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PREFACE 

 

 As discussed at different fora, I consider that Pakistan is almost a statistically 

advanced country as it meets most of the well-defined criteria of advancement in 

statistics. The only deficiencies we have; are delayed holding of population censuses, not 

many statistics journals, not many statistical societies, and lack of research activities in 

government establishments. The main objective of this publication is to show that 

Pakistan is trying to fill in these gaps.  

 

 This book is an indication that academia has recently been very active and many 

academic professionals are publishing research papers and is having a good deal of share 

in the statistical literature otherwise unknown to the world.  

 

 Contribution to Statistics contains publication, in theoretical and applied statistics. 

These publications are papers published in Pakistan Journal of Statistics (PJS) from 1985 

till 2016.  

 

 There are two main reasons for writhing this look. The first is my opinion that 

students in particular and researchers in general will have a familiarity with the recent 

areas of research. The second is my maxim and precept that students and researchers 

would know the specific areas of research being conducted in Pakistan. 

 

 This book is a blend of my work and should be studied properly. I hope this work will 

trigger further theoretical research and offer handy tools that may generate further fruitful 

research. The work has shortages of applications and students and researchers may pick 

up more new areas of applications. 

  

 I am indebted to Mr. Muhammad Iftikhar, Mr. Muhammad Imtiaz and  

Mr. Ahsan Qureshi for compiling and typesetting of the material as many papers have to 

be retyped. Almost all retyping has been done by Mr. M. Imtiaz for which I am grateful 

to him. 

 

 

Dr. Munir Ahmad 

April, 2017 
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ON THE MOMENTS OF BERNSTEIN RELIABILITY MODELS
*
 

 

Munir Ahmad, M.H. Kazi and A.K. Sheikh 

University of Petroleum & Minerals 

Dhahran, Saudi Arabia 

 

ABSTRACT 
 

 Exact expressions are obtained for the moments of the positive integral powers of a 

normal random variable in terms of Hermite polynomials. The saddle point method has 

been employed to obtain the asymptotic expressions for moments of the positive integral 

powers of the reciprocals of the normal variates with mean   and variance 2 .
 
The 

method is used to derive the asymptotic expressions for the higher moments of the 

maximum likelihood estimator of the reciprocal of mean   and compared with the 

approximate moments obtained by Srivastava and Bhatnagar
l.
 and Zellner

2
. 

 

KEYWORDS 
 

 Consistent estimator, diffuse prior, efficiency, Hermite polynomials, moments of 

inverse of mean, relative bias, saddle points and steepest descent method. 

 

I. INTRODUCTION 
 

 The problems of estimation of the reciprocals often arise in many situations, for 

instance, in econometrics, biological sciences and engineering sciences 1,2,3. . Moments of 

the powers of reciprocals have not been investigated in the literature, though expectation 

and variance of the reciprocals have been approximated by Srivastava and Bhatnagar
1
 

and Zellner
2
. The moments of the reciprocals of normal random variable do not exist

4
. 

However, Srivastava and Bhatnagar
l
 have given some estimators which possess finite 

moments. In this paper, we obtain exact expressions for the moments of the positive 

integral powers of a normal random variable in terms of Hermite polynomials and use 

saddle point method to obtain asymptotic expressions for moments of the positive 

integral powers of the reciprocals of the normal variates. The saddle point method is also 

used to derive asymptotic expressions for higher moments of the maximum likelihood 

estimator of the reciprocal of mean and the results are compared with those obtained by 

Srivastava and Bhatnagar
1 
and Zellner

2
. 

 

2. EXACT MOMENTS OF THE POSITIVE INTEGRAL POWERS 

OF A NORMAL RANDOM VARIABLE 
 

 Gusev and Roshchin
5
 have obtained the following expressions for the exact moments 

of order r for positive odd integral powers of a normal random variable X in terms of 

Hermite polynomials 
 

                                                 
* 
Published in Pak. J. Statist. (1987), Vol. 3(1). 
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where   and 2  are the mean and variance of the normal random variable, m  is a 

positive odd integer, 1i   , and  .kH  is a Hermite polynomial of degree k. These 

moments are required to evaluate the life and the scatter of lives of machine components 

with random loading. These evaluations are used in solving important practical problems 

such as the number of spare parts needed in any particular time, and the optimal machine 

overhaul periods. 
 

