
(MSE) of X

prsse 18 less than the variance of X .

It is not difficult to prove a-c, using the results by Takahasi and Wakimoto
(1968), Dell and Clutter (1972) Samawi et al (1996) and Muttlak (1997).
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Table 1
Summary of the relative precision (RP) values for estimating
the population mean using RSS, ERSS, MRSS, and PRSS with
values of p =0.2, 0.3 and 0.4, with sample size n = 8.

Distribution RSS | ERSS | MRSS | PRSS | 20% | 30% | 40%

Uniform (0, 1) RP | 4.50 | 8.348 | 3.375 | 4.821| 3.750 | 3.375
Bias

Normal (0, 1) RP | 3.999 | 2.682 | 5.342 | 4.177 | 4.981 | 5.342
Bias

Exponential (1) RP | 2.943 | 0.457 | 1.673 | 3.545| 2.426 | 1.673

Bias 0.421 | 0.241 | 0.007] 0.174 | 0.241

Gamma (2) RP | 3.354 | 0.725 | 2.404 | 3.812| 3.126 | 2.404

Bias 0.345 | 0.253 | 0.009| 0.184 | 0.253

Gamma (3) RP | 3.535| 0.939 | 2.903 | 3.921 | 3.533 | 2.903

Bias 0.453 | 0:257 4/0.009 | 0.182] 0.257

Gamma (5) RP | 3.702 | 1.253 | 3.524 | 4.018 | 4.044 | 3.524

Bias 0.459 10.2591,0.011] 0.187] 0.259

Lognormal (0, 1) RP | 1.891 | 0.279 | 1:814"| 4.068 | 2.586 | 1.814

Bias 1.037 1,0.538 | 0.083 ] 0.416 | 0.538

Double Exponential (0,1)| RP | 3.124 [1.1.309%},9.509 | 3.768 | 6.863 | 9.509
Bias

Inverse Gaussian (0.5) | RP<¢| 3.885% 1,951 | 4.633 | 4.124 | 4.641 | 4.633

Bias 0.115 | 0.065 | 0.003 | 0.047 | 0.065

Inverse Gaussian (1) RP | 3.603 | 1.127 | 3.432 | 3.989 | 3.932 | 3.432

Bias 0.219 | 0.124 ] 0.006 | 0.090 | 0.124

Inverse Gaussian (1.5) RP.#3.262 | 0.715 | 2.563 | 3.821| 3.276 | 2.563

Bias 0.308 | 0.173 | 0.008 | 0.127| 0.173

Inverse Gaussian (2:5) RP | 2.657 | 0.404 | 1.747 | 3.546 | 2.495| 1.747

Bias 0.434 | 0.241 ] 0.015] 0.178 ] 0.241

Weibull (0.5) RP | 1.665 | 0.222 | 1.478 | 3.750 | 2.164 | 1.478

Bias 2472 | 1.272] 0.207] 0.993 | 1.272

Weibull (1.5) RP | 3.647 | 0.972 | 2.718 | 3.934 | 3.370 | 2.718

Bias 0.163 | 0.094 | 0.002] 0.067 | 0.094

Weibull (2) RP | 3.962 | 1.750 | 3.788 | 4.122| 4.092 | 3.788

Bias 0.075 | 0.042 ] 0.002 ] 0.031] 0.042

Weibull(2.5) RP | 4.088 | 2.534 | 4.524 | 4.187| 4.502 | 4.524

Bias 0.035 | .0190 ] 0.001] 0.014] .0190
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Table IT
Summary of the relative precision (RP) values for estimating the
population mean using RSS, ERSS, MRSS, and PRSS with values of
p =0.2, 0.3 and 0.4, with sample size n =9.

Distribution RSS | ERSS | MRSS | PRSS | 20% | 30% | 40%

Uniform (0, 1) RP 5.0 10.19 | 3.667 | 5.729 | 4.365 |3.819
Bias

Normal (0, 1) RP | 4394 | 2.798 | 6.020 | 4.431 | 5.365 |5.863
Bias

Exponential (1) RP | 3.181 | 0.484 | 1.432 |3.770 | 2.577 {1.636

Bias 0.389 | 0.254 | 0.000 | 0.158 |0.232

Gamma (2) RP | 3.650 | 0.771 | 2.166 | 4.102 | 3.344 {2.409

Bias 0.412 | 0.267 | 0.001 | 0.167 |0.244

Gamma(3) RP | 3.858 | 1.003 | 2708 | 4.241 | 3.795 {2.949

Bias 0.419 |"0:2747] 0.001 | 0.170 |0.248

Gamma (5) RP | 4.052 | 1.347, | 3.439 | 4362 | 4.292 (3.665

Bias 0.425.] 0:274°10.002 | 0.172 |0.251

Lognormal (0, 1) RP | 1.980 | 0.288 | 1,528 |4.199 | 2.635 [1.719

Bias 0:975170.562 | 0.064 | 0.387 |0.523

Double Exponential (0,1) | RP | 3.374 |.14299| 11.42 | 3.695 | 6.735 {9.900
Bias

Inverse Gaussian (0.5) RP 14265 | 2.139 | 4914 | 4.495 | 5.036 |4.993

Bias 0.106 | 0.068 | 0.001 | 0.043 |0.062

Inverse Gaussian (1) RP [3.936 | 1.211 | 3.062 | 4.311 | 4.227 |3.547

Bias 0.203 | 0.141 | 0.006 | 0.082 |0.119

Inverse Gaussian (1.5) RP | 3.542 | 0.760 | 2.320 | 4.100 | 3.487 |2.569

Bias 0.286 | 0.183 | 0.003 | 0.116 |0.167

Inverse Gaussian (2.5) RP | 2.850 | 0.736 | 1.494 | 3.739 | 2.615 |1.692

Bias 0.228 | 0.253 | 0.007 | 0.163 |0.233

Weibull (0.5) RP | 1.736 | 0.228 | 1.228 | 3.807 | 2.182 |1.387

Bias 2.327 | 1.327 | 0.162 | 0.926 |1.239

Weibull (1.5) RP | 3.992 | 1.039 | 2.530 | 4.244 | 3.642 |2.770

Bias 0.151 | 0.098 | 0.008 | 0.061 |0.090

Weibull (2) RP | 4.406 | 1.891 | 3.855 | 4.504 | 4.457 {4.039

Bias 0.069 | 0.045 | 0.003 | 0.028 |0.041

Weibull (2.5) RP | 4.507 | 2.779 | 4.899 | 4.596 | 4.927 |4.930

Bias 0.032 | 0.020 | 0.001 | 0.013 |0.018
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Table III
Summary of the relative precision (RP) values for estimating the
population mean using RSS, ERSS, MRSS, and PRSS with values of
p =0.2, 0.3 and 0.4, with sample size n =10.

Distribution RSS | ERSS | MRSS | PRSS | 20% | 30% | 40%

Uniform (0, 1) RP | 5.50 | 12.10 | 4.033 | 6.722| 5.042 | 4.321
Bias

Normal (0, 1) RP | 4.795 | 2.904 | 6.620 | 4.662 | 5.714 | 6.332
Bias

Exponential (1) RP | 3.414 | 0.292 | 1.328 | 2.985| 3.259 | 1.736

Bias 0.514 | 0.254 | 0.007 | 0.117 | 0.213

Gamma (2) RP | 3.940 | 0.486 | 2.061 | 3.591 | 4.002 | 2.556

Bias 0.544 | 0.267 | 0.072] 0.125 ] 0.224

Gamma (3) RP | 4.177 | 0.656 | 2628 [.3.880 | 4.407 | 3.140

Bias 0.554 027171 0.072 | 0.127 | 0.228

Gamma (5) RP | 4.397 | 0.934,| 3.428 | 4:155| 4.829 | 3.898

Bias 0.561.1.0:227410.072 ] 0.129 | 0.230

Lognormal (0,1) RP | 2.064 | 0.182 | 1.392 | 3.522| 3.205 | 1.759

Bias 12288 170.562 | 0.076 | 0.313 | 0.489

Double Exponential (0,1) | RP | 3.617 [\ 14291 12.63 | 3.633 | 6.593 | 9.940
Bias

Inverse Gaussian (0.5) RP 4641 | 1.727 | 5.165 | 4.479 | 5.422 | 5.330

Bias 0.140 | 0.068 | 0.018 | 0.032 | 0.057

Inverse Gaussian (1) RP |4.263 | 0.828 | 3.267 | 4.055 | 4.774 | 3.758

Bias 0.269 | 0.131 | 0.034 | 0.062 | 0.110

Inverse Gaussian (1.5) RP| 3.820 | 0.485 | 2.203 | 3.602 | 4.121 | 2.707

Bias 0.377 | 0.183 | 0.047 | 0.087 | 0.154

Inverse Gaussian (2.5) RP | 3.038 | 0.259 | 1.374 | 2.997 | 3.244 | 1.772

Bias 0.533 | 0.254 | 0.060 | 0.125 | 0.215

Weibull (0.5) RP | 1.807 | 0.142 | 1.110 | 3.099 | 2.672 | 1.408

Bias 3.074 | 1.328 | 0.169 | 0.754 | 1.162

Weibull (1.5) RP | 4.333 | 0.669 | 2.457 | 3.915| 4.287 | 2.965

Bias 0.199 | 0.099 | 0.003 | 0.045 | 0.083

Weibull (2) RP | 4.752 | 1.381 | 3.953 | 4.511|4.969 | 4.320

Bias 0.092 | 0.045 | 0.012] 0.021 | 0.038

Weibull (2.5) RP | 4.922 | 2.379 | 5.245 | 4.754| 5329 | 5.313

Bias 0.042 | 0.020 | 0.004 | 0.010 | 0.017
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CHAPTER ELEVEN

Estimation of Reliability based on Exponential
Distribution and Ranked Set Sample
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2 Department of Mathematics, Mahidol University, Bangkok,
Thailand. Email: g4536132@student.mahidol.ac.th

ABSTRACT

Assume X (strength) ~(1/0,)e™™%, x> 0,0, >0, independent of Y (stress)
~(1/ Bz)e_y % y>0, 0, > 0. In this paper we consider the problem of estimation

of the reliability R(6,,0,)=P(X >Y). We consider both simple random sample

(SRS) and ranked set sample (RSS), and provide several estimates of R along with
their comparisons.

1.INTRODUCTION
In this paper we con$ider the)problem of estimation of the reliability
R(0,,8,)=P(X >Y),based on X|,..., Xy ~iid ~X where X is the strength with
pdf, f(x) :(1/91)5*/91 ;and Yyt..,Y,, ~iid ~ Y where Y is the stress with pdf,
F(»)=(1/6,)e™ /%, and" ¥ and Y are independent. We consider both simple

random sample (SRS) and ranked set sample (RSS), and provide several estimates
of R. Under RSS, we have used three estimates of R. The comparisons of the
estimates of R are conducted for large sample sizes as well as small sample sizes.

For details about RSS, we refer to Stokes (1980), McIntyre (1952), Takahasi
and Wakimoto (1968), Dell and Clutter (1972) and Sinha, Sinha and Purkayastha
(1995).

Supported by a fellowship from the Institute for the Promotion of

Teaching Science and Technology (IPST).

Supported by a fellowship from Thailand Research Fund (TRF).
o Supported by UMBC’s Presidential Research Professorship grant.
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2. MAIN RESULT
Since X ~ Exp(8,) and Y ~ Exp(6,) R(6,,06,)=06,/(6,+6,). For estimation
of R(0,,0,) based on SRS, let X,,..., Xy ~iid ~ Exp(9,), Y,....Y,, ~ iid ~
Exp(0,) . Obviously standard estimates of 0, and 0, are X and Y , respectively.

So we use

R (0,,0,) = (1)

X+Y '

2
By the Central Limit Theorem, for large N and M, )?~N(91, ?\17] Y ~ N(B ;J

Therefore, by using standard Taylor expansion, we get for large N and M

Repo(0,,0,) ~ N| R(0,,0 )ﬂ(i+i] 2)
SRS \V1>V2 1>92 y(el+ez)4 N M .

For using RSS, we write N=kn and “M=sm, and draw RSS from the

X-population as {X((,],))}’ i=1,..4k%j=1...,n and from the Y-population as
{Y((”’))}, i=1...,8; j=1,...5m,(see McIntyre (1952)). From MclIntyre (1952)
and Sinha, Sinha and Purkayastha{(1995), the estimates of 0, and 0, based on
RSS are obtained as

(J) m s Y J)
A (u) 2 (i)
Oipe = Z Z v O =22— 3)
Jj=li=1 kn j=li=1 ms
xW ()
k m s Y m s
A Xy R (ii) 1
elBlue = Z Z Z Z ’ eZBlue - Z Z Z Z
Jj=li=1 G Qe J=li=1 9k J=li=1 Ci:s Qi Jj=li=1 Qg

4)

d 1 ’ 1 d i 1 2
where a,, =—% d , a, =2is g ’
T ik = Z(k 1+1) k= lzi(k 1+1) el % 121(5—14-1)

Cis = i(

=1

7 lj' Here éBlue is the best linear unbiased estimate of 6 based on
s=1+

RSS-data. For éOpt , our strategy is a variation of the usual RSS sample, which is
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based on always drawing the ™ order statistic from each row of all the cycles, r

depending on the set size, resulting in X((li)), i=lL..,k; j=1...,n and Y((l:)),

i=1,...,s; j=1,...,m. Following Sinha et al. (1995), we use

((j)) A m s X(j))
IOpt = 2 Z . kn, 050, =| 22— [sm. (5)

j=li=l Cjp j=li=l Cjg

Here 7, is such that g,., is the smallest among a,,...,a;, and 7, is such that

a,.; is the smallest among a.,...,a

r.s 580

Once 0, and 0, are estimated as above, an estimate>of R(0,,0,) is obtained

- 0 .
by Rpe(0,,6,)= —— S To study the largé sample properties of
1rss +O2rss

I’éRSS (6,,0,) , we first state the following theorem*where proof follows from the
CLT.

Theorem 2.1 For large n and m, the distributions of the estimates of 6, and 6,
based on RSS are given by

~ 912 k P e% s
a) elMcN N el’Tzdi:k > GZMCN N eZ’z—zdi:s (6)
kn.i=t s°m i=1
. -1
. 02 (&1 A 03(s 1
b) elBlueN N 91,—1(2—] > eZBlueN N 2’_2[2_] (7)
o\ i=1 Qi m\ i=14;;
0 elzarzk N egar:x
¢) Oigp~ N|:61=k—n s O20p~ N | 6,, o (®)

The large sample distributions of Ii’RSS (0,,6,) are stated below.

Theorem 2.2 For large n and m, the distributions of the estimates of R(0,,0,)
based on RSS are given by the following:

. 2 k
a) R, (0,,0,) ~ N R(el,ez),&(Zd,k/k2n+2d /s mj )
(91"1‘92) 1 1 1 1
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. 0202 [1(e 1) 1(s 1)
b) RBlue(elﬂez)NNR(GIJGZ)’# (Z_) +—(Z_J (10)

0, +0,)* | nliziay ) mlida,

I 0°02 a. a.
R, (0,,0,) ~ N|R(0,,0,),—1—2 | Zrk 4 Zrs 11
&) Rop (8,.0,) {(1 ) (el+ez)4(kn+smﬂ (an

Proof. Follows from Theorem 2.1 and Taylor expansion.

3. COMPARISON OF ESTIMATES

In this section we provide a comparison of the above estimates of R(6,,0,).
We first mention about the large sample result.

Theorem 3.1 For large n and m, Var(Ry,,) < Var(Rg,) sVar(Ry, ) < Var(Rg) .

Proof:
1. To compare Var(l%SRS) with Var(l%Mc) is equivalent to comparing 1/N with

k K
>d., /k*n and I/M with Y. dgohs®m.,
i=l1 i=l

k k k
Since N=kn and Y.d, f<k,so Nd., /k*n=Yd,, / Nk <1/N . Similarly we
i=1 i=1 i=1
get Sd. /sM <1/M WSo Var(R,,) < Var(Rgg) -
i=1

2. To compare Var(ko) with Var(l%B,ug) is equivalent to comparing

-1 -1
k k s K
>d,, /k*n with l(zi) and Y d,, /s*m with i(zij :

i n\ iz a, i=l M\ i=1 Gy

1
ko1 k
From the numerical computations, we verified that (Z—J <Xd/ k* for
i=1 A i=1

-1
all k. Of course the same is true for comparing 3 d. /s* with (ZL) .
i=l i=1 ai:s

So Var(Ry,,) < Var(Ry,).
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3. To compare Var(léBlue) with Var(l%opt) is equivalent to comparing

-1 -1
k s
l(zi) with 2k and l(zL) with Zrs.

n\ iz a;y kn m\ iz a;. sm

. . 1 1 ko_kE( 1

Since  a,, <a;;,,Vi, then —2>2— and —2|—|, so
Ay Aije Qg =1\ Qg

-1
i < ii )
k i=1 Qg

-1
. y s 1 - -
Similarly, we get Drs < (Z—] - So Var(Rg,,) <Var(Rgy,)
s

i=1 Qg

This completes the proof.