 It will be of some interest to find the expression for moments of even powers of 

normal random variable in terms of Hermite polynomials. 
 

 Consider 0 .2 )(m n n   The probability density function of 2nY X  is
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The rth moments about origin is  
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 Introducing 1i    in (2.3), we have 
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 After integration and simplification, we obtain 
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 We note that if X  is normal with mean   and variance 2 , then 2 2X   is a non-

central chi-square distribution with one degree of freedom and 2 2   is non-centrality 

parameter. The equation (2.4) also gives rth moment of the nth power of non-central chi-

square random variate. 

 

3. ASYMPTOTIC EXPRESSIONS FOR MOMENTS  

OF THE POWERS OF RECIPROCALS 
 

 Consider a random variable 
mY X   where X  is  2,N    and m  is any positive 

integer. The probability density function of Y  and its properties are discussed by Gusev 

and Roshchin
5
. The rth moment about origin of the random variable Y  is 
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r u x dx





 


                 (3.1) 

 

where 

   
1 2

2mr x
x x e


  

   
 

               (3.2) 

 

 The function  u x  appears to have a singularity at 0x   and the integral (3.1) is 

divergent as such, but we can find asymptotic expression for the integral for small values 

of   using the steepest descent method which enables us to pick up the dominant 

contribution to the integral from the neighborhood of the saddle point. For the details of 

the saddle point method with applications to statistics, reference may be made to Daniel
6
. 
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We confine ourselves to describe only the salient features of the method. 
 

 Consider the integral 
 

     
1 .

ph z

c

g z e dz                   (3.3) 

 

where c  is the path of integration in the complex z - plane along the real axis and the 

functions  g z  and  h z  are functions of the complex variables z  not necessarily 

analytic, which as a special case may involve only real values of z . In order to evaluate 

the integral asymptotically for large values of  , the path of integration is deformed to 

satisfy the following conditions: 
 

i) the path passes through a zero 0z  (called saddle point) of  'h z . 

ii) the imaginary part of  h z  is constant on the path. 
 

 If we write   1 2z h hh i   where 1h  and 2h  are real functions, 2h  is constant on a 

path of steepest descent, then the dominant part of the asymptotic expansion arises from 

the part of the path near the highest saddle-point. If the path c  is deformed to pass 

through the saddle point, then the integral will be obtained in the neighborhood of the 

saddle point. The saddle point is obtained by solving 0
dh

dz
  and the path of integration 

(3.3) will be the locus of the points determined by the equation 
 

      2
0 , .h z h z s s                   (3.4) 

 

 The saddle point corresponds to the value 0s  . The integral (3.3) taken over c  is 

now replaced by the integral of the same integrand over the new path of integration given 

by the equation (3.4) which transforms z  to s given by    
dz

s g z
ds

   and the 

dominant contribution to the integral now stems from the vicinity of the saddle point. 
 

 The integral (3.3) is written as 
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                 (3.5) 

 

 For large values of  , only small values of s  will contribute significantly to the 

integral. Expanding  s  in a series of powers of s , substituting in (3.5), and integrating 

over s and using the formula 
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 We obtain the following asymptotic expansion of the integral for large values of  : 
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 For small values of ,  is large. The saddle point is 0z    and also  0 0h z    

 The path of integration is (3.4) is given by  
 

  ( 2 ),z s    
 

and the function  s  is given by 
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 Using the saddle point method and substituting these values in (3.6) we have  
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where 
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k

a a a a k      

 

4. ESTIMATION OF THE INVERSE OF MEAN 
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 As an illustration of the usage of the method we consider the estimation of the inverse 

of mean and compare our results with those obtained by Srivastava and Bhatnagar
l
 who 

consider a similar problem. 
 