We conclude this paper with a small sample comparison of the above estimates
of R(0,,0,) based on 1000 simulations using SAS. We have taken N=M=10, and
n=m=5, k=s=2. The table below shows the bias and the variance of the proposed
estimates of R(6,,0,).

Table 3.1 Comparison of estimates of R(0,,6,) in small samples

6,=1,0,=1 6,=1,0,=2 6,=1,0,=3 | 6=1,0,=4
R=0.5 R=0.33 R=0.25 R=0.2

bias var bias var bias var bias var

SRS 0.00179 (0.01041{0.00781(0.00842 {0.00933 |0.00625 |0.00943 {0.00472

Mclntyre [0.00618 [0.00797]0.01031 |0.00648 [0.01082 [0.00477 [0.01036 |0.00357

Blue -0.00358(0.00884 [0.00205 [0.00705 [0.00399 [0.00515 [0.00459 [0.00383

Optimum |-0.0029210.00807 {0.00744 ]0.00656 |0.00841 |0.00484 [0.00831 [0.00362

Table 3.1 (continued)

6,=2,0,=1 6,=3,0,=1 0,=4,0,=1
R=0.67 R=0.75 R=0.8
bias var bias var bias var
SRS -0.00469 | 0.00863 | -0.00677 | 0.00648 |-0.00729 | 0.00492
Mclntyre | 0.00073 | 0.00645 | -0.00146 | 0.00475 |-0.00234 | 0.00355
Blue -0.00854 | 0.00732 | -0.00961 | 0.00546 |-0.00949 | 0.00413
Optimum | -0.00221 | 0.00651 |-0.00396 | 0.00478 | -0.00448 | 0.00357
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It follows from the above table that, even in small samples, the estimates of
R(0,,0,) based on RSS have both smaller bias and smaller variance compared to

the SRS-based estimate. It also happens that the estimate of R(0,,0,) based on
Mclntyre procedure is marginally better than the two other RSS-based estimates.
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ABSTRACT

The ranked-set sampling technique has been generalized so that more efficient
estimators may be obtained. The generalized ranked-setssampling technique is
applied in the estimation of quantiles of the uniform distribution. Three estimators
are proposed. These include generalized ranked-set minimim variance unbiased
estimator, simple estimator and ranked-set “Sampley estimator. Coefficients,
variances and relative efficiencies are derived. The estimators are compared to the
best linear unbiased estimator of the quantiles.

KEYWORDS

Uniform distribution, order statistics,dinear estimation, generalized ranked-set
sampling, ranked-set sampling

1:INTRODUCTION

In applied statistics, experimenters often encounter situations where the actual
measurements of the sample observations are difficult to make due to constraints in
cost, time and other factors. However, ranking of the potential sample data is
relatively easy. In these situations, Mclntyre (1952) advocated the use of ranked-
set sampling. He applied the ranked-set sampling technique in assessing the yields
of pasture plots without actually carrying out the time-consuming process of
mowing and weighing the hay for a large number of plots. Since then, the
technique has been studied and applied to several areas of applied research.
Takahasi and Wakimato (1968) and Dell and Clutter (1972) studied theoretical
aspects of this technique on the assumption of perfect judgment ranking and
imperfect judgment ranking respectively. Patil, Sinha and Taillie (1993) studied the
same technique when the sample is from a finite population. Patil, Sinha and
Taillie (1994) have reviewed various aspects of the ranked-set sampling. Also,
Bohn (1996) discussed the application of this technique in nonparametric
procedures.
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In this paper the ranked-set sampling technique has been generalized so that
more efficient estimators may be obtained. The generalized ranked-set sampling
technique is applied in the estimation of quantiles of the uniform distribution.
Three estimators are proposed. These are generalized ranked-set minimum
variance unbiased estimator (GR-MVUE), simple estimator (SE) and ranked-set
sample estimator (RSS). Coefficients, variances, and relative efficiencies are
derived. The estimators are compared to the best linear unbiased estimators
(BLUE) of the quantiles.

In generalized ranked-set sampling, first a set of N elements is randomly
selected from a given population. The sample is ordered without making actual
measurements. The unit identified with the N rank is accurately measured. Next, a
second set of N elements is randomly selected from the population. Again the units
are ordered and the unit with the N, rank is accurately measured. The process is
continued until N set of N elements is selected. The units afe again ordered and the
unit with Ny rank is accurately measured. The ordered samplefof the N sets can be
represented as follows:

Set 1 X(ll) X(IZ) X(IN)
Set 2 X(Zl) X(zz) X(2N)
Set N X(Nl) X(NZ) X(NN)

The generalized ranked-set, sample of size N consists of units which are
accurately measured i.e. (X(in,),X@n,)»X NNy ) Where I <Nj<Nand I <i<N.

The generalized ranked=set sample actually includes the usual ranked-set sample
which is obtained when Ny= 1, N, =2,..., Ny=N.
2. ESTIMATORS

2.1 Best Linear Unbiased Estimator of Quantiles
Let the random variable X have a uniform distribution with probability density
function

1
f(x)_zﬁc

where p and o are the location and scale parameters respectively.

R u—«/gc <x<pu +\/§G, >0

The quantile function of the distribution is defined as

0(&)=p+30(26-1), 0<E<L.
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The best linear unbiased estimator (BLUE) of the quantile function Q(§) is

O0&)grur = +36(26-1)

where the location and scale parameters are estimated by their respective BLUE:s.
Downton (1954) and Sarhan and Greenberg (1962) have obtained the results for
BLUEs for the location and the scale parameter.

The variance is given by

V(0@ puue) =60 (3N 1) + (N +1&-1)?) /(N 1)V +2)

2.2 Estimator of Quantiles based on generalized ranked-set sampling
Let Z(iN,-> = (X(Z-Nj) - w/oc
%y = B )
oy, =Var(Zgy ),1=1,2,.. N, j=1,2,....N.
VAR ]

Therefore E(X| iN‘,.))E B+ ooy and Var(X(iNj))E miN,-N/GZ'

T
Let ag = (a(lNl)a0‘(2N2)a-~~>0°(NNN)) where T implies the transpose

17=(,...1)
S= {Nla N29-~-a NN}

3 T
Xs = (X Xk X))
andVar( Xg) = Q $G°
where Q gisaN x N diagonal matrix with ®;y  as the (i,i)th element.
Then E(Xg)=pl+ocag =Ag0

1 1

where AST =( J and 07 = (n,0).

Qany)  Gewn,) - Gy

Least squares estimator of 0 is obtained by applying the Gauss and Markov
theorem (Sarhan and Greenberg (1962)). Then

05 = (45" Qg™ 45) ™ 45T Q™ X and Var (b5 ) = (47057 )07

where superscript -1 implies inverse.
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Therefore, based on generalized ranked-set sample Xg with

S = {N|,N,,...,Ny} the estimator for the quantile function is

0(E)s =fis +365(25-1)

where
R N (s —aunyTrs)
Hg = 2 ———>— (X, /(DiN[N[
i=1 (Tlsts_Tzzs) ( )
N (on Tos — Tag)
N (inylas = 135
Os = Z—(X(iN,)/(DiN,Ni)

izt (TisThs — T325)

N
Tig = (OLST 'Qsi1 (O ): éa(zﬂ\’,-) /miN,.N,-
N
Tos = (17057 1)= X1 oy,
i=1

Ty= (17 Q7" :ﬁ /
38 s Os Ala(uv[) Wiy N,
i

The variances of the estimator is given by

A 3(52 2
V(@) = m[ L5 ¥ T (28 -1) - 215528 -1)|
where
By
= Sngn )
12N (N=N. +1)
O N, = . .

M (N4 (N +2)

12N;(N = N, +1)
(N+1)*(N +2)

Cov(X(iN/)’X(iNk)) =0 N, = forj<k.

2.3 Generalized Ranked-Set Minimum Variance Unbiased Estimators

Generalized ranked-set minimum variance unbiased estimator (GR-MVUE) is
obtained from the generalized ranked-set estimator when all possible choices of S
are considered. The best choice of S is the one which gives the minimum variance
of the estimator. This S is denoted by Sgrmvus. The estimator is denoted by
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QA(F,)GR, mvue - Table 1 provides ranks Sgr.mvue and coefficients of the estimator
for N=2(1)10 and £=0.01, 0.05, 0.5, 0.9, 0.95

2.4 Simple Estimator (SE)
The simple estimator is obtained from the generalized ranked-set estimators as
follows:

When sample size is even, S = {N|,N,,...,Ny} where Ny =N, = ... =Nyp =1
and Ny, = - =Ny =N then S = {I,..,I,N,...,N}. Then from generalized

ranked-set estimators, the simple estimator for the quantile function Q(§) when
sample sizes are even is:

QA(g)SE =gy + \/_6315 (26-1)

N/2
= 2 Bi(N)gp Xy + Z B i) s Xiny
i=1 j=N/2+

where

B(N)gz =1/N-(1+N)2&-1)/(N(N -1)), ) 1=1,.,N/2

B;(N)gg =1/ N+(1+ N)2E-1)/(N(N=1), j=N2+1,..N

SE = {1,...,,,N,...,N}

Var(O(€) g =1207 (3 HE F2)(N +1)2 ) +(26-1) /((N +2)(N —1)2)

When sample size i5,0dd'S = {N},N,,...,. Ny} where Ny =N, = ... = Nn:1)n =1 and

Ninyaer = - =Ny =N, thensS = {1,..,1,LLN,.. N} Then from generalized

ranked-set estimator,, the simple estimator for the quantile function Q(&) when
sample sizes are odd is:

O@E)se =figr +365:25-1)
(N=1)/2+1 N
= 2 BWMgXay+ 2 Bi(N)gXuy
i=1 J=(N-1)/2+2
where
Bi(N)g =1/(N+1)—(26-1)* /(N -1)
Bj(N)gp =1/(N=1)+Q&-1)" 1+ N)/ (N -1)’
SE= {1,1,..,1,1,N,N,...N}
Var(O(€)) g =126 BN? / (1+ N)* (N +2)(N - 1)

+2e-1)° /((N—1)3(N+1)(N+2))+2\/§N/((N+2)(N2 —1)2))
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2.5 Ranked-Set Sample Estimator (RSS)
The ranked-set sample estimator (RSS) for Q(§) is obtained from the
generalized ranked-set estimator when S = {1,2,..,N}. The estimator is

QA(E.,)RSS =fipss + \/§6RSS (28-1)
N N
= %Bi (N)gss Xiny + gl Ci(NV)pss Xin)
where
B, (N)gss = (N +1)/(2i(N =i+ 1DSy)
C,(N)pss =3 (N+l)(2i—N—l)(ZE_,—l)/(2\/§i(N—i+l){(N+l)SN —2N})

N
Sy =2/D)
i=1
RSS = {1,2,...N}

The variance of the estimator is

Var(Q(&)gss) = 607 (3/ (N + (N 2)Si)
+e- DTV +2){(N +1)S, - 2N})

3. COMPARISONS

In this section comparison has been made between generalized ranked-set
minimum variance unbiasedwestimator (GR-MVUE), simple estimator (SE),
ranked-set sample" estimator,(RSS) and best linear unbiased estimator (BLUE).
Generalized ranked-set minimum variance unbiased estimator is more efficient
than simple estimator, ‘ranked-set sample estimator and best linear unbiased
estimator. This is apparent from Table 2 and the properties of the simple estimator
and ranked-set sample estimators. The simple estimator is more efficient than
ranked-set sample estimators as well as the best linear unbiased estimators. The
ranked-set sample estimator is more efficient than the best linear unbiased
estimator.

Simple estimator is more efficient than ranked-set sample estimator for N = 3
and osgsﬁ(zznlﬁ—&/ﬁ)andN >4 and 0<E<1. This can be seen by
considering even and odd sample cases.

When N is even, let N = 2m where m > 1. When m > 2, S, < (2m +1)/2 and
therefore
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Var(0(9) gss ) - Var(0@)sE)
= 652 ((3 [(N+D(N+2)Sy ) + & 1) /((N+2){(N+1)SN - 2N}))

_1202((3/(N+2)(N+1)2) +(25-1)? /((N+2)(N—l)2))

_ 2 18 ~ 36
Cm+D)Q2m+2)Sy,  2m+2)2m +1)>

N 6(25-1) o 120e-1)?
@m+2){@m+1)Sy,, —2m|  2m+2)2n-1)?

2 18 36
>o7| ( -
[ Qm+1D)Q2m+2)2m+1)/ 2em2m + 221 + 1)

6(2&-1)% -1
(2m+2){(2m+1)(2m+1)/2— Zm} (2m+2)(2m—l)2
=0.

Therefore when N > 4 and.is even, Simple Estimator (SE) is more efficient than
ranked-set sample estimators (RSS)

When N is odd, let N.= 2m+1. When m > 2, Sy, < 3/2 + 4m’/(2m+1)’, then
Var (O g ) = ¥ar{0E) 51 )
- 602 ((3/((N+1)(N+2)SN)+(2F,—1)2 /((N+2){(N+1)SN —2N}))
- 1202( 3N /(14 NP (N +2)N-1)
+ (26-1)2N2 /((N—1)3 (N+1)(N+2))

+2\/§N/((N+2)(N2 —1)2))
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2 18 N 6(26 1)
Q@m+2)2m+3)Sy,,.1  @m+3){2m+2)S,,, | ~22m+1)}

_362m+1)? _ee-n2em+n?
Qm+2P>2m+3)2m)  2m) @m+2)(2m+3)
2432m+1)(2E~1) ]
Cm+3)@m+1)% — 1)?

2
:02[ 18 6(2¢-1)

(2m+2)(2m+3)S),, 14 : @m+3){(2m+2)S5,, .1 —22m+1)}
L 36m+D? 1202812 @m+p?
Qm+2° 2m+3)2m)  2m)> 2me 2)2m+3)

O 24{32m+1)(2E-1)
Qm+3)(2m+1)% - 1)?

>02 18
(2m+2)(2m+3)(3/2 Lam? /(2m+1)2)

6(26 1)
(2m+3){(2m+2)(3/2 +4m3 /(2m+1)2) - 2(2m+1)}

+

36(2m +1)2 C1228-122m+1)?
Qm+2°2m+3)2m)  2m) 2m+2)2m +3)

243(2m+1)(2E-1)

(2m +3)((2m 12 - 1)2

After simplifying, the expression is
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Var(é(&)Rss) - Var(é(&)SE )
>GB(1+2m)(-3 + 12E-12&2

+m (33 + 63 + 132E-123 £-132€6%)
+m? (-156 + 48 /3 + 588 £ - 96 /3¢ - 588:2)
+m® (392 + 138 /3 + 1340 & - 276 /3 &- 1340 £2)
+m* (488 + 208 \3 + 1544 & - 416 /3 & - 1544 £2)
+m> (-160 + 304 /3 + 448 & - 608 /3 £ - 448 £2)
+m® (160 + 480 /3 - 1120 & - 960 +/3 & + 1120 £2)
+m’ (128 + 544 /3 - 1664 & - 1088'\3 & + 1664 £2)
+m® (256 + 384 /3 - 1024 & - 768 /3 £ + 1024 £2)
+m’ (256 + 128 /3 - 256/ 2256 \/32&+ 256 £2)) )/
@m’ (1 +m’G+2mQG+ 12m + 12 m?
+8m®)(1 + 3m + 4m’ %8 m*))

The bracket containing & terms in the numerator of the right hand side of the
above equation, is rewritten as (3/+12& - 12&2 + mfy(§) + mzfz(é) + m’fy(&)
+ m*E(8) + m*f() + mf(€) + mBEYF mPR(E) + m’f(€) ) where £(5) are the
coefficients of m' ( 1< i <9 ). The function fy(§) is positive for 0 < £ < 1. The

function fi(&) ( 1< 1 < 8 )uis either positive or negative depending on the value of €.
Form>15and 0 <&<.1,

m® (12 fo(E)+5(8)) + Ml (24 £o(E)+£5(8)) + m® (20 fo(E)H(E)) + m’ (21 fy(E)H5(E))
+m* (25 fo(&)H(E))Fm’ (19 fy(E)+H(E)Fm’ (7 fo(E)+H(E))+m (2 fy(E)+H(E))
H((((M-12)m-24)m-20)m-21)m-25)m-19)m-7)m-2) fo(&) -3 +12& - 12E*> 0

Therefore, when Nisoddand N>31 and 0 << 1

Var(Q(&) gss) — Var(Q(&)g;) > 0

It can also be shown that when N =3 and 0<¢ Sﬁ(ZZ +11/3 - 6\/ﬁ) or

when 5 <N<30andisoddand 0<E<1  Var(Q(E)zs) > Var(OE) ) -

Simple estimator is also more efficient than best linear unbiased estimator
when N > 4 and 0<¢& <1. The relative efficiencies of simple estimator compared
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to ranked-set sample estimator and best linear unbiased estimator are presented in
Table 3 for 2 <N <10 and £ =0.01, 0.05, 0.5, 0.9, 0.95

Ranked-set sample estimator is also more efficient than best linear unbiased
estimator when N > 4 and 0 <& <1. The relative efficiencies of ranked-set sample

estimator compared to best linear unbiased estimator are presented in Table 4 for
2<N<10and §=0.01,0.05,0.5,0.9, 0.95

4. CONCLUSION

It is evident that the generalized ranked-set minimum variance unbiased
estimator, the simple estimator and the ranked-set sample estimator are all more
efficient than the best linear unbiased estimator.

The simple estimators are more efficient than ranked-set sample estimators as
well as the best linear unbiased estimators. The simple’estimator has a closed form
and the expression for the variances, has been derived: The simple estimators are
more useful than the ranked-set sample estimatorsior the bestdinear estimators.
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Table 1: Coefficients for computing Q(&)GR_ MVUE

N SGR-MVUE E 1 2 3 4 5 6 7 8 9 10
2 1,2} 095 -0.2794 1.2794

3 {133} 0.95 -0.0196 0.5098 0.5098

4 {3444} 095 0.2010 0.2663 0.2663 0.2663

5 {1,555,5} 095 01103 0.2224 0.2224 0.2224 0.2224

6 {1,6,6,6,6,6} 095 01363 0.1727 0.1727 01727 04727 0.1727

7 {,1,1,1,1,1,7} 095 0.1536 0.1411 0.1411 0.1411 (0.1411 0.1411 0.1411

8 {1,8,8,8,83838,8} 095 0.1660 0.1191 0.1191 0.1191 0.4491 04191 0.1191 0.1191

9 {1,1,9,9,9,9,9,9,9} 095 0.0876 0.0876 0.1178 0.4178 0.11780.1178 0.1178 0.1178 0.1178

10 {1,1,10,10,10,10,10,10,10,10} 0.95 0.0912 0.0912 0.1022 0.1022.,0.1022 0.1022 0.1022 0.1022 0.1022 0.1022
2 1,2} 09 -0.1928 1.1928

3 {233} 0.9 0.0762 0.4619 0.4619

4 {2444} 09 0.1726 0.2758 _0.2758 .0.2758

5 {1,555,5} 09 0.1536 0.2116 0.2116 0.2116 0.2116

6 {1,6,6,6,6,6} 09 0.1767 0.1647 .0.1647 '0.1647 0.1647 0.1647

7 {1,1,1,1,1,1,7} 0.9  0.1921 <0.1347 0.1347 0.1347 0.1347 0.1347 0.1347

8 {1,1,8,8,83838,8} 09 0.1015 0.1015, 0.1328 0.1328 0.1328 0.1328 0.1328 0.1328

9 {1,1,99,9,9,999} 0.9 0.4057,0.1057 0.1127 0.1127 0.1127 0.1127 0.1127 0.1127 0.1127

10 {1,1,10,10,10,10,10,10,10,10} 0.9  0.1089 0.1089 0.0978 0.0978 0.0978 0.0978 0.0978 0.0978 0.0978 0.0978
2 (1,2 0.5 < 70:5000.0.5000

3 (1,23} 0.5 0.3636 0.2727 0.3636

4 {1144} 0.5 0.2500 0.2500 0.2500 0.2500

5 {1,1,1,5,5 0.5 0.1667 0.1667 0.1667 0.2500 0.2500

6 {1,1,1,6,6,6} 05 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667

7 {1,111,7,7,7} 0.5 0.1250 0.1250 0.1250 0.1250 0.1667 0.1667 0.1667

8 {1,1,1,1,8838,8} 0.5 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250

9 {1,1,1,1,1,9,9,9,9} 0.5 0.1000 0.1000 0.1000 0.1000 0.1000 0.1250 0.1250 0.1250 0.1250

10 {1,1,1,1,1,10,10,10,10,10} 0.5 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
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Table 1 (continued)

N SGR-MVUE E 1 2 3 4 5 6 7 8 9 10
2 1,2} 01 1.1928 -0.1928

3 (11,2} 01 04619 04619 0.0762

4 {1,113} 01 02758 0.2758 0.2758 0.1726

5 {1,1,1,1,5} 01 02116 02116 02116 0.2116 01536

6 {1,1,1,1,1,6} 01 01647 0.1647 0.1647 0.1647 < 0.1647 0.1767

7 {111111,7} 0.1 01347 01347 0.1347 0.1347 04347 0.1347 0.1921

8 {11,1,1,1,1,8,8} 01 01328 01328 0.1328 0.1328 0.1328° 0.1328 0.1015 0.1015

9 {1,111,1,1,199} 01 01127 01127 01127 0.1127 701127 0.1127 0.1127 0.1057 0.1057

10 {1,1,1,1,1,1,1,1,10,10} 01 0.0978 0.0978 0.0978, 0.0978_.0.0978 0.0978 0.0978 0.0978 0.1089 0.1089
2 1,2} 0.05 1.2794 -0.2794

3 {113} 0.05 0.5098 0.5098.+:0.0196

4 {1,112} 0.05 0.2663 0.2663 0.2663 ' 0.2010

5 {1,1,1,1,5} 0.05 0.2224 0.2224,0.2224 0.2224 0.1103

6 {1,1,1,1,1,6} 0.05 047274 0.1727 “0.4727 04727 01727 0.1363

7 {1,111,11,7} 0.05 01411 01411 01411 01411 0.1411 0.1411 0.1536

8 {11,1,1,1,1,1,8} 0.05 01491°,0.1191 0.1191 0.1191 0.1191 0.1191 0.1191 0.1660

9 {1,111,1,1,199} 0.05_ 01178, 0.1178 0.1178 01178 0.1178 0.1178 0.1178 0.0876 0.0876

10 {1,1,1,1,1,1,1,1,10,10} 0.05° 0.1022° 0.1022 0.1022 0.1022 0.1022 0.1022 0.1022 0.1022 0.0912 0.0912




Table 2: Variances and relative efficiencies for generalized ranked-set
minimum variance unbiased estimator

N g F0@ne) Yr0@n)  Var(0)s) - Ver(0E)y)
o’ Var(Q(é)GR—MVUE) Var(Q(&)GR—MVUE) Var(Q( )MVUE)

2 095 3.4300 0.7915 1.0000

3 095 0.7023 1.9736 1.7371 1 .9989
4 0.95 0.2625 3.3148 2.3743 1.6002
5 095 0.1500 4.0131 2.5016 1.9035
6 095 0.0924 4.7911 2.6951 1.5191
7 095 0.0626 5.4349 2.8214 1.7113
8 095 0.0451 5.9706 2.9036 1.4245
9 095 0.0331 6.6032 3.0406 1.5658
10 0.95 0.0248 7.3010 3.2085 1.4006
2 0.9 2.9200 0.8425 1.0000 1.0000
3 09 0.5865 2.1894 1:8192 2.1315
4 0.9 0.2620 3.1047 2.1103 1.4591
5 09 0.1448 3.9074 2.3205 1.8060
6 09 0.0919 4.5421 2.4417 1.4171
7 09 0.0637 5.0381 2.5056 1.5568
8 09 0.0450 5.6677 2.6458 1.3370
9 09 0.0327 6.3290 2.8021 1.4789
10 0.9 0.0248 6.9205 2.9283 1.3161
2 0.5 1.0000 1.5000 1.0000 1.0000
3 05 0.4909 1.8333 1.0000 1.0313
4 05 0.2400 2.5000 1.2000 1.0000
5 05 0.1488 2.8800 1.2613 1.0000
6 05 0.0918 3.5000 1.4286 1.0000
7 05 0.0638 3.9184 1.5112 1.0000
8 05 0.0444 4.5000 1.6557 1.0000
9 05 0.0331 4.9383 1.7456 1.0000
10 0.5 0.0248 5.5000 1.8778 1.0000
2 0.1 2.9200 0.8425 1.0000 1.0000
3 041 0.5865 2.1894 1.8192 1.0682
4 041 0.2620 3.1047 2.1103 1.4591
5 041 0.1448 3.9074 2.3205 1.2363
6 041 0.0919 4.5421 2.4417 1.4171
7 041 0.0637 5.0381 2.5056 1.2045
8 041 0.0450 5.6677 2.6458 1.3370
9 041 0.0327 6.3290 2.8021 1.2193
10 0.1 0.0248 6.9205 2.9283 1.3161
2 0.05 3.4300 0.7915 1.0000 1.0000
3 0.05 0.7023 1.9736 1.7371 1.0000
4 0.05 0.2625 3.3148 2.3743 1.6002
5 0.05 0.1500 4.0131 2.5016 1.2851
6 0.05 0.0924 4.7911 2.6951 1.5191
7 0.05 0.0626 5.4349 2.8214 1.3075
8 0.05 0.0451 5.9706 2.9036 1.4245
9 0.05 0.0331 6.6032 3.0406 1.2772
10 0.05 0.0248 7.3010 3.2085 1.4006
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Table 3: Variances and relative efficiencies for simple estimator

N £ Var(Q(é)sE) Var(Q(é)RSS) Var(Q(a)BLUE)
o? Var(Q(@)SE) Var(Q(ﬁ)SE)
2 0.95 3.4300 1.0000 0.7915
3 0.95 1.4037 0.8690 0.9874
4 0.95 0.4200 1.4837 2.0714
5 0.95 0.2856 1.3142 2.1083
6 0.95 0.1404 1.7742 3.1539
7 0.95 0.1071 1.6487 3.1759
8 0.95 0.0643 2.0384 4.1914
9 0.95 0.0519 1.9419 4.2171
10 0.95 0.0348 2.2907 5.2126
2 0.9 2.9200 1.0000 0.8425
3 0.9 1.2500 0.8535 1.0272
4 0.9 0.3822 1.4464 2.1279
5 0.9 0.2615 1.2848 2.1635
6 0.9 0.1302 1.7230 3.2051
7 0.9 0.0992 1.6094 3.2362
8 0.9 0.0601 1.9790 4.2393
9 0.9 0.0484 1.8948 4.2796
10 0.9 0.0327 2.2250 5.2583
2 0.5 1.0000 1.0000 1.5000
3 0.5 0.5063 0.9697 1.7778
4 0.5 0.2400 1.2000 2.5000
5 0.5 0.1488 1.2613 2.8800
6 0.5 0.0918 1.4286 3.5000
7 0.5 0.0638 1.5112 3.9184
8 0.5 0.0444 1.6557 4.5000
9 0.5 0:0331 1.7456 4.9383
10 0.5 0.0248 1.8778 5.5000
2 0.1 2.9200 1.0000 0.8425
3 0.1 0.6265 1.7030 2.0495
4 0.1 0.3822 1.4464 21279
5 0.1 0.1790 1.8769 3.1604
6 0.1 0.1302 1.7230 3.2051
7 0.1 0.0768 2.0801 4.1826
8 0.1 0.0601 1.9790 4.2393
9 0.1 0.0399 2.2982 5.1909
10 0.1 0.0327 2.2250 5.2583
2 0.05 3.4300 1.0000 0.7915
3 0.05 0.7023 1.7371 1.9736
4 0.05 0.4200 1.4837 2.0714
5 0.05 0.1928 1.9466 3.1229
6 0.05 0.1404 1.7742 3.1539
7 0.05 0.0818 2.1578 4.1566
8 0.05 0.0643 2.0384 4.1914
9 0.05 0.0423 2.3807 5.1701
10 0.05 0.0348 2.2907 5.2126
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Table 4: Variances and relative efficiencies of ranked-set sample estimator

N £ Var(Q(&)RSS) W
G Var(Q(Z’;)RSS)
2 0.95 3.4300 0.7915
3 0.95 1.2199 1.1362
4 0.95 0.6232 1.3961
5 0.95 0.3753 1.6043
6 0.95 0.2492 1.7777
7 0.95 0.1765 1.9263
8 0.95 0.1310 2.0562
9 0.95 0.1008 21717
10 0.95 0.0797 2.2755
2 0.9 2.9200 0.8425
3 0.9 1.0669 1.2035
4 0.9 0.5528 1.4712
5 0.9 0.3360 1.6839
6 0.9 0.2244 1.8602
7 0.9 0.1597 2.0108
8 0.9 0.1190 2.1421
9 0.9 0.0918 2.2586
10 0.9 0.0727 2.3633
2 0.5 1.0000 1.5000
3 0.5 0.4909 1.8333
4 0.5 0.2880 2.0833
5 0.5 0.1877 2.2833
6 0.5 0.1312 2.4500
7 05 0.0964 2.5929
8 0.5 0.0736 2.7179
9 0.5 0.0578 2.8290
10 0.5 0.0466 2.9290
2 0.1 2.9200 0.8425
3 0.1 1.0669 1.2035
4 0.1 0.5528 1.4712
5 0.1 0.3360 1.6839
6 0.1 0.2244 1.8602
7 0.1 0.1597 2.0108
8 0.1 0.1190 2.1421
9 0.1 0.0918 2.2586
10 0.1 0.0727 2.3633
2 0.05 3.4300 0.7915
3 0.05 1.2199 1.1362
4 0.05 0.6232 1.3961
5 0.05 0.3753 1.6043
6 0.05 0.2492 1.7777
7 0.05 0.1765 1.9263
8 0.05 0.1310 2.0562
9 0.05 0.1008 21717
10 0.05 0.0797 2.2755
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Multistage Median Ranked Set Samples for
Estimating the Population Mean
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ABSTRACT

Multistage median ranked set samples method (MMRSS) is considered. The
estimator of population mean using MMRSS method'1is compared with that using
simple random sapling (SRS) and ranked set sampling (RSS)_ amethods. It is noted
that the estimator of population mean using' MMRSS\is unbiased and more
efficient than its counter parts for almost all distribution considered if the
underlying distribution is symmetric. For,asymmetric distributions considered in
this study, MMRSS estimator has a smaller bias, and it's preferable for even
sample size.

KEYWORDS

Ranked set sampling; median ranked set sampling, multistage median ranked
set sampling.

1. INTRODUCTION

Ranked set sampling, (RSS) method was first proposed by Mclntyre (1952) for
estimating the mean of pasture yields. Mclntyre showed that the mean of m units
in the ranked set sampling was unbiased and had a smaller variance than the mean
of the same number of observations selected by simple random sampling. Hence
the ranked set sampling is more efficient than simple random sampling when
estimating the population mean. Takahasi and Wakimoto (1968) provided the
mathematical properties of RSS. Dell and Clutter (1972) showed that RSS
estimator is an unbiased for the population mean regardless of error in ranking.
Muttlak (1997) suggested using median ranked set sampling (MRSS) method, and
showed that MRSS estimator is more efficient than the usual RSS estimator based
on the same sample size. Al-Saleh and Al-Omari (2002) introduced multistage
ranked set sampling, that increase the relative efficiency for estimating the
population mean for fixed sample size.
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144 Multistage median ranked set samples for estimating the population mean

In this paper we introduce a new modification of RSS, namely, multistage
median ranked set sampling. The usual sample mean is suggested as an estimator
of the population mean using the MMRSS procedure.

2. MULTISTAGE MEDIAN RANKED SET SAMPLING

Multistage median ranked set sampling procedure can be described as follows:

Step 1: Randomly selected m’™*!

where r is the number of stages.

sample units from the target population,

Step 2: Allocate the m"*' sample units as randomly as possible into m” sets
each of size m .