 The maximum likelihood estimate of 1


 is 1
x

 which does not possess finite 

moments. Srivastava and Bhatnagar
l
, Zellner

2
 and others have recently discussed the 

estimation of 1


. Srivastava and Bhatnagar
l
 considered the estimator 

 

   2 2 for 0kt nx nx ks k                 (4.1) 

 

where x  and 2s  are unbiased estimators of population mean   and variance 2  

respectively of a normal population. They obtained    2andk kE t E t . The moments of

kt , exist for 0k   and for small values of k  or large values of n . kt  is an approximate 

estimate of 1


 . Zellner
2
 obtained a minimum expected loss (MELO) estimation of 1


 

using the relative squared loss function and the observation model 

, 1, 2,..... wherei i iy i n y    is the ith observation,   is the common mean of the 

observations and i  is the ith disturbance or error term. The MELO estimate for 1


 is 

given by 
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            (4.2) 

 

which is identical to the S-B estimator (4.1) when
2

v
k

v



 Zellner

2
 showed that the 

MELO estimator has finite moments but has not found their explicit expressions. 

Srivastava and Bhatnagar
l
 found the first two moments of their estimators. If 

 2k v v  , we have the first two moments for the Zellner
2
 MELO estimator of 1


. 

Following Srivastava and Bhatnagar
l
 notations, we find explicit expressions for the rth 

moment of S-B and Zellner estimators, when (i) 2r m  and (ii) 2 1r m   
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 If 1m  , we obtain S- B expressions for  kE t  and  2
kE t  and if  /  2k v v  , we 

have the first two moments of the Zeillner MELO estimator of 1


 . 

 

 The asymptotic expressions for the first two moments of the S- B estimator for a 

normal population are 
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 It is possible to find asymptotic expressions for the moments of the MLE estimator of 

1


 for a normal population when 2  is a known quantity. Similar results can be 

obtained when the variance 2 is unknown. If 2  is unknown then 2  is replaced by its 

unbiased estimator 2s . The rth moment of the random variable  
1

X


can be 

evaluated asymptotically for large n  using the formula (3.6).  
 

 Here 
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  n  .  
 

 The saddle point is 0x µ  and also  0 0h x  , The transformation from x  to  s  is 

given by 
 

   2x µ s    

 

and the function  s  is given by 
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 Now we have for large n   
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where      1 ...... 1
k

a a a a k    . The rth moment about origin is not finite unless n 

is large. Using the first two terms of (4.7), we have 
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 If 1r   and 2, the results are identical to the S-B estimator when 0k  . 
 

 If   and 2  are unknown, 


 can be replaced either by their unbiased estimators or 

by the consistent estimator of 


 which is the coefficient of variation of the 

observations. 
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A NOTE ON THE ESTIMATION OF VARIANCE  

OF A NORMAL POPULATION
*
 

 

Munir Ahmad 

Department of Mathematical Sciences, University of Petroleum and Minerals 

Dhahran, Saudi Arabia 

 

ABSTRACT 
 

 In this paper we obtain analytical expressions for the exact moments of a larger class 

of estimators of variance of a normal population than that of Pandey and Singh (1981) 

and derive formulae for their efficiency and relative bias. 

 

KEYWORDS 
 

 Consistent estimator, efficiency, mean square error and relative bias.  

 

1. INTRODUCTION 
 

 Pandey and Singh (1981) proposed the following two estimators of variance of a 

normal population with unknown mean   and unknown variance 2 : 
 

   
2 2
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, 2andx s are unbiased estimators of population mean 

  and variance 2 , respectively. Pandey and Singh (1981) have developed these 

estimators from the estimators of 2  suggested by Govindarajuln and Sahai (1972) and 

Das (1975) and have shown for large n  that the estimators in (1) are more efficient than 
2s . They have studied the efficiency and relative bias of these estimators numerically. 

 

 In this paper, we generalize the Pandey and Singh (1981) estimator and obtain 

analytical expressions of exact moments of these estimators and find their relative bias 

and efficiency. 

 

2. EXACT EXPRESSIONS FOR. MOMENTS 
 

 Consider the following class of estimators characterized by a scalar t   
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10 

 We note that for 1t  , we obtain the Pandey and Singh (1981) estimators in (1) which 

have shown to be more efficient than usual estimator of 2s   

 

 The, mth moment about origin of the estimator in (2) is, by definition 
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 Pandey and Singh (1981) evaluated the integral (3) numerically for 1t   and 

computed the relative bias and efficiency by generating 1200 random samples of size 5 

from   ( )10,  4 ,  10,64  and 10,  0 )0( 1N N N  by employing the 9-point Gauss-Laguerre 

quadrature formula on the inner integral and the 9-point Gauss-Hermite quadrature 

formula on the outer integral. 
 