Step 3: For each m’ sets in step 2, if the sample'size m is odd, select for
measurement from each m” sets the ((m+1)/2)th smallest rank, i.e.
median of the sample. If the sample size@mis even, select for measurement
from the first each m” /2 sets the (m/2)thwsmallest rank and from each

other m" / 2 sets the ((m+2)/2)th smallestwank. This step yield m"™" sets
each of size m.

Step 4: Without doing any ‘actual quantification, repeat step 3 on the m'™

ranked set to obtaingm’" second stage ranked sets, each of size m . The

process is continued using step 3 up to the rth stage to get a sample of size
m from MMRSS.

Finally, the m “units identified in step 4 are actually measured only for
estimating the mean of'the variable of interest. The whole process can be repeated
k times to obtain an MMRSS of size n =km .

To clarify this method, let Xl.(r)j be the ith sample unit of the jth set at stage r.

Example 1: Consider the case of m =3 and » =2, so that we have 27 units.

0) ,(0) (0) (0) (0) (0 (0 ,(0) ,(0) ,(0) ,(0) (0) (0) (0)
Xy Xy T Xy Xy X T, X T X T Xy T X L Xt XL Xt X3 Xy

0) ,(0) (0) _(0) ,(0) (0) _(0) ,(0) _(0) _(0) ,(0) _(0) _(0)
X5 X16 > X177 X187 X197» X0 - Xo1 2 X 0" X337, Xog', Xo5™» X6 X7
Allocate them into 9 sets each of size 3 at zero stage (SRS), and then rank
visually the units within each sample with respect to the variable of interest as
following
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Thus, the set {Y((rfill)/z,Y((ﬁzl) /2,}’((,5131)/2} is a second stage median ranked set

samples. The actual quantified for estimating the variable of interest will achieved
using only these three units. Thus, the number of quantified units, which is 3, is a
small portion of the number of sampled units, which is 27, but all sampled units
add to the information content of the quantified units. Hence, we compare this
sample with a sample of size 3, not 27, of SRS.

Figure 1: Display of 27 units in 9 sets up to 2 stage using MMRSSO
Sets First stage Second stage

m7 (O3
(2)3 Y(m+1)/2 2 Y(m+1)/2 >

Yiinyo = med 19
(m+1)/2

08 _ [ 1(0)8 (0)8 1 (0)8 N (0)8
A7 = Xfl) ’sz) @) Y((m+1)/z =med| 4

NI
o @ e )fmﬂ)/z—med

O _ (0)1 (0)1 (0)1 DL _ (0)1
A =X XG X Yy = med(4)
Y((l)ll)/z Y((l)zl)/2
0)2 _ 0)2 (0)2 0)2 12 _ (0)2 (2)1 - m+ > S (m+ >
4 _{X((l) X) ’st) } (m+1)/2—med(A ) Yinyg™= med a3
(m1)/2
(0)3 _ 0)3 (0)3 (0)3 D3 _ (0)3
A0 =X XGP KGR 105y = med( A7)
0)4 _ 0)4 0)4 0)4 4 _ (0)4
A =L XX | O = med(4%)
Y((1)41)/2 Y((1)51>/2
©0)5 _ [ 1A0)5 1A0)5 A0)5 s (0)3 2 m+1)/22 L (m+1)/2>
A —{Xfl) ,sz) va3) } Y(<m+1)/2 —med(A ) Yoo =med 16
(m1)/2
006 _ [ 1A(0)6 1A0)6 1-0)6 6 s (0%6
A0 =[X5. X0 XG°| | Yy, Samed (A"
(0)7 (0)7 (0)7 0)7 17 | (0)7
A :{X(l) X5y X3 (m+1)/2—med(A )

)
}

{
A(0)9 _ { X{0)9’ X{0)9 X<0)9

3. GENERAL SETUP AND SOME BASIC RESULTS
Let X, Xia, oo Xims Xopo Xogs oo Xopseos Xops X,

ml> m2s

o Xy be m
independent random samples each of size m, assume that each variable has the

same distribution function F(x) with mean p and variance o, Let

Xiays Xiys s Xigmy ((=12,..,m) be the ordered statistics of the ith sample

d
Xis Xigy ooy Xy (i=1,2,..,m)  Let 1}, 1,,....Y,, be RSS, then ¥, =X ;).
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At the kth cycle (k=1,2,...,n), for odd sample size, let Yl.g(’r)nﬂ)/z)k be the

median of the ith sample (i =1,2,...,m) at stage r.

Thus, the quantified sample Y N Yy 1 oo Yy X
l(ﬂjk 2(&)]{ m(ﬂjk
2
will denote the MMRSSO.

For even sample size, let YiE;zQ)k be the (m/2)th order statistic of the ith

sample (i=1,2,...,[;/=m/2), and let ¥, l((m+2)/2)k be the ((m+2)/2)th order statistic
of the ith sample (i =/+1,/+2,...,m) each at stage . Thus, the quantified sample

YO yO L yn L y» LY
1(%)1{ 2(%)k %[%]k %H(%H]k [ ) +1Jk
will denote the MMRSSE.

The estimator of the population mean p using multistage median ranked set
samples can be defined as

s _ 13 S
YMMRSSO—mn kZIZi l((m+1)/2)k, if m is odd
1

Pairss = _ i m
(zl VoV + %Yig(’;mmk ] if m is even,/=m/2.
i= i=l+

3.1)

Assume that the eycle is repeated once; let us define the following notations:

(r) —
YMMRSSE - Z
mn =1

2 .
Let p=E(X,), o =Var(X,), (=12..m), n),, :E(YI.EQH)/Z),
o) Var (1) " =E(r) Var (¥
Omiy2 = VAl Lyniny2 ) s Homiay = i(m/2) | » G(m/Z) = var| £;,,2)
_ (r) 2(r) _ (r)
l"’(:n+2)/2 = E(Y;'(:n+2)/2)’ c’(mr+2)/2 = Var(Y;(:rH—Z)/Z) .

Based on these notations we have

r 1 r
YAEIA;RSSO = Y(m+l)/2 ) (3.2)
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v(r 1 r

£ (YAEIA/)IRSSO ) - ”Em)ﬂ)/z (3.3)

1 2(r

Var(YMMRSSO) G(r(nJr)l)/2 (3.4)

v(r l v(r v(r

Y]\£I]\ZIRSSE = E(Y((m/)Z) + Y(gn-)%—Z)/Z) ) (3.5)
v(r 1 r r

E (YAEIAEIRSSE ) = E(HEm)/z) + Hgm)u)/z ) > (3.6)

v(r 1 2(r 2(r
Var(YAEIA/)IRSSE ) m (G(r(n/)Z) + c7(r(n+)2)/2 ) (3.7

For a random sample from a continuous population.whose pdf is symmetrical
about x=p, (H. A. David and H. N. Nagaraja (2003)), showed that f (1n+x)=

Jon-isny(L—x) . Assume that the distribution is symmetrie”about x=0, then

d
— 2 2
X(i) = X(m—i+1) - Hence, Ky = —Him-i+1) and Sy = O@m-i+1) -

This implies to, ME23/2)=—ME2+2)/2 and c(zr(nr/)z)—c(z,;’lz)/z, and if m is

odd, uffn)ﬂ)/z =u=0. Therefore, E(I?A%]RSSE) =0, E(YA%}RSSO) =0, and

1 20
Var ( MMRSSE) G(mr/z)

The mean square error(MSE) of the estimator Y, A%,RSS is given by

MSE (Vs ) = Var(Tifless )+ ( Bias (Vioiess ))2 (3.8)
Note that, for symmetric distributions
Bias(7igss | = 0, and MSE (V%) ) = Var(7ss )
Lemma 1:

1) If the distribution is symmetric about the population mean, then 7, A%&RSSO

7 (r) . . . .
and Y, reer are unbiased estimators of a population mean, i.e.

B (Z\Z\B[RSSO) H and E( MMRSSE) B
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2) If the distribution is symmetric about the population mean, then the relative
efficiency of Y, AZ&RSSO and ¥, A%RSSE are increasing in » (r >1), except for
the uniform distribution, the lemma is true if »>2 .

Proof:

To prove 1, assume m is odd, then we have

(r) 1 m 1 m -
E(YMMRSSO) ( 2 l((m+l)/2)j ZZE(YZ((m-H)/Z))

In the case of m is even, we have
E(T0 V=Bl L[ sy, + 3y
wmrsse ) = E| —| ZYimoy + 2 Yiimio)
m\ =1 i=l+1
—_ 1 d E Y(’) o E Y(r)
= § (i(m/2)) +i=1211 i(m+2)/2)
1 m
_ ( )
= (Z “z(rr)n/z)+ 3 Ml((r(erz)/z)j
m i=l+1
Since the distribution is symmetric about the population mean, and

Y\ rsso » Ypsse  ateyunbiased/estimators, then we have ul((’,)n /2 =H—¢ and

pl(.(’()m 12y =MFE, wherere- is real number. Therefore,

E(Vifdimsse ) = (zm O+ > (u+s>j

i=l+1

T 2, wh dd, Let Y0 | y® LYY oy YO
0 prove 2, when m is o € 1(7) [WI) m+1( ) ”{WTH)

1 m
be an MMRSSO at stage . Let Var( MMRSSO) =— > Var(Yigfn)ﬂ)u) .
m?

i=

—
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Let Z"™ be the ith median of the sample ¥ (’r;l)
1

YU b and

149

(r=1)

m+l(

y@-D
2( m+1

Then,

m+1

2

2

-

_yen

+1)°
2

e

70D

2

1
mig

let Z0 D =

m[mﬂ],

2
7D\ Zvar(Z0D ) ‘stributi (r=1)
Var( Yy, reeo | = Var| Z and Y}’ has the same distribution as Z;" ™.

Hence,
=L2§Var(Y(’))+ 2 COV(Z(r 1) Z(r 1))

m i#j

Since, Cov(z" ™,z D) >0 (Lehman (1966); Essarysetal. (1997)), and Yan
1 J g
X

2
il )S c” . Therefore,

(1982) showed that for the median of iid sample, Var(

Var(I?A%}RSSO) < Var(I?AE[A;I%SO) andvhence the relative efficiency of YA%}RSSO is
increasing in 7.

In the case of even sample size, let

7 Vthet | v 1<i<
2 ,-[ﬁj 2
A ?
m+2 th of Y(r_l)2 , m+2_1_m.
2 (ﬂ) 2
2

Then the proof is directly as in the case of odd sample size.

Corollary:
1) If the distribution is symmetric about the population mean, then

Var(?z\%&zesso) and Var(?A(lQIRSSE) are less than Var(X g ) at any stage 7.

2) For asymmetric distribution about a population mean, we have

MSE(YA%}RSSO) < Var()?SRS) and MSE(YA%}[RSSE) < Var()?SRS) .
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4. EFFICIENCY OF MMRSS METHOD
Let X;;,X;5,...,X;, be independent random sample with cdf F(x) and pdf f{x),
2

with mean p and variance ¢° .

im

The SRS estimator of the population mean p is given by

— 1 m
Xps =—2X;, 4.1

m =1

with mean E ()? SRS) =u and variance

2

= c
Var(XSRS):—. (4.2)
m
The estimator of the population mean p using RSS is defined as
— 1 m
Xpss =— 2 Xiy » 4.3)
m =1

with mean E ()? RSS) =u and variance
Var (X pgs )= & S R @4
RSS m m2 Pt i : :
From (3.7) and (4.2), if the parent distribution is symmetric about its mean, the

relative efficiency of ?AZ\)IRSS withrespect to X g is given by

eﬁ{()_(SRS’)_IRSS):% and eﬁr()?SR& ?A%RSS):% (4.5)
RSS MMRSS

and if the distribution is non symmetric, using (3.8) and (4.2) the relative efficiency
is given by
MSE (X gzs )

MSE (YAZ\}[RSS ) |

4.1. Results for Uniform Distribution

eff ()? SRS > ?AZ\ZJRSS) = (4.6)

Assume that the variable of interest X has a uniform (0,0) , namely,
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1/6 0<x<6;6>0,

0 elsewhere.

f(x;9)={

2
So that u:g and o° :?—Z,and X,,, hasa beta(i,m—i+1) with pdf

m! ¥ i-1 X mfil
s (5] 50 0<<o

with meant E(X,,, )= and variance

m+1
i(m—i+1)6?

Var(Xin) = (m+D)X(m+2)’

4.1.1)

From (4.1) and (4.2), the SRS estimator of the population mean :g from a

sample of size m , has mean 6/2 , and the variance is given by

2 2
P J: 0 4.12)

= 1 » 1
Var(XSRS)7,%““)‘%)7[? i

From (4.4), the RSS estimator of the population mean p = g has mean

E(Zess)ziiE(Y;)=g

and variance given by
0>

Var (T ) = izf Var (X g ) = o (4.13)

In the case of even sample size, let m>4 and r=1, from (3.3) and (4.1.1)

the estimator of the population mean p = g using MMRSSE is

v (r 1 r
YAEIAZIRSSE = " (Z ngrz/z) 2 l((m+2)/2)j
70 0’
with variance given by Var(Y,;, = 4.1.4)

( MMRSSE ) Am+1)?
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Using equations (4.1.2) and (4.1.4), the relative efficiency of Z%}RSSE with
respect to X g¢ for estimating the population mean is defined as
Var(Xses)  (m+1y? §
Var ( Yifisse ) 3m
This implies that the variance of the sample mean using MMRSSE for

estimating the population mean is less than the variance of the sample mean using
SRS. Assume that the parent distribution is U(0,1), let m=4 and r=1, from

1.

eff ()_( SRS » Y]\%\ZIRSSE ) -

1 1
4.1.1) we have, o2V = — and ¢2¥) =— , and
(4.1.1) 24 =5 34 =55
_ 1(2 4
0] _ 1) (0]
Yyimarsse = Z(E Yo+ ,=23 1&3))
1/ a 1 1 1
= Z(YIEZ)) +150, + 153, + Y, ) ;

_ 1 14 |
(€)] ——|n.— P
Var(YMMRSSE)_m[Z A 25) 100+

And the variance of a SRS of size m=4 from U(0,1)is Var(X g )=0.0208.

Thus, the relative efficiency “of" Y\, with rtespect to X is

eff ()? SRS,YA%RSSE) = 2:083, which agrees with simulation results.

For odd sample sizejuif vn >3 and =1, from (3.2), the estimator of the
. . .= 1 .
population mean u:g using MMRSSO is YASA)/[RSSO :—ZYI‘EBn +1y2)  With
m =1
variance
— 02
Var ( Vs )

ST (4.1.5)

From (4.1.2) and (4.1.5), the relative efficiency of Z&}RSSO with respect to

X srs for estimating the population mean is given by
Var(Xas)  (m+2) o

Var ( Yifiirsso ) 3

eff ( X SRS » Y, A%)ﬂasso ) =
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Clearly, that the variance of the sample means using MMRSSO method for
estimating the population mean is less than the variance of the sample mean using
SRS method.

For m=3 and » =1, assume the parent distribution is U(0,1), from (4.1.1) we
have

21y _ 1

°@ T3
— 1 m

1 1 1 1 1

and ¥, AE[A)/[RSSO =3 g Yigz))k = Yl((z)) + Yz((%) + Y3((2)) ,
= 1 1 1
1 21
Var(Viilusso ) = G((m)ﬂj =33 % s
2

The variance of a SRS of size, m =3, is 0.028.4Hence, the relative efficiency

of YASA)/[RSSO with respect to X g is given by, eﬁ‘()_(SRS,YA%RSSO) =1.666. This
agrees with simulation result. If m=5, we have efff ()_( ks> Y, AEIIA)4RSS0) =2.333, which

indicate that the efficiency of ¥\/jpsso 1S ificreasing in the sample size.

5. SIMUEATION STUDY

To compare the relative efficiency of the proposed estimators for the
population mean using MMRSS against usual estimators using RSS and SRS, we
compared the average of 70.000.sample estimates with sample sizes m =3,4 and 5
for r=12,3 and 4u.Eight distributions, namely, uniform, normal, logistic,
exponential, lognormal, weibull, beta and gamma are considered. The relative

efficiency of the sampling methods considered in this study can be computed using
(4.5) and (4.6).
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Table 1
The relative efficiency of RSS and MMRSS estimators for estimating
the population mean of symmetric distributions

e RSS MMRSS

Distribution - 1 ) =3 -

Uniform (0,1) 3 2.000 1.672 3.152 6.366 13.626
4 2.500 2.085 5.530 20.973 45.022
5 3.000 2.367 6.876 21.351 79.421

Normal (0,1) 3 1.917 2.235 4.969 11.219 25.030
4 2367 2.780 7.674 20.973 56.599
5 2734 3.441 11.906 39.515 147.782

Normal (1,2) 3 1.916 2.196 4.982 11.202 24 813
4 2.346 2.768 7.697 20.669 56.745
5  2.797 3.512 12.294 40.819 151.347

Logistic (-1,1) 3 1.843 2.544 6.168 14.059 31.518
4 2.239 3.152 8.904 24297 65.155
5 2.550 4.131 15.397 50.784 189.983

Table 2
The relative efficiency of RSS and MMRSS estimators for estimating
the population mean of non symmetric distributions
Distribution |RSS MMRSS
m r=1 r=2 r=3 r=4
Exponential (1) 3 RP 1.606 2218 3.074 3.372 3.444
Bias /0.000  0.166 0244 0.279 0.295
4 RP 1.948 2473 3890 5.589 7.482
Bias  0.000 0.168 0.196 0.187 0.173
5 RP 2.159  2.188 2201 2.125 2.105
Bias  0.000 0.218 0.281 0.300 0.305
LogNormal (0,1) 3 RP 1.292 3485 4.100 3.955 3.863
Bias  0.000  0.397 0.545 0.607 0.631
4 RP 1.447 3318 4274 5.158  6.009
Bias  0.000  0.398 0.460 0.450 0.430
5 RP 1.533 2.703 2322 2190 2.145
Bias  0.000 0496 0.609 0.638 0.648
Weibull (1,3) 3 RP 1.629 2257 3.131 3418 3.519
Bias  0.000  0.500 0.731 0.835 0.881
4 RP 1.943 2447 3.863 5584 7433
Bias  0.000 0498 0.586 0.561  0.520
5 RP 2.191 2239 2240 2174 2.147
Bias  0.000 0.652 0.843 0.897 0.914
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Distribution |RSS MMRSS
m r=1 r=2 r=3 r=4
Beta (7,4) 3 RP 2000 2157 4564 9406 18.695

Bias  0.000 0.005  0.007 0.008 0.008
4 RP 2.394 2.605 6.766 17.765 43.601
Bias  0.000 0.004  0.005 0.005 0.005
5 RP 2.765 3.034  9.130 22.232 37.638
Bias  0.000 0.006  0.008 0.008 0.009

Gamma (3,1) 3 RP 1.827  2.268  4.020 6.036  7.583
Bias  0.000  0.180  0.260 0.296 0.312

4 RP 2.202 2.649 5541 10.043 10.138

Bias  0.000  0.178 0.208 0.202  0.203

5 RP 2519 2859 4547 5280  5.548

Bias  0.000  0.233 £0.298 0318 0.324

From Tables 3.1 and 3.2 we can conclude the following:

1.

It can be observed that the estimator of the population mean obtained from
MMRSS is more efficient than the usual.SRS and RSS estimators of population
mean. i.e.,

Var(?A(Z\ZIRSSO) < Var()?SRS) and Var(?j\%}RSSE ) < Var()?SRS) .

For uniform (0,1) distribution, only at the first stage, the relative efficiency of
MMRSS estimator is/less than the relative efficiency of the usual RSS
estimator of population mean.

The relative efficiency of the MMRSS estimators is increasing in » for fixed
sample size. As'an example if the underlying distribution is normal (1,2), the
values of the relative efficiency using » =1,2,3 and 4 with m =3 are 2.196,
4.982, 11.202 and 24.813 respectively. This emphasized that

Var(YA%Rss ) < Var(fﬂ%g}&s ) <...< Var(I?%RSS) < Var(I?A%RSS) )

For non symmetric distributions the MMRSS estimator for estimating the
population mean has a smaller bias, as an example for beta distribution with
parameters 7 and 4, the relative efficiency using MMRSS method with m =3
at the first stage is 2.157 with bias 0.005 while at the 4th stage with the same
sample size, the relative efficiency is 18.695 with bias 0.008. i.e. that,

MSE(¥ess ) < MSE(¥3)ns ) <+ < MSE(¥ {5 ) = MSE (X zs ).



156 Multistage median ranked set samples for estimating the population mean

6. CONCLUDING REMARKS

Gain in efficiency is attained for estimating the population mean using median
multistage ranked set samples, specially if the underlying distribution is symmetric
about its mean. For asymmetric (skewed) distributions, the gain in efficiency is
substantial with even sample size. The use of multistage median ranked set
samples method is feasible for estimating the population mean if odd sample size is
considered, because we only identify the median of the sample.
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ABSTRACT

Double quartile ranked set sampling procedure (DQRSS) and its properties for
estimating the population mean are introduced. The performance of DQRSS with
respect to simple random sapling (SRS), ranked set.sampling (RSS) and quartile
ranked set samples (QRSS) for estimating the population‘meangis considered. The
DQRSS estimator is unbiased of the population"mean for symmetric distributions
about its mean. In addition, the DQRSS method:is.more efficient than the SRS,
RSS, and QRSS for all symmetric and asymmetric distributions considered in this
study. For asymmetric distributions consideredyin this study, DQRSS estimator has
a smaller bias.

KEYWORDS

Ranked set sampling, quartile ranked set sampling, double quartile ranked set
sampling.

1. INTRODUCTION

MclIntyre (1952) introduced ranked set sampling method for estimating the mean
of pasture yields. In situations where the experimental or sampling units in a study
can be more easily ranked than quantified, Mclntyre proposed that the mean of
m sample units based on a RSS as an estimator of the population mean. This
estimator is unbiased estimator with a smaller variance compared to the usual sample
mean based on a SRS of the same size. Takahasi and Wakimoto (1968) provided the
mathematical properties of RSS. Dell and Clutter (1972) showed that RSS estimator
is an unbiased for the population mean regardless of error in ranking. Samawi et al.
(1996) suggested using extreme ranked set sampling (ERSS) for estimating a
population mean, and showed that for symmetric distributions, the ERSS estimator is
unbiased and has a smaller variance than the SRS estimator. Muttlak (1997)
suggested using median ranked set sampling (MRSS) to increase the efficiency of the
estimator and to reduce errors in ranking. Al-Saleh and Al-Kadiri (2000) introduced
double ranked set sampling for estimating the population mean, they showed that the

157
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ranking in the second stage is easier than the ranking in the first stage. Al-Saleh and
Al-Omari (2002) introduced multistage ranked set sampling, that increase the relative
efficiency for estimating the population mean for fixed sample size. Muttlak (2003)
proposed QRSS for estimating the population mean and to reducing the errors in
ranking comparing to RSS.

2. SAMPLING METHODS

2.1 Quartile ranked set samples

In QRSS method, select m units from the population and rank the units within
each sample with respect to a variable of interest. If the sample size is even, select
for measurement from the first m/2 samples the (q,(m+1))th smallest rank and

from the second m/2 samples the (q,(m+1))th smallest rank. If the sample size
is odd, select from the first (m—1)/2 samples the (qu(m +1))th smallest rank and
from the other (m—1)/2 samples the (q,(m+1))th smallest rank, and from one
sample the median for that sample for actual measurement.

2.2 Double ranked set sampling
DRSS can be described as follows:

1) Identify m> elements fromethe target population and divide these elements

randomly into m sets each ofsize m? elements.

2) Use the usual RSS procedure on each set to obtain m ranked set samples of
size m each.

3) Apply the RSSiprocedure again on step (2) to obtain a DRSS of size m.

In this article, we consider double quartile ranked set samples (DQRSS) as a
modification of RSS for estimating the population mean. The performance of
DQRSS with respect to SRS, RSS and QRSS for estimating the population mean,
is considered. The results indicates that the use of DQRSS for estimating the
population mean is more efficient than SRS, RSS and QRSS for all distributions
considered in this study. For asymmetric distributions, the DQRSS estimator has
smaller bias with variance smaller than that of the SRS estimator.

2.3 Double quartile ranked set samples
The DQRSS procedure can be described as follows:

Step 1:  Select m’ units from the population and divide them into m?

samples each of size m .
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Step 2:  If the sample size is even, select from the first m* / 2 samples the
(q;(m+1))th smallest rank, and from the second m? / 2 samples the
(q3(m+1))th smallest rank. If the sample size is odd, select from the
first m(m—1)/2 samples the (q,(m+1))th smallest rank, the
median from the next m samples and the (q;(m+1))th smallest
rank from the second m(m—1)/2 samples. This step yield m sets
each of size m.

Step 3:  Apply the QRSS procedure on the m sets obtained in step 2, to geta
DQRSS sample of size m.

Step 4:  The whole cycle may be repeated n timesto obtain a sample of size
mn from DQRSS.

Note that we will take the nearest integer of (q,(m#+1))th" and (q;(m +1))th,
where q; =0.25 and q; =0.75.

3. ESTIMATING OF THE PORULATION MEAN
Let X, Xppo oo X1t Xty o Xt Xopps X oo X

1m > ml> mm > be m

independent random samples of size #n and assume that each variable X; has the

same distribution function F(x) “with mean p and variance o’. Let
X.(l), X,.(z), - XA(m) (i=12,....,m) be the ordered statistics of the ith sample

1 1

d
Xis Xins oo Xy (@=1259m). Let 1,Y,,....Y, be RSS, then Yi:X(,-). The

im

. . . . = 12 .
estimator of the population mean p using RSS is defined by Yiqo =—2.7;, with
m =1

variance given by
2
= c 1 m
Var(Ypgs) =———5 2. (K -w?’.
m  m” =1
The estimator of the population mean p using SRS is defined by

— 1 m . .
Xps = -~ > X, , with variance o /m.
i=1
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At the kth cycle (k=1,2,...,n), for even sample size, let Y, (q (mi1yk D€ the
first quartile of the ith sample (i=12,...,;/=m/2), and let Y, (q (m+1yk b€ the

third quartile of the ith sample (i =17+1,...,m) . The quantified sample Yl(ql(m )k o

Y, Y, LY will denote the DQRSSE.

Y* bAR 2 2 b
Hamrk LT RTINS

If the sample size is odd, let Y, (qy (m +1)) be the first quartile of the ith sample
(i=L2,.,h), where h=(m-1)/2, ((m +1y/2)c 18 the median of the ith sample

(i=(m+1)/2), and Y(q etk the third quartile of the ith sample

i=h+2,..,m). The quantified sample Y, , Yy y e Y ,
( ) q p 1(q, (m+1)k > L2(q,(m+1)k %(ql(mﬂ))k

Y Y D A will denote the DQRSSO.
L g etk (g (m+1))k Q

The estimator of the population mean using.DQRSS can be defined as

—x 1 =»
Yoonsss =EZ[Z itk Z <q3<m+1>>k] I=m2

Yporss =
DORSS =Y ”

* 1 "
Yporsso =—— o kZ Z (q (mA1)k +Y(h+1)(%+1)k +i Z+2 Yiqsominp p h=(m-1)2

. g S . .
The variance ofy Y,opss for even and odd sample size can be given

respectively by
) 1 n / ) m 9
OpORSSE =5 )y (Z Oi(q,(m+)k T )y Si(qy(m+))k |> I=m/2.
nm” k=1\i=1 i=l+1
*) 1 n h *) *) m *)
c = > o, +0 + > o ,
DORSSO = 5 & | & i(q, (m+1)k (h+l)(%+1]k e i(qs (m+1))k

h=(m-1)2

Assume that ¥, has the mean p;, and the variance G:l-z), Al-Saleh and

Al-Kadiri (2000) showed that
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mo, 2 1 m 9 m " 2
H=2H;, 0 =—| 206G+ 2 (MG —H)
i=1 m i=1 i=1
where p and o are the mean and the variance of the population respectively.

Lemma 1:

Let X be a random variable of pdf f(x) and cdf F(x). Its mean and variance
are p and o° respectively. A random sample of size m was selected and ranked,
let X,., be the rth smallest value of the sample, where » =1,...,m. The pdf and
cdf for X, are

1 a -
(X)) =———————— F T () A=F)" f(x),
Jrm (%) Borm—riD) ()A=F ()™ f(x)
F:’:m(x) :FB(F()C);I",I’)’!—I"+1) ’
respectively, where FB(F(x);r,m—r+1) isla beta distribution function with
parameters (7,m—r+1). Let denote the mean and the variance of X,., as p,.,

and o2, respectively. Then

a. ., =F'la(r)]

b. Won—pitm = F71 [1 - a(r)]

C. szm + (“’r:m - “’)2 < Gz
where a(r) = OB(p,;r,m=r+1)) which is a quartile function for beta distribution
and p, =r/(m+1).

If f(x) is symmetry then

d. My + Wp—pitm = 2“

2 _ 2

c. Gr:m - GM*f‘Fl:m
Proof:

The variance of X,.,

, 1s given by

szm = _[()C —Hpm )zfr:m (x)dx = -[()C - l"’)zf;’:m (x)dx - (l"’r:m - l"’)z

Substituting f,.,,(x) and rearranging the above equation produces
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1

2 _ )2 = N2+
o+ (M =) = [(x—1) (B(r’m_rﬂ)

F (0= F ()" jf (x)dx

Frlol-F)1"”
B(r,m—r+1)

<1, so

O+ (1 ) <07 = [(x—p)” f(x)dx
Using Taylor series, as given in David & Nagarajah (2003), can be shown that
E(X,.) =Wy = [ ¥, (X)dx = F 0 (p,)
Let F,.,(x)=FB(F(x);r,m—r+1)=p,
Utilizing this relationship produces
W = Frn(p,) = F'[a(r)] where a(r)=QB(p,;/sm—r+1)
Let  Fy iy (¥) = FB(F(x);m—r+1,/)=q,, gp+p, =1
Moneriton = Fo it (4,) = F QB (qgitn —r +1.7)]

Since OB(1-p,;m—r+1,r)=1-0B(p,;r,m—r+1), then
Moo = F (1= ()]

If f(x) is symmetry.for any, 0 < o(r) <1
Fl-a(n)]-pe p-F ')

So  Fl=a(r)]+ F ' [o(r)] = By + My yigom = 2H

The variance of X,.,, is given by

) — ! 2
ol = I( ) [OL(F)]) u " (1=u)"" du
B(r,m—r+1)

For symmetrical f(x),
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(F_l(l—u)—F_l[l—a(r)])z

Gr:m =

W A=w)"" du

B(r,m—r+1)
2
(F@-F-a0)])
=] W) du =,
B(m—-r+1,r) ’
Lemma 2:

Let Y., be the rth smallest value of a random sample of size m . The sample
was selected from a population of pdf
1 1 -
m(X)=—————F" T ()(1-Fx)"" f(x
Srm () Borm—r i) ()A=F ()™ f(x)
where the mean and variance correspond to pdf f'(x) aresil and o° respectively.
In addition, let Y, ., be the (m—r+1)thmsmallest value, E(Y,., )=, ,

E(Ym—r+1:m) = “'*mfwrl:m > Var(Yr:m) = G::Zm > Var(Y;n—rJrl:m) = G;szrl:m . Then,
a. w., =F '[ooa(r)]
b i = F - 0toa(r)]
C. Gizm + (“j:m W )2 + (b “)2 <o

If f(x) is symmetry then

d. Hom * Pon—iteme = 2“

¥ _ %2
e. Grm = Omrilum

Proof:
Using the results of lemma 1
Mran = Fronlo()] = F'[oto ()]

Bt = Frm[ 1= ()] = F ' [1=atoa(r)]

*2 * 2 2
Cpm T (ur:m - ur:m) <Orm
. 2 2 2
Since o7, + (U, —H)” <G~ so

*2 * 2 2 2
Cpm T (ur:m - ur:m) + (ur:m - <o
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For any symmetry distribution, and o €[0,1]
(w=F (o) =(F ' (1-a)-p)
S0, Mj:m +u=:n—r+l:m = 2“

The variance of Y,.,, is equal to

L (- E )
2 _-[ urfl(l_u)m—rdu

Cpm =
: B(r,m—r+1)
2
(F' @ —-FTaca()])
= u T (1=u)™" du
B(r,m—r+1)
2
(F*l(u)—F*‘[l—aoa(r)])
=_[ u™ r(l u)l" ldu_ Om- r+1m
B(m—-r+1,r)

Lemma 3:
1. Q*DQRSS is an unbiased estimator, of the- population mean, under the
assumption that the population is.symmetric about its mean.
2. Var( DQRSS) is less. thaf each of Var(Xgyg), Var(Xgy) and

Var(YQR 55) -
3. The mean square erroriof DQRSS estimator is less than the variance of the
SRS estimator forasymmetric distributions i.e., MSE(Y;PRSS) < Var(Xgg) .