 In this paper, we obtain analytical expressions for exact moments of these estimators 

and evaluate their relative bias and efficiency. 
 

 Following Srivastava and 13 Bhatnagar (1981), we write 
2

2,
nX

Z   


 and 

  2

2

1n s
V





. The random variable Z follows a normal distribution with mean 

n


 

and variance 1, while the random variable V follows a chi-square distribution with 1n  

degrees of freedom. The random variables Z  and V are independent.   

The integral in (3) can be written as 
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 We now rewrite  2ˆ̂
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 Substituting these values in (4), we get 
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 For odd integral values of j the integrand in (5) vanishes and the equation (5)  

reduces to 
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 Applying the transformation 
 

  2
1 2 10z y y y      

and  

   1 2 21 0 1v y y y       
 

and the duplication formula   2 1
2 ! 2 !

2

jj j j
 

    
 

  

 

 We get after some effort 
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where  ,a b  and  c  are the Beta and Gamma functions respectively. 
 

 A similar procedure is followed for *2ˆ
t  and an exact expression for the mth moment 

is obtained by writing k as 
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where  

  
1

, 1
2 2

n
a k m b m j          and 

  
1

2
2 2

n
c m       and  is the summation over all , , and j   .  

 

 When we use m = 1 and 2 in (6), the results are 
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, the efficiency 
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        and relative bias 2

1
ˆ̂ 1I   cab be evaluated. 
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ESTIMATION OF PARAMETERS OF BURR PROBABILITY 

MODEL USING FRACTIONAL MOMENTS
*
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Department of Mathematical Sciences, University of Petroleum and Minerals 

Dhahran, Saudi Arabia 

 

ABSTRACT 
 

 In this paper, we define fractional moments of a random variable and use lower 

fractional moments to estimate the parameters of Burr probability model. We compare it 

with the maximum likelihood and moment methods of estimation. 

 

KEY WORDS 
 

 Maximum likelihood, moment method, Pearson system of distributions, fractional 

moments. 

 

1. INTRODUCTION 
 

 Burr (1942) introduced a family of distributions with the basic properties of 

cumulative functions covering the curve-shape characteristics for three main Pearson 

System Types I, IV and VI, as well as many transitional types such as the Type III or 

gamma distributions. The Burr cumulative function defined by 
 

     
1

1 .
g x dx

F x e


  
  

               (1.1) 

 

where g(x) is a positive function for 0 ≤ F(x) ≤ 1, appeared in a book by Bierens de Haan 

(1939) but no statistical properties were discussed. Burr (1942, 1968), Burr and Cislak 

(1968), Khalique (1971, 1983), Austin (1973), and Ahmad (1983, 1984) derived many 

properties of a special cumulative probability function 
 

   
 

1
1 ,           0;          , 0.

1 a

F x x a

x


    



         (1.2) 

 

and estimated its parameters. Hatke (1949) showed that the Burr function could be used 

to graduate several observed distributions classified as Pearson types including the three 

main types I, IV, and VI by using one symbolic form whereas the Pearson curves 

required several different expressions of various complexity and involved approximate 

integrations. 
 

 In this paper we use a fractional moment method to estimate Burr parameters and 

compare its biases with moment and maximum likelihood estimates. 

 

  

                                                 
* 
Published in Pak. J. Statist. (1985), 1(1). 
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2. MAXIMUM LIKELIHOOD AND MOMENT ESTIMATION 
 

 Consider a random sample  1,  ...,  nx x  of size n from a Burr probability model 
 

     
1

1 1 , , , 0.f x x x x


         

 

 The maximum likelihood estimates of a and β are given by 

   
1

ˆ

1

ˆ 1
n

a
i

i

n ln x





 
   

 
   

and 

       
1 1ˆ ˆ

1 1

ˆ ˆ1 1 .
n n

i i i i
i i

lnx x ln x x n
  

 

 
     

 
    

 

 These MLEs can be solved numerically. The asymptotic variance-covariance matrix 

of ̂  and ̂  can also be easily derived 

   
     

   

1
2

2

1/ 1 , 1 / (1 )1
.