Proof:
For m even

I [\/]\

N 1
Hporsse = —( i(r:m) + Z i(m-r+1: m)j

3

T MNI‘

z(rm) + Z E( i(m— r+lm))j

,m+l

E (HDQRSSE —(

“al

S

M|§

“’rm + “m r+1mj u

§|~

and
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Var(ﬁLDQRSSE) ni (ZVar( l(,m))+ 2 Var( o r+1m))]

=41

For m odd

A 11 &
l'lDQRSSO :;[Z Yi(r:m) + 2 Yz(m —r+1l:m) +Ym+1 J

E(Y;(r:m) ) + ) ﬁ E(Y;(m—r-%—l:m) ) +E (Y%:m )j

m+3 2

nl n
Var(llDQRSSO ) = #[ 22: Var(Y[(r:m) ) N > Var(Y;(mfrH:m) ) + Var(YM:m )J

i
T

4. EFFICIENCY OF DQRSS

To compare the considered estimators for the population mean using DQRSS
with respect to the SRS;"RSS, and QRSS procedures. Three symmetric
distributions, namely, huniform, normal and logistic and three asymmetric
distributions, namely, exponential, gamma and weibull are considered. The relative
efficiency of the unbiased estimators using ranked set samples procedures for
estimating the population mean with respect to SRS is defined as

e 7y Var(ey)
eﬁ‘(XSRS’YRSS)_ Var(YRsS)

Var()_(_SRS) .
MSE (Vg5

, and for biased estimators the relative efficiency is

defined as eff’ ()_( SRS » ngg ) =

Assume the cycle is repeated once, Tables 1 and 2 summarize the relative
efficiency of the RSS, QRSS and DQRSS estimators with sample sizes
m=6,7,10,11and 12, for each simulation, 60,000 iterations were performed.
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Table 1
The relative efficiency for estimating the population mean using RSS, QRSS,
and DQRSS with respect to SRS with sample size m =6 and 7.

m==6 m=7
RSS ORSS DOQORSS RSS ORSS DOQRSS

Distribution

Uniform (0.1) eff 3.500 3.214 16.966 4.000 3.809 23.445

Bi
Uniform (0.2) g’;‘: 3.500 3.232  17.267 4.000 3.770  23.021
Normal (0.1) ij;s 3.191 3.639 11.906 3.658 4.065 14.669
Normal (1.2) Zg;s 3210 3.645 11.950 3.631 4.051 14.590
Logistic (-1.1) Z’{aS 2.868 3.729 11.707 3259 0 4.144 13.845
Exponential (1) Z?;S 240 ?)ggz 3(5)41‘2 e (3)(3)32 gg?g
Exponential (2) jﬁzs 2407 (3)84112 zggz o (3)352 gggg
Exponential (3) ZJ?;S - 38;1 33(6): e (3)332 (8)3;3
Goma 0. DA g oo o o
e Xl R

eff 2459 3.029  9.660 2.755 3334  8.503

Weibull (1,3
cibull (1L3) g s 0274  0.047 0227  0.178
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Table 2
The relative efficiency for estimating the population mean using RSS, QRSS
and DQRSS with respect to SRS with sample size m =10,11 and 12

Distribution m =10 m=11 m=12

RSS ORSS DORSS RSS ORSS DORSS RSS ORSS DORSS

Uniform  eff’ 5500 5.085 38.097 6.000 5.637 47.852 6.500 6.730 66.637

0,1) Bias
Uniform  eff 5.500 5128 38.463 6.000 5.680 47.627 6.500 6.667 66.234
0,2) Bias
Normal eff 4.827 5.736 31.288 5.197 6.067 35.034 5.673 6.338 37.261
0,1) Bias
Normal eff 4844 5.850 31.721 5.195 6.240 35.046 5.652 6.412 36.958
(1,2) Bias

Logistic eff 4198 6.270 32.220 4.533 6.755 34.801 4.911 6.728 34.315
(-1,1) Bias
Exponential eff  3.440 3.281 15.024 3.671 3.542 28.555 <3.922 4.693 8.303

1 Bias 0.117  0.056 0.105 _ 0.001 0.061 0.083
Exponential eff  3.426 3.288 14.916 3.659 3.521°°28.406 3.962 4.735 8.409
) Bias 0.059 0.028 0.053_ 0.000 0.031  0.042
Exponential eff  3.394 3.252 14.844 3.653 3.535 28.775 3.964 4.773 8.452
3) Bias 0.039 0.019 0.035 0.000 0.020 0.028
Gamma eff 3.440 3.276 14.878 3.723, 3.594 28.877 3.919 4.697 8.372
1,2) Bias 0.234__ 0.113 0.210  0.001 0.123  0.167
Gamma eff 3.460 3.274 14.963,3.638 3.539 28.510 3.990 4.711 8.350
(1,3) Bias 0.354 0.170 0.314  0.002 0.184  0.250
Weibull  eff 3.471,3.245 14,808 3.699 3.576 28.675 3.960 4.751 8.480
(1,3) Bias 0.352  0.170 0313  0.002 0.185 0.249

From simulation results, we conclude the following:

1. A gain in efficiency is attained using DQRSS for estimating the population
mean for all cases that considered in this study. As an example for normal
(0,1), with m=11, the relative efficiency of the DQRSS 53.034 for
estimating the population mean comparing this value with its counterpart
5.197, 6.067 using RSS and QRSS respectively.

2. If the underlying distribution is asymmetric, again in efficiency is attained
using DQRSS, regardless of a smaller bias. As an example, for m =11 the
relative efficiency of the DQRSS 28.877 with bias 0.001 for estimating the
population mean of a gamma distribution with parameters 1 and 2, while for
m=11 the relative efficiency using RSS is 3.723 and by using QRSS its
3.594 with bias 0.210.
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5. DOUBLE QUARTILE RANKED SET SAMPLING
WITH ERRORS IN RANKING

Dell and Clutter (1972) showed that the sample mean using RSS is unbiased
estimator of the population mean regardless of whatever the ranking is perfect or
not, and has a smaller variance than its counterpart SRS with the same sample size.

Muttlak (2003) showed that QRSS with errors in ranking is unbiased estimator
of the population mean when the underlying distribution is assumed to be
symmetric about its mean.

Let qul(m 41y and Y,-Fq}(m 41y be the first and third judgment quartile of the ith

sample (i=1,2,...,m) respectively with errors in ranking. The estimator of the
population mean with error in ranking using DQRSS cande defined as

1 »(d -
YDQRSSE =—2 (Z ilq; (m+1)k Zl Y mik j,l =m/2

mn g=1\i=1
YD* =< . 1 =» h m
OfSS ), =27 +Y° + XY
DOQRSSO, mn ol & q, (m+ Dk (thl)’:[LHHk s ilqs(m+D)]k |

h=(m-1)/2

The estimator of the population, méan p with errors in ranking has the
following properties:

1. };D*QRSS is unbiased estimator of the population mean if the population is
symmetric about its mean.
2. Var( DORSS, ) is less than Var()_(SRS).

3. For asymmetric distribution about its mean, MSE(I};QRSS ) < Var()_( SRS)

The above properties can be proved based on Takahasi and Wakimoto (1968),
Dell and Clutter (1972), Muttlak (2003) and AL-Saleh and AL-Kadiri (2000).

In this article, it is observed that the DQRSS estimator is unbiased of the
population mean if the underlying distribution is symmetric, and more efficient
than the SRS, RSS and QRSS. The authors suggest using the DQRSS for
estimating the population mean of symmetric distribution and asymmetric
distribution when the biased is small; also, we can use DQRSS to reduce the errors
in ranking than RSS.
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Multistage Quartile Ranked Set Samples
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ABSTRACT

Multistage quartile ranked set sampling (MQRSS) method is suggested for
estimating the population mean. The MQRSS is compared with the simple random
sampling (SRS), ranked set sampling (RSS) suggested by McIntyre (1952) and
quartile ranked set sampling (QRSS) suggested by Muttlak (2003) based on the
same sample size. We show that MQRSS estimator,isfan unbiased of the
population mean and more efficient than SRS;QRSS and RSS (r >1, r is the
number of stage) when the underlying distribution is' symmetric about its mean.
Also, by MQRSS we can increase the efficiency of mean estimator for specific
value of the sample size. For asymmetric distributions considered in this study,
MQRSS estimator has a smaller bias. A collection of a real data is used to illustrate
the method.

KEYWORDS

Simple random sampling;itanked set sampling; quartile ranked set sampling;
multistage ranked setssampling; symmetric distribution; asymmetric distribution.

1. INTRODUCTION

The RSS was suggested by MclIntyre (1952) for estimating mean pasture yields
with greater efficiency than SRS. In situations where the experimental or sampling
units in a study can be more easily ranked than quantified, McIntyre proposed that
the mean of m sample units based on a RSS as an estimator of the population
mean. Takahasi and Wakimoto (1968) independently introduced the same method.
Dell and Clutter (1972) showed that the mean of the RSS is an unbiased of the
population mean, whatever or not there are errors in ranking. Samawi et al. (1996)
investigated variety of extreme ranked set samples (ERSS) for estimating a
population means. Muttlak (1997) suggested using median ranked set sampling
(MRSS) to estimate the population mean. Al-Saleh and Al-Kadiri (2000)
introduced double ranked set sampling for estimating the population mean, they
showed that the ranking in the second stage is easier than the ranking in the first

171
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stage. Al-Saleh and Al-Omari (2002) suggested multistage ranked set sampling
(MSRSS) that increase the efficiency of estimating the population mean for
specific value of the sample size. Muttlak (2003) suggested QRSS for estimating
the population mean and showed using QRSS procedure will reduce the errors in
ranking comparing to RSS since we only select and measure the first or the third
quartile of the sample. Jemain and Al-Omari (2006) suggested double quartile
ranked set sampling (DQRSS) for estimating the population mean and showed that
the DQRSS mean is an unbiased estimator and more efficient than the SRS, RSS
and the QRSS if the underlying distribution is symmetric.

In this paper, MQRSS is considered. The properties of MQRSS for estimating
the population mean are discussed. Also, MQRSS is compared with SRS, RSS,
QRSS and DQRSS methods. The method is illustrated by using real data set.
However, by MQRSS we can increase the efficiency of the mean estimator for
specific value of the sample size m by increase the number of stages. Also MQRSS
we can use larger sample as compared to the usual RSS,ince all we have to do is
to find the first or the third quartile of the ith sample and measure it.

2. SAMPLING METHODS

2.1 Ranked set sampling

To obtain a sample of size msbyythe usual RSS as suggested by Mclntyre
(1952), select m random samples. each“of size m from the target population and
rank the units within each sample Wwith respect to a variable of interest. The ith

smallest of the ith sample/(i =1,24..,m) is drawn and measured. The method is

repeated n times if needed tojincrease sample size.

2.2 Quartile ranked set sampling

The QRSS procedure suggested by Muttlak (2003) involves selecting m
random samples each of size m units from the target population and ranks the units
within each sample with respect to the variable of interest. If the sample size m is
even, then select and measure from the first m/2 samples the (g,(m+1)th

smallest rank unit and from the second m /2 samples the (g;(m+1)th smallest
rank unit. Note that we will take the nearest integer of (g, (m+1))th and
(g3(m+1))th where ¢, =0.25, and ¢, =0.75. If the sample size m is odd, select
and measure from the first (m—1)/2 samples the (g, (m+1)th smallest rank unit
and from the other (m—1)/2 samples the (g;(m+1)th smallest rank unit, and

from one sample the median for that sample. The cycle can be repeated n times if
needed to get a sample of size nm units.
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2.3 Multistage quartile ranked set samples
The MQRSS procedure is described as in the following steps:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Randomly selected m"! sample units from the target population,

where r is the number of stages and m is the sample size.

Allocate the m™™ selected units as randomly as possible into m" sets,
each of size m .

For each set in Step (2), if the sample size is even, select from the first
m" /2 samples, the (gq;(m+1))th smallest rank unit and from the

second m" /2 samples the (g;(m+1))th smallest rank unit, where
¢ =025 and ¢; =0.75. The obtained sample will denoted by
MOQRSSE.

If the sample size is odd, select fromsthe first (mr —m”l)/ 2 samples

1

the (¢, (m+1))th smallest rank unit and from'the next m"~ samples the

median of each sample and from thesother (mr —m"™! )/ 2 samples the

(¢3(m+1))th smallestsrank unit. Such sample will be denoted by
MQRSSO.

2

Repeat Step (3)/on the m’ quartile ranked sets to obtain m"~* second

stage quartile ranked sets each of size m .

The process, continues until we end up with one rth stage of quartile
ranked set'samples of size m .

The whole process can be repeated # times if needed to get a sample of size
nm from MQRSS data. Note that we always take the nearest integer of
(g, (m+1))th and (g3(m+1))th. Itis of interest to note that if » =1 and m <3 the

MQRSS will be reduced to the usual RSS method. It is very important to
emphasize here that the ranking at all stages are done by visually inspection or by
any other cheap method and the actual quantification is only done on the last
sample of size m that is obtained at the last stage.

To clarify this procedure, consider the cases in the following example:
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Example:
Let m=4 and r=2, so that we may have a random sample of size 16,

allocate them into 16 subsets each of size 4 units. Let X" = be the Jjth minimum

i(jm)
(j=1,2,3,4) ofthe ith set (i =1,2,...,16) at stage r. After ranking the units within

each subset appear as shown below:

A0 (X0

0) (0) (0) 0) _ | y(0) (0) (0) (0)
1(1:4),Xf(2:4),X1(3:4),X1(4:4)} 5o Aig _{Xl6(1:4)’X16(2:4)’X16(3:4)’X16(4:4)} :

Now, to apply the MQRSSE procedure on each of the 16 sets, the first quartile
is the smallest rank and the third quartile is the largest rank. Thus for r =1, we
will select the first quartile from the first 8 sets and the third quartile from the other

8 sets as:
(0 B (0) o _ (0)
)(1(1:4)—rr11n(A1 ), )(2(1:4)—m1n(A2 ),

— i (0) () (0)
—rmn(A3 ,)(4(1:4)—rr11n(A4 ),

and
n (0) 1) A (0)
X;(4:4) —max(Ag ) » X0 —max(Alo ) >

o _ (0) (RN (0)
Xiicaa) _maX(All ),X12(4:4)—max(A12 )’
o (0) n o _ (0)
Xi34) —max(AB )’Xf4(4:4) —max(A14 )’
n o _ (©) o _ (0)
Xf5(4;4) —max(Als )7X16(4:4) —maX(Alﬁ )

This step yields 4 sets each of size 4 at the first stage. The obtained sets are:

@ _ ) 0] 1) )
47 = {X1(1:4) ) X2(1:4) ) X3(1;4) ) X4(1:4) } )

X0y  y0

0]
X5(1:4>s 6(1:4) > 7(1:4) > 8(1:4)}’

4 =
m O] M (0]
{X9(4;4> > X10(4:4) . X 1(4:4)° X12(4:4) } >

AP
M _ ) y® 1) 1) (1)
Ay = X13(4:4)’X14(4;4)aX15(4:4)’X16(4:4)}-

For » =2, reapply the MQRSSE method on these 4 sets, so we will select the
smallest rank from the first 2 sets largest rank from the other 2 sets as:
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() _ oo ) ) _ i 1
X —mm(A1 )’X2(1:4) —mm(A2 ),
2  _ Q) 2  _ m
X344 —max(A3 ),X4(4:4) —max(A4 )

The final set {X 1((21?4) , X %)14) , X 3((221 4> X 4(‘2:4)} is a second stage quartile ranked

set sample. It is of interest to note that X 1((21?4) , X §f1):4) are iid, also X §(24:;4) , X 4(12:4)
are iid. These 4 units exactly are measured for estimating the mean of the variable
of interest as:

(2) (2) (2) (2)
B Xy + Xo(tay + X3ay + Xg(aa)

v (2)
Xyiorsse = 4

Thus, the number of quantified units, which is 4,4s small portion to the number
of sampled units, which is 64, but all sampled units add to the/information content
of the quantified units. Hence, it makes sense(to compareithe information in this
sample with that of a SRS of the size 4 and not 64,

3. ESTIMATION OF THE POPULATION MEAN
Let X;, X,,..., X,, be a random.sample with probability density function

f(x) with mean p and variance o . Let XX Xims Xa15 X005, Xops
veer X1 X s 0 X,

ml > .m D€ independent random variables all with the same

cumulative distribution function # (x) . The SRS estimator of the population mean

from a sample of size'muis,given by

— 1 m
Xops =— 2 X, 3.1
m j=|
with variance
2
- c
Var (X g ) = —. (3.2)

The estimator of the population for a RSS of size m (see Mclntyre (1952)) is
given by

— 1 m
X pss :;EXi(i;m)a (3.3)

with variance
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m 2 m
Var()?RSS ) :Lz 2 Var(Xi(i:m)) =G——%§ (H(i;m) —H)z . (3.4)

m- i=l m  m-i=l

m 2 _ _
Since, .Zl(“(":’”) —u) >0, then Xpe is more efficient than Xg,¢ based on
=

the same number of measured observations.