1 / 1 1/

A
v

n







       
 
    

  

where 

   
     

 

22

2

1
,

1

x ln x x x ln x
A E

x

  



 
  



  

and 

   .B E ln x   
 

 The rth  moment of Burr random variable is given by 

   
 

1
r

r

r r

E X

   
      

      
 

  

 

 By equating sample moments and population moments, (if these exist) and replacing 

 , 
 
by  ,  , the moment estimators of   and   are given by  

 

  
 

1

1 1
1

m

   
      

     
 

                (2.1) 

and 

  
 

2

2 2
1

m

   
      

     
 

                (2.2) 
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where 1
1

1 n

i
i

m x
n 

    and 
2

2 ,
1

1 n

i
i

m x
n 

      and 
 
are the moment estimators of   and  . 

The moment estimating equations (2 .1.1) and (2.1.2) can be solved numerically. For this 

purpose, we have tabulated the values of 1m  and 2m  for some values   of   and as 

shown in Table 1. 
 

 The asymptotic variance-covariance matrix of moment estimators of   and   is 

given by 
 

 v 



 

 

2 2
3 4 1 1 2 2 1 2 2 3 124 1 2 2 2 4 12

2 2

2 2
3 4 1 1 2 2 1 4 2 3 12 3 1 1 2 1 2 12

2 2

2

2

k k v k k v k k k k vk v k v k k v

v v

k k v k k v k k k k v k v k v k k v

v v

     
 
 
      
  
 

 

 

where 
 

  1 2 1 1 3 1 1 4. .a c k and b d k a c k and b d k          

 

Table 1 

Values of 1m  and 2m from above to below respectively 

   

   
1 2 3 4 5 6 7 8 9 10 

1 
- 1.5708 1.2092 1.1107 1.0690 1.0472 1.0344 1.0262 1.0206 1.0166 

- - 2.4184 1.5708 1.3213 1.2092 1.1481 1.1107 1.0861 1.0690 

2 
1.0000 0.7854 0.8061 0.8330 0.8552 0.8727 0.8866 0.8979 0.9072 0.9150 

- 1.0000 0.8061 0.7854 0.7928 0.8061 0.8201 0.8330 0.8447 0.8552 

3 
0.5000 0.5891 0.6718 0.7289 0.7697 0.7999 0.8233 0.8418 0.8568 0.8692 

1.0000 0.5000 0.5374 0.5891 0.6342 0.6718 0.7029 0.7289 0.7509 0.7697 

4 
0.3333 0.4909 0.5971 0.6682 0.7183 0.7555 0.7841 0.8067 0.8251 0.8403 

0.3333 0.3333 0.4180 0.4909 0.5497 0.5971 0.6360 0.6682 0.6952 0.7183 

5 
0.2500 0.4295 0.5474 0.6264 0.6824 0.7240 0.7561 0.7815 0.8022 0.8193 

0.1667 0.2500 0.3483 0.4295 0.4947 0.5474 0.5905 0.6264 0.6566 0.6824 

6 
0.2000 0.3866 0.5109 0.5951 0.6551 0.6999 0.7345 0.7620 0.7843 0.8029 

0.1000 0.2000 0.3019 0.3866 0.4551 0.5109 0.5568 0.5951 0.6275 0.6551 

7 
0.1667 0.3544 0.4825 0.5703 0.6333 0.6805 0.7170 0.7461 0.7698 0.7895 

0.0667 0.1667 0.2683 0.3544 0.4248 0.4825 0.5303 0.5702 0.6042 0.6333 

8 
0.1429 0.3290 0.4595 0.5499 0.6152 0.6643 0.7024 0.7328 0.7576 0.7782 

0.0476 0.1429 0.2428 0.3290 0.4005 0.4595 0.5086 0.5499 0.5850 0.6152 

9 
0.1250 0.3085 0.4404 0.5327 0.5998 0.6504 0.6898 0.7213 0.7471 0.7684 

0.0357 0.1250 0.2226 0.3085 0.3805 0.4404 0.4905 0.5327 0.5688 0.5998 

10 
0.1111 0.2913 0.4241 0.5179 0.5865 0.6384 0.6789 0.7113 0.7378 0.7599 

0.2778 0.1111 0.2061 0.2913 0.3636 0.4241 0.4749 0.5179 0.5547 0.5865 
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1
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3. FRACTIONAL MOMENT METHOD OF ESTIMATION 
 

 In view of the fact that the lower moments are considered to be more efficient than 

higher moments, recently some authors have employed fractional moments of order less 

than one in estimation of parameters of some probability functions instead of integral 

moments of higher order. The fractional moments are restricted to positive random 

variables only. Wolfe (1975) derived moments of probability distribution functions for 

positive random variables. 
 