The MSRSS estimator of the population mean from a sample of size m (see
Al-Saleh and Al-Omari (2002)) is given by

X]E/Z%RSS = 21X . (3.5)
with variance
— ) 1 . 2
Var(X s ) = (c ——z( ") —n) j (3.6)
m m =1

where p and o” are the mean and the variance"of the population, respectively. It
is of interest to note here that the MSRSS, method. suggested by AL-Saleh and
AL-Omari (2002) constitute by apply the usual RSS method on m"™ sets each of
size m* up to rth stage, whichds difference from our work based on MQRSS
where we apply the QRSS method on m" Sets each of size m up to rth stage.

Now to estimate the population mean using MQRSS method, at the rth stage if

the sample size is even, let X be the (g, (m+1))th smallest rank unit of

i(gy(m+1):m)

the ith sample [ =1,2,. E) and Xl(q (m+1ym) be the (g;(m+1))th smallest rank

. +2 +4
unit of the ith sample |i= n R m . . Note that the units X s
2 2 1(q, (m~+1):m)
X\ e are iid and also X . e

2(q (m+1ym) > m+2

2 (g3 (m+1):m) ’ m(qsy(m+1):m) >

ﬂ(ql(mﬂ):m)
2

are iid. However, all units are mutually independent but not identically distributed.
These measured units denote the MQRSSE.

For odd sample size, let X ((’q) (metymy D€ the (q1 (m+ 1)) th smallest rank unit of

the ith sample [ =1,2,. Tj and X ) be the median of the ith sample of

[ml
—m
2
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be the (g;(m+1))th smallest rank unit of the

. om+1 )
the rank, i = > and Xi(q3(m ym)
m+3 m+5 ) )
,...,mj. Note that Xl(ql(m+l):m)’ XZ(qI(m+1):m)""’

ith sample |i= s
P ( 2 2

(r) (r) 3
e Xm(q3(m+l):m) are iid.

(r) s (r)
’”*l( (m+1):m) » are iid and Xm+1 m+l_ 1\’ m+3( (m+1)m) >

2 22 ey
However, all units are mutually independent but not identically distributed. These

measured units denote the MQRSSO.
The MQRSS estimators of the population mean in the case of an even and odd

sample sizes respectively are given by

m
7o _1I& e &y
XMQRSS - m i:Z:lXi(ql(erl):m) +'7§+2 Xi(q3(m+1):m) 4 (37)
=
m-1
X o=t % x0 K™ + 3 ox® (3.8)
MQRSSO _m = i(q,(m+1):m) m_ﬂ[m_-ﬂm) —t i(gs(m+1)ym) |* .
2\ 2 ==
2

The variances of X j;ngSSE and X ﬁ;g)gRsso respectively are given by

20! W2 0 S "
Var (XMQRSSE ) ) Ei Var (Xi(ql(erl):m) )+ ' %2 Var (Xi(q3(m+1):m) ) >
=
(3.9)
m-1
20! _ 112 "
Var (XMQRSSO ) = ? El Var (Xi(ql (m+1):m) )
(r) 3 ("
+Var X(L“. ) + §+3 Var(Xi(qz(mH):m) ) . (3.10)
2" =y
Equation (3.9) and (3.10), respectively can be written as
(3.11)

- 1
(r) _ (r) ()
Var (XMQRSSE ) om (Var (X(ql(erl):m) ) +Var (X(q3(m+l):m) )) :
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Y () _ (m-1) () ()
Var (XMQRSSO ) o Var (X(ql (m+1):m) ) + Var (X(q3(m+l):m) ) ‘

1 (r)
=

The properties of the MQRSS estimators are:
(1) If the parent distribution is symmetric about the population mean p, then
(a) The MQRSS estimators are unbiased of the population mean.

(b) The efficiency of X Z(V;)QRSS is increasing in r.

(c) For r>2, Var()_(z(\;zgzass ) < Var()_(RSS) .
(2) If the underlying distribution is asymmetric p;ithén foram > 5, it is found

that MSE()_(](\;)QRSS )<Var()_( SRS ), where the MSE 1§ the mean square error
Y ()
of X MORSS -

4. SIMULATION STUDY

To compare the proposed.estimators for the population mean using MQRSS
against the usual estimators using ‘SRS and RSS methods. Six probability
distribution functions were considered for the populations: uniform, normal,
logistic, exponential, gamma, and weibull. The efficiency of estimating the
population mean using,the RSS with respect to SRS estimator is defined by

Var(XSRS )

= . 4.1)
Var(XRSS)

eﬂ()?SRSa)?RSS ) =

If the distribution is symmetric the efficiency of the MQRSS with respect to
SRS is defined as

. _ _ Var ()? SRS )
eff( )(XSRS’Xj(l/Ig)QRSS):#’ (4.2)
Var (X MORSS )
but if the distribution is asymmetric the efficiency is defined follows
_ — Var ()? SRS )
eﬂ( ) (XSRS’XI(\/I)QRSS) = (4.3)

MSE (X5 )
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We compared the average of the 70,000 sample estimates. The simulation was
done using the Mathematica 5.2 program. The mean square error (MSE) of the

Xz(\;g)sts is given by
— — — 2
MSE (X {{ass ) = Var (X {ihass )+ (Bias (X hess )) . 4.4)

It is necessary to emphasize here that to estimate the population mean by a
sample of size m using RSS method we have to identify m* units and only

measure m of them. And when we use MQRSS we must identify m’*' units and
only measure m of them. But the comparison between the RSS and MQRSS is
done based on the same number of measured units, m, which obtained at the last
stage.

Results are summarized by the efficiency values@nd bias in Table 1, 2 and 3
with sample sizes m =3,4,5 and 10 for stages r =142,3 using both RSS and
MQRSS.

Table 1: The efficiency values for estimating the population mean using
RSS and MQRSSO with sample size,7z =3 for » =1,2 and 3

Distribution RSS MQRSSO —
r=1 r=2 r=3
Uniform (0.1) Eff 2000 | 2000 5713 16501
Uniform (0.2) EF° 7 20000 2000 5773 16041
Normal (0,1) Ef 1914 1914 3295 4998
Normal (1.2) Effs. 1910 1910 3296  5.143
Logistic (-1,1) B 1849 1849 2384 2713
. S 1.636 1636 1394 0678
Exponential (1) "% g7 ¢ 0.000 0230 055
. Eff 1687 1.641 1359 0.691
Exponential (2) g ¢ 0000 0116 0273
. Ef 1672 1610 1373 0681
Exponential 3) g ¢ 0.000 0078  0.184
Ef 1655 1.615 1374 0.680
Gamma (1,2) Bias 0.000 0462 1.105
Ef 1593 1638 1399 0681
Gamma (1,3) Bias 0.000 0701 1.657
Ef 1.633 1.633 1357 0.683

Weibull (1,3) Bias 0.000 0.704 1.660
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Table 2: The efficiency values for estimating the population mean using
RSS and MQRSSE with sample size m =4 for »=1,2 and 3

Distribution RSS 1 M?ESZSE =3
Uniform (0.1) _ Eff 2500 3.125 27018 367.084
Uniform (0.2)  Eff  2.500  3.148 26876 373.279
Normal (0,1)  Eff 2347  2.034 3.432 4.901
Normal (12)  Eff 2319 2012 3.406 4.892
Logistic (-1.1)  Eff 2229 1706 1.904 2.017
. Ef 1922 1.162 0.352 0.119
Exponential (1) 0000  0.168 0.719 1382
. Ef 1912 1208 0.343 0.120
Exponential (2) 0000  0.082 0.363 0.690
. Ef  1.900 1.175 0.352 0.117
Exponential G)  pi/c 0000 0.055 0.240 0.461
Ef 1891 1.170 0.349 0.120
Gamma (1.2) — pic 0,000 0.331 | 443 2.767
Eff 1940 1.160 0348 0.119
Gamma (1.3)  pic 0,000 0.505 2.164 4.144
. EF 1937 (™54 0.349 0.117
Weibull(1.3) - pioc 0000 ' 0/505 2.160 4.152

Table 3: The efficiency values for estimating the population mean using
RSS and MQRSSO'with sample size m =5 for »=1,2 and 3

MQRSSO

Distribution RSS —
r=1 r=2 r=3

Uniform (0,1) Eff 3.000 2.562 9.401 33.264
Uniform (0,2) Eff 3.000 2.548 9.248 33.543
Normal (0,1) Eff 2.749 3.271 10.338 32.177
Normal (1,2) Eff 2.812 3.327 10.276  31.935
Logistic (-1,1) Eff 2.563 3.637 11.437 33.681
Exponential (1) Eff 2.177 2.607 5.579 14.248

Bias 0.000 0.151 0.130 0.085
Eff 2.206 2.610 5.753 14.115

Exponential ) gios 0000 0074 0064 0043
Bxponential3) 50 Tooo 0050 0043 0035
Gama(l2) i 0oo0 030 035 0170
Gama(l3) i Gon0 044 039 0336

Eff 2.236 2.649 5.640 14.227

Weibull (1,3) Bias 0000 0447 0385 0256
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Table 4: The efficiency values for estimating the population mean using

RSS and MQRSSE with sample size m =10 for » =1,2 and 3

e MQRSSE
Distribution RSS 1 > —3
Uniform (0,1)  Eff 5.500 5085 38097 250384
Uniform (0,2)  Eff 5.500 5128 38463  250.729
Normal (0,1) Eff 4.787 5736 31288  160.948
Normal (1,2) Eff 4779 5850 31721 162267
Logistic (-1,1)  Eff 4.198 6270 32220  152.985

. Eff 3440 3.281 15.024 38506
Exponential (1) o2/ 0.117 0.056 0.042
. Eff 3.426 3288 14916  38.924
Exponential (2) g ¢ 0059 40028  0.021
. Eff 3.394 3252 4 14.844 38725
Exponential 3) g ¢ 0039 0019, 0014
Eff 3.440 3276 14878 38583

Gamma (1.2) Bias 0.234 0113 0.084
Eff 3.460 3274 | 14963  39.124

Gamma (1.3) g0 0354 0170  0.125
. Eff 3471 3245 14808 38509
Weibull (1,3) Bias 0.352 0.170 0.126

Considering the results Tables 1-4, we.can conclude the following:

181

(1) A gain in efficiency, is obtained using MQRSS for different values of m
with »=1,2 and 3 fomallsSymmetric distributions considered in this study
and for asymmetric distributions if the sample size m >5 and for m <4 in

some cases.

(2) For asymmetric »distributions considered in this study, the MQRSS
estimator has a smaller bias. As an example, for estimating the population
mean of exponential distribution with parameter 3 for m =10 and » =3 the
efficiency of MQRSS is 38.725 and the bias 0.014.
(3) For all symmetric distributions we considered, the efficiency of the

50!

Morss 18 Increasing in 7. For example, for m =5 and »=1,2 and 3 the

efficiency values of MQRSS are 3.327, 10.334 and 30.796 respectively for
estimating the population mean of a normal distribution with parameters 1

and 2. Also, for asymmetric distributions the efficiency of )_(z(\;zsts is

increasing in 7 on the converse of the bias which is decreasing in r.
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(4) For r>1, the X z(\;)QRSS is more efficient than X zgy Wwith the same number

of quantified units. As an example, for m =3 and r =2 the efficiency of
the MQRSS is 5.713 for estimating the population mean of a standard
uniform distribution.

(5) For » =1 and 2, the MQRSS is same as the QRSS and DQRSS respectively
and it is found that the MQRSS is more efficient than both of QRSS and
DQRSS r>1 and r > 2 respectively.

5. APPLICATION TO REAL DATA SET

We illustrate the performance of the multistage ranked set samples method for
mean estimation using a collection of real data set which consists of the olive yield
of each of 64 trees, for more details see Al-Saleh and /Al-Omari (2002). In this
study, balanced ranked set sampling is considered. All‘'sampling was done without
replacement using the statistical programming Mathematica 5.2. We obtained the
mean and the variance of the sample mean usingsSRS, RSS and MQRSS methods
with set sizes m =3,4 and 5. We compared the averages of the 70,000 sample

estimate.
Let, u; be the olive yield of the ith tree i.= 132, ..., 64 . The mean p, and the

variance o> of the population, respectively, are

1 64 , 1 ¢ 5 5
u =6—42u[ =9.777 kg/tree , and © =aZ(u[ —u) =26.112 kg~ / tree .
i=1 i=1

The skewness, kurtosis, andsthe median of the population, respectively, are
0.484, 2.071 and 8.250sThe, skewness should be close to zero for symmetrically
distributed data, while.for our data that considered, the skewness is 0.484, which
mean that these data are;asymmetrically distributed. Hence, we compute the mean

square error of X ;;)QRSS and the efficiency values of X zqq and X ;;)QRSS relative to

Xgrg can be computed using the relations 13 and 15 respectively. We calculate the
efficiency of RSS and of MQRSS and m =3,4,5. Results are summarized by the
efficiency and the bias values in Tables 5 with m =3,4,5 for r=1,2,3 for RSS
and MQRSS.
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Table 5: The efficiency values of RSS and MQRSS relative to

SRS with sample size m =3,4,5 for stages r =1,2,3

Methods Sample size
m=3 m=4 m=5
SRS Mean 9.787 9.784 9.772
Variance 8.344 6.159 4.843
RSS Mean 9.784 9.773 9.773
Variance 4.294 2.564 1.696
Efficiency 1.954 2.383 2.870
MQRSS Stage
r=1 Mean 9.748 10.203 9.435
Bias 0.029 0.426 0.341
MSE 4.279 2/468 1.976
Efficiency 1.922 2.482 2.430
r=2 Mean 10.183 11058 9.666
Bias 0.407 1.281 0.111
MSE 1.760 2.070 0.598
Efficiency 4.741 2.960 8.061
r=3 Mean 10.439 11.521 9.843
Bias 0.663 1.744 0.067
MSE 1.014 3.104 0.151
Efficiency 8.170 1.984 32.124

Based on Table S5, the MQRSS mean at ant stage is closed to the population
mean 9.777, and the bias that because our data are asymmetrically distributed. It
can be noted that the MQRSS is much more efficient than SRS.

5. CONCLUDING REMARKS

It is recommended to use MQRSS for estimating the population mean if the
underlying distribution is symmetric, and if the distribution is asymmetric with
larger sample size when estimating the mean, since only we have to do is identify
and measure the first or the third quartile of the ith sample.
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CHAPTER SIXTEEN

Modified Ratio Estimator for the Population Mean
using Double Median Ranked Set Sampling
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University Kebangsaan Malaysia 43600 UKM Bangi, Selangor, Malaysia

SUMMARY

In this paper, ranked set sampling (RSS), median ranked set sampling (MRSS)
and double median ranked set sampling (DMRSS) methods are used for estimating
the population mean based on a modified ratio estimator«’It is found that, RSS,
MRSS and DMRSS produce approximately unbiased estimators of the population
mean and these estimators are more efficient/than those obtained using simple
random sampling (SRS) based on the same samplersize. Also, it is found that,
DMRSS is more efficient than both RSS and MRSS methods.