 The thr  fractional moment of a random variables X  with density function  ;f x   

(where  may be a vector) is defined as 
 

  
 ; , 0 1.r

ru x f x dx r




      

 

 The corresponding empirical thr fractional moment from a random sample 1,... nx x  

can be defined as 
 

  

 
1

1
, 0 1.

n
r
i

i

m r x r
n 

     

 

 The method of fractional moments will consist of equating  m r  with ru  for some 

values of r  in 0 1.r   Khaliq (1983) estimated θ for which 

  

     
21

0

min
1n n rm r u dH r    

   

 

where  H r  is a suitably chosen weight function and n  is the estimator of  . Khalique 

(1983) has used  
2rdH r e  following Paulson et al. (1975). Khalique (1983) used it to 
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find fractional moments of gamma and Burr probability functions. We used standard 

moment method technique for estimating parameters of the Burr distribution and 

compared our results with those of Khalique (1983)'s. However, Khalique (1983)’s 

results are based on simulation, whereas our results are based on simultaneous solution of 

actual estimating equations. We need two fractional moments to estimate the two 

parameters of the Burr probability function. Suppose we take two arbitrary values of  

r  say 1 1,0 , 1r r   and 2 2,0 1.r r   . 
 

 The fractional moment estimating equations are:  
 

  
 1

1 11

r

r r

m

   
      

    


 
               (3.1.1) 

and 

  
 2

2 21

r

r r

m

   
      

    


 
              (3.1.2) 

where 
1 r

r im x
n

   and 1 2, ,..., nx x x  is a random sample. 

 

 We solve these equations for   and   by iteration, using the secant method and the 

Hooke and Jeeves optimization routine (Kauster et al., 1973). We compute rm   

for three typical values of 
1 1 3

. ., ,
4 2 4

r i e r and
 

 
 

 and for various values of   and   

which are given in Table 2. In order to obtain the estimates of   and 
 
we use inverse 

interpolation. 
 

 We follow the same procedure as in (2.1.3) to derive the asymptotic variance-

covariance matrix of fractional moment estimators of the Burr parameters. 
 

 The asymptotic variance –covariance matrix of FM estimators of   and   is  

given by 
 

ˆ

ˆ
v
 

   

 

 

2
3 4 1 1 2 2 1 2 2 3 124 1 2 2 2 4 12

2 2

2
3 4 1 1 2 2 1 2 2 3 12 3 1 1 2 1 2 12

2 2

2

2

k k v k k v k k k k vk v k v k k v

v v

k k v k k v k k k k v k v k v k k v

v v

     
 
 
      
  
 

 

 

where 1 2 3 4 1 2, , , , ,k k k k v v and 12v  are the same as in (2.1.3) except that 1r  and 2r  are 

fractions instead of integers. 
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SOME FRACTIONAL MOMENT FUNCTIONS 

 

Table 2 

Values of 1
4

m  
,
 1

2
m and 3

4

m from above to below respectively 

  

  
1 2 3 4 5 6 7 8 9 10 

 1.1107 1.0262 1.0115 1.0065 1.0041 1.0029 1.0021 1.0016 1.0013 1.0010 

1 1.5708 1.1107 1.0472 1.0262 1.0166 1.0115 1.0084 1.0065 1.0051 1.0041 

 3.3322 1.2752 1.1107 1.0603 1.0380 1.0262 1.0191 1.0146 1.0115 1.0093 

 0.8330 0.8979 0.9272 0.9436 0.9539 0.9611 0.9663 0.9703 0.9735 0.9760 

2 0.7854 0.8330 0.8727 0.8979 0.9150 0.9272 0.9364 0.9436 0.9493 0.9539 

 0.8330 0.7970 0.8330 0.8615 0.8823 0.8979 0.9099 0.9195 0.9272 0.9336 

 0.7289 0.8418 0.8886 0.9141 0.9301 0.9411 0.9491 0.9552 0.9599 0.9638 

3 0.5891 0.7289 0.7999 0.8418 0.8692 0.8886 0.9030 0.9141 0.9229 0.9301 

 0.5207 0.6475 0.7289 0.7807 0.8161 0.8418 0.8612 0.8764 0.8886 0.8986 

 0.6682 0.8067 0.8639 0.8950 0.9146 0.9280 0.9378 0.9452 0.9511 0.9558 

4 0.4909 0.6682 0.7555 0.8067 0.8403 0.8639 0.8815 0.8950 0.9058 0.9146 

 0.3905 0.5666 0.6682 0.7319 0.7753 0.8067 0.8304 0.8490 0.8639 0.8761 

 0.6264 0.7815 0.8459 0.8810 0.9031 0.9183 0.9294 0.9378 0.9444 0.9498 

5 0.4295 0.6264 0.7240 0.7815 0.8193 0.8459 0.8657 0.8810 0.8932 0.9031 

 0.3173 0.5135 0.6264 0.7976 0.7462 0.7815 0.8082 0.8291 0.8459 0.8597 

 0.5951 0.7620 0.8318 0.8700 0.8941 0.9107 0.9228 0.9392 0.9392 0.9451 

6 0.3866 0.5951 0.6999 0.7620 0.8029 0.8318 0.8534 0.8700 0.8833 0.8941 

 0.2697 0.4750 0.5951 0.6714 0.7239 0.7620 0.7909 0.8136 0.8318 0.8468 

 0.5703 0.7461 0.8203 0.8610 0.8867 0.9043 0.9173 0.9271 0.9349 0.9411 

7 0.3544 0.5703 0.6805 0.7461 0.7895 0.8203 0.8432 0.8610 0.8751 0.8867 

 0.2360 0.4453 0.5703 0.6505 0.7058 0.7461 0.7768 0.8008 0.8203 0.8362 

 0.5499 0.7328 0.8105 0.8533 0.8803 0.8990 0.9126 0.9230 0.9311 0.9378 

8 0.3290 0.5499 0.6643 0.7328 0.7782 0.8105 0.8346 0.8533 0.8682 0.8803 

 0.2107 0.4214 0.5499 0.6330 0.6906 0.7328 0.7649 0.1901 0.8105 0.8273 

 0.5327 0.7213 0.8021 0.8466 0.8748 0.8943 0.9085 0.9194 0.9279 0.9348 

9 0.3085 0.5327 0.6504 0.7213 0.7685 0.8021 0.8271 0.8466 0.8621 0.8748 

 0.1909 0.4016 0.5327 0.6182 0.6777 0.7213 0.7546 0.7809 0.8021 0.8195 

 0.5179 0.7113 0.7946 0.8407 0.8700 0.8901 0.9049 0.9162 0.9250 0.9322 

10 0.2913 0.5179 0.6384 0.7113 0.7599 0.7946 0.8206 0.8407 0.8568 0.8700 

 0.1750 0.3849 0.5179 0.6053 0.6664 0.7113 0.7456 0.7727 0.7946 0.8127 

 

4. COMPARISON OF FRACTIONAL MOMENT ESTIMATORS  

WITH OTHER ESTIMATORS 
 

 In this section we compare fractional moment estimators with moment, maximum 

likelihood and Khalique fractional moment estimators of the Burr parameters. Khalique 

(1983) used a simulation technique to find the FM estimators of   and   based on 

various sample sizes with one hundred replications. The estimates of   and   along 

with the results of Khalique (1983) are given in Table 3. Our FM estimators seem to be 
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better than Khalique FM estimators, but the direct comparison is not possible because his 

results are based on simulation. Khalique (1983)'s method cannot be applied to a given 

set of experimental data, whereas it is much easier to obtain estimates based on 

experimental data using' Table 2. 
 

 We have tried three combinations of fractional order of moments viz.  
 

1 2 1 2

1 1 1 3
, , ,

4 2 4 4
r r r r
   

      
     

and 1 2

1 3
,

2 4
r r
 

  
 

 and find that 1 2

1 3
,

4 4
r r   

 

give the best estimates in the sense of smallest bias. Khalique (1983) showed the 

superiority of FM over MM. Khalique (1983)'s results showed that FM estimates were 

much superior to MM estimates, but comparison with ML was hard to make. The