1. INFRODUCTION

Ranked set sampling is introduced by, Mclntyre (1952) for estimating mean
pasture and forage yields assa®more efficient and cost effective method than the
commonly used simple random sampling in the situations where visual ordering of
sample units can be done easily, but the exact measurement of the units is difficult
and expensive. Takahasi and™ Wakimoto (1968) provided the necessary
mathematical theory of:RSS: Samawi and Muttlak (1996) suggested the used of
RSS to estimate the population ratio. Muttlak (1997) suggested using median
ranked set sampling (MRSS) to estimate the population mean. Samawi and Muttlak
(2001) used MRSS to estimate the population ratio. Al-Saleh and Al-Kadiri (2000)
suggested double ranked set sampling method (DRSS) for estimating the
population mean, and they showed that the ranking at the second stage is easier
than the ranking at the first stage. Samawi and Tawalbeh (2002) suggested double
median ranked set sampling method for estimating the population mean and ratio.
Jemain and Al-Omari (2006) proposed multistage median ranked set sampling
(MMRSS) method for estimating the population mean.

In this paper, RSS, MRSS and DMRSS methods are used for estimating the
population mean of the variable of interest Y using information in the auxiliary
variable X based on a modified ratio estimator. The modified ratio estimators for
the population mean obtained using RSS, MRSS and DMRSS are compared with
the counterparts using SRS.

185
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2. SAMPLING METHODS

2.1 Ranked set sampling

The RSS involves randomly selecting m? units from the population. These
units are randomly allocated into m sets, each of size m. The m units of each
sample are ranked visually or by any inexpensive method with respect to the
variable of interest. From the first set of m units, the smallest unit is measured.
From the second set of m units, the second smallest unit is measured. The process
is continued until from the mth set of m units the largest unit is measured.
Repeating the process n times yields a set of size mn from the initial #m” units.

2.2 Median ranked set sampling

In median ranked set sampling (MRSS) method select m random samples each
of size m units from the population and rank the units within each sample with
respect to the variable of interest. If the sample size m’is odd, then from each
sample select for measurement the ((m+1)/2)thmsmallestrank (the median of the
sample). If the sample size m is even, then sclect for measurement the (m/2)th
smallest rank from the first m/2 samples; and the ((m +2)/2)th smallest rank
from the second m/2 samples. The cycle can be repeated n times if needed to
obtain a sample of size nm (Muttlak 1997).

2.3 Double ranked set sampling
The double ranked set sampling (DRSS) procedure can be described as the

followings: Identify iy units_from the target population and divide these units

randomly into m setsseach of size m>. The procedure of ranked set sampling is
applied on each m” units to obtain m ranked set sampling each of size m, then again
apply the ranked set sampling procedure on the m ranked set sampling sets
obtained in the first stage to obtain a DRSS of size m (Al-Saleh and Al-Kadiri
2000).

3. ESTIMATORS FOR THE POPULATION MEAN
Let (X.Y),(X,.Y;),...(X,.Y,,) be a bivariate normal random sample with

m>*m
pdf f(x,y), cdf F(x,y), with means p, ,p,, variances G ,o, and correlation
coefficient p. Assume that the ranking is performed on the variable X to estimate

the mean of the variable of interest Y. Let (X;,,Y;), (X12.%3)sr (Xpp: Y ),

(XZI’YZI)’ (XZZ’YZZ)""’ (XZm’YZm)""’(Xml’le)’(XmZ’YMZ)""’(Xmm’Ymm)
be m independent bivariate normal random samples each of size m. Let
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1

(Xi(l),Yi[l]) ,(X.(z),}j[z]),...,(X[(m),Yi[m]) be the order statistics of X, X;5,..., X},

s Lim o

and the judgment order of Y;;, Y,....,%,,, (i=1,2,..,m).

3.1 Using SRS
The SRS estimator of the population mean p, as suggested by Singh and

Tailor (2003) is given by

- = Ly +p
Hysrs = Yors {—Xij , (1
Xsrs +P
with bias and MSE, respectively, given by
A 1-
Bias (s ) = L1y C30(0- K). )
and
. 1-
MSE ({505 ) =L 1 (CF +0C3 (0- 2K) 3)
where, M and m are the population and sample size respectively and
2 2
m c [V c C c
f=—, C} =L, 0=—2, C¥ ==L, K=pL, p=—"2,
M by K P Wy X OxOy
2 aM 2 o aM 2
oy =(M-1)" XX, ~uyg)e, 0¥ =(M-1)" X (Y, —py) and

i=l i=1
M
oy =(M -1) IE(XI'—HX)(Yi_“Y)'

For more details about ratio estimation see Raj (1968) and Cochran (1977). The
transformed ratio estimator suggested by Singh and Tailor (2003) can be exploited
to estimate the population mean (1, using RSS, MRSS and DMRSS methods.

3.2 Using RSS
Assume that the ranking is performed on the auxiliary variable X, the only

measured units, using RSS are denoted by (Xl(l)’Yl[l])’(XZ(Z)’YZ[Z])""’

(X Y, ) . The suggested RSS estimator of the population mean p, from a

m(m)>*m[m]

bivariate normal sample of size m is defined as:

R = Uy +p
Hyrss = Yrss (—X—) > “4)
Xpss +p
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= 1o = 1o o .
where Xpgo =—2 Xy and Ypge =—> Yy, . This estimator can be approximated
m =1 m =]

using Taylor expansion as:

i _ — - 2
Hyrss = Yrss _H(XRSS —HX)+HG(XRSS —Hx)

— _ )
_G(XRSS —HX)(YRSS —HY)

where, H =py /(ny +p) and G=1/(ny +p) . Take the expectation of (5) yields
E (fiygss ) = by +G(H —B) Var( Xpgs ) (6)

since, Cov()_(RSS,}_’RSS)zE(()_(RSS —pX)(}_’RSS _HY)) , Cov()_(RSS,)?RSS):BVar()_(RSS)

and B = pG—Y . Therefore, the bias of [1 is given by
YRSS

Ox
Bias(ﬁYRSS)E G(H—B)Var()_(RSS). (7)
To the first order of approximation, the ‘estimator of the population mean [iyzeg
is given by:
fyrss = Yess _H()?RSS THy ) )

The expectation of (8), is E ( Nyrss ) =y, implies that the estimator is
: . = = 1

approximately unbiaseduUsing Var(Y RSS ) = BzVar(X RSS ) +—o7 (1 —p? ) , the
m

variance and MSE of (8);respectively, can be found as

Val‘(l:lYRss)E(H_B)z Var()?RSS)-f-%G% (l_pz)’ ©
and

MSE(l:lYRSS)E(H—B)2 Var()_(RSS)[1+G2Var()_(RSS )J+%G§ (l_pz) . (10)
3.3 Using MRSS

If the sample size m is odd, then le;rl ,Yl[m;rl} R X2 L“]’};[L“} yens
( 2 ) 2 ( 2 2
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m+1 m+1
m| m|
2

X ( ),Y [ } denote the measured MRSSO. If the sample size m is even,

") ) ey ) ) ey g )

e | X (m +2),Y [m +2} denote the measured MRSSE. The estimator of the

2 2

population mean p, for a MRSS of size m is defined as:

- = Ly +p
Hyarss = Yirss [—— = ] ) (11)
Xrss +P

where if m is odd X g5 and Y,z > respectivelyare defined as
— 1 m — 1 m

Xursso :—ZX,(WA] and Yypg50 = — Y,[mﬂ} )

m; i 7 m ;=1

i=1

and if m is even, X ;z¢¢ and Y6, respectively, are given by:

_ > f _ > n
P~y 25 R ) o e B
The estimator fly,,z¢qcan be approximated as
fyarss = Yaarss —H (X asmss —tx )+ HG (X yrss —tix ) -
~G(Xymss —tx ) (Yusmss — iy )
Take the expectation of (12) yields
E(fyprss ) = by + G (H —B) Var( X yess ) - (13)
Therefore, the bias of [iy,zss iS given by
Bias ({lyyrss ) = G (H —B) Var( X yzss ) - (14)

And the variance and MSE, respectively, are given by
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Var (fypss ) = (H —B)z Var()?MRSS)"'%G%’ (1 —Pz) ) (15)
and
MSE (fypss ) = (H —B)2 Var()_(MRSS)[1+ GZVar()?MRSS )J +%c§ (1 —pz) .
(16)
3.4 Using DMRSS
If the sample size m is odd, then XI[WITH]’YI[WITH} , Xz('”T”)’Yz[’%l} N

X [WI),Y [WI} denote the measured DMRSSQO: And if m is even, then
2 2

) U U e o)

*

e | X (M]’Y*[M} denote sthe DMRSSE. The DMRSS estimator of the
m m 2

2

population mean i, is given by

~ = Uy +P
Hyparss = Ypurss [—*X—J > 17)
pMRss + P

where if m is odd X)pes and Yp, e » respectively, are defined as
mo =% m x

XX ey and Ypyreso =— 2 Y707
=y M

S

—%
X pumrsso =

. . ¥ i .
and if m is even, Xpypee and Yy eeq, respectively, are defined as

m

—» 1|2 o«
XDMRSSE=; %X(m

1

and
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m

Yosmsse :% gyj[ﬂ} + i Y,Emu}

i=l 1 :m+2 i

i

The estimator [Ly,zss can be approximated as

gt

Pyarss = ?D*MRSS _H(XDMRSS —HX)JFHG()_(;MRSS —Hx)

. . (18)
-G (XDMRSS —Hx )(YDMRSS —Hy )
Take the expectation of (18) yields
E(QYDMRSS)EHY+G(H—B)Var()_(Z)MRSS)- (19)

Therefore, the bias, variance and MSE of [1,,,zss > eSpectively are given by

Bias (ﬁyDMRSS ) = G(H - B)Var()_(ZMRSS ) (20)

o —x 1
Var ({ypypss ) = (H _B)z Var(XDMRSS)J’_ZG?’ (1—02 ) , 2D

and
MSE (fipuss ) =(H #BY Var(Kysless )| 1+ G*Var( K pnss )}r%c"; (1-9%)
(22)

4. SIMULATION STUDY

A simulation study was conducted to investigate the performance of SRS, RSS,
MRSS and DMRSS methods for estimating the population mean where the ranking
was performed on the variable X. The samples were generated from bivariate
normal distribution with parameters py =6, gy =3, o, =c, =1 and p=20.99,
+0.90, +0.80, £0.70,%0.50. Based on 60,000 replications, the efficiency and the
bias of flyers»> Hyrsss> Hyurss @nd [ypyrss are obtained and the results for
m=3,4 are presented in Table 1 and for m =5,6 in Table 2. The efficiency of

Oyrss > Pyarss and Oypprss With respect to [lyges , respectively, are defined as:

MSE (fiyses )

eff (Fysrs»Pyrss ) = MSE (fygss) @21
YRSS
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. . MSE ([
eff (Fyss »yamss ) = ﬁ ) (22)
YMRSS
o MSE (fiysgs )
eﬁ(HYSRSaHYDMRSS) = W : (23)
HyDarss

From the results of simulation given in Tables 1 and 2, we can conclude the
followings:

1.

The estimators of population mean obtained by RSS, MRSS and DMRSS is
more efficient compared to the usual SRS estimator based on the same
number of measured units.

Based on the same sample size, e]j’(ﬁYSRS,ﬁLYDMRSS) > eﬁ’(;}YSRS,QYMRSS) >

efff (QYSRS,QYRSS). This is particularly apparent:whenp is close to 1. For

example, for m =3, the efficiency \of RSS, "MRSS and DMRSS,
respectively are 1.846, 2.099 and 4.127 with p =0.99 .

It is found that, for the same value of the correlation coefficient the absolute
value of the bias satisfies the inequality, Bias(fiypyrss )< Bias(fyyzss) -
For example, for p=—-0.80nand m =6, the absolute bias of the estimators
using MRSS and DMRSS, respectively, are 0.008 and 0.004.

The efficiency «f each the estimators, [ypes> Oyyrss and Dypurss 1S
increasing with the'sample size for the same value of p. For example, for
m=3,4,5,6,the cfficiency of DMRSS estimator, respectively, are 1.100,
1.114,1.118 and 1,125 for p=10.70 .

For the estimators considered, the negative values of the correlation
coefficient p give higher values of the efficiency than the positive values for

a given sample size. For example, with m =5 using DMRSS for p=0.90
and —0.90, the efficiency values are 1.922 and 6.644 respectively.

The efficiency of estimators using any of RSS, MRSS and DMRSS
methods is found to be increasing as the magnitude of the correlation

coefficient increase. As an example, for m =6, the efficiency of using
MRSS for p=0.50,0.70,0.80,0.90, 0.99 are 1.012, 1.080, 1.231, 1.647

and 3.351. Similarly, for p=-0.50,-0.70, —0.80,—-0.90,-0.99 the
efficiency are 2.275, 3.474, 4.774, 7.480 and 15.089 respectively.
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Table 1
The efficiency and bias values of estimating the population mean
using RSS, MRSS and DMRSS with respect to SRS for m =3, 4.

m=3 m=4
p RSS MRSS DMRSS| RSS MRSS DMRSS
099 eff 1.846  2.099  4.127| 2264 2565 5.615
Bias | -0.010 -0.008 -0.004| -0.006 -0.006 -0.002
090 eff 1.350 1413  1.752| 1440 1512  1.868
Bias | -0.009 -0.007 -0.001| -0.006 -0.006 -0.001
0.80 eff 1.121 1.186  1.287| 1.176 1.205 1.297
Bias | -0.004 -0.006 -0.003| -0.004¢ -0.003  0.000
0.70 eff 1.039  1.080  1.100f " 1.081 1.082  1.114
Bias | -0.006 -0.003 -0.003|/-0.003 -0.003 -0.001
0.50 eff 1.006  1.015 1.018,, 1.014 1.017 1.026
Bias 0.001 -0.001" 0:000{ 0.000 -0.001  0.000
-0.99 eff 1.954 2326 5.114| 2465 2849 7554
Bias 0.037 0.032 0.011| 0.026 0.021  0.005
-0.90 eff 1:835%,,.2:098  3.963| 2213 2512 5173
Bias 0:037 » 0.029 0.013| 0.023 0.018 0.005
-0.80 eff 1,710  1.904  3.163| 2.028 2236  3.798
Bias 0.035 0.028 0.011| 0.014 0.019 0.006
-0.70 eff 1.599  1.782  2.598| 1.837 1991 20981
Bias 0.032  0.022 0.010f 0.022 0.014 0.005
-0.50 eff 1.413 1.515 1933 1.570 1.632  2.130
Bias 0.023  0.017  0.007| 0.013 0.011 0.003
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Table 2
The efficiency and bias values of estimating the population mean
using RSS, MRSS and DMRSS with respect to SRS for m =5, 6.
m=5 m=06
p RSS MRSS DMRSS | RSS MRSS DMRSS
099 o | 2631 3.093 7335| 2921 3531 8574

Bias | -0.004 -0.004 0.001 | -0.003 -0.002 0.001

0.90 eff 1.516  1.611 1.922 | 1.587  1.647 1.983
Bias | -0.003 -0.003 0.001 | -0.001 -0.002 0.002
0.80 Eff 1.220  1.221 1314 1214 1.231 1.321

Bias | -0.004 -0.004 0.000 | -0.002¢ -0.003 0.002
0.70 eff 1.078  1.085 111871 1.085%,+1.080 1.125
Bias | -0.003 -0.001 0.000 | -0.001  0.000 0.000
0.50 eff 1.006  1.012 1.0274,,.1.010  1.012 1.029
Bias | -0.001  0.001 0:000 | 0.000  0.000 0.000
-0.99 eff 2.885 _3.595 11.580 | 3.298 4.223 15.089
Bias 0.013/ 0.013 -0.001 | 0.011  0.009 -0.002
-0.90 eff 2.581 ,2.994 6.644 | 2.830  3.350 7.480
Bias 0.018x= 1,0.011 -0.001 | 0.009 0.010 -0.005
-0.80 eff 2268  2.545 4448 | 2466 2.801 4.774
Bias 0.013  0.009 0.002 | 0.006  0.008 -0.004
-0.70 eff 2017 2214 3346 | 2.135  2.389 3.474
Bias 0.013  0.011 -0.001 | 0.009  0.007 -0.003
-0.50 eff 1.669  1.794 2.189 | 1.708  1.848 2.275
Bias 0.008  0.005 -0.001 | 0.010  0.004 -0.002
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5. CONCLUSION

The suggested estimators for the population mean using RSS, MRSS and
DMRSS methods are more efficient than the SRS estimator based on the same
sample size. The efficiency of the suggested estimators is increasing in the sample
size and also it is increasing as the magnitude of the correlation coefficient
increase. When these three methods RSS, MRSS and DMRSS are compared, it is
found that DMRSS are most efficient.
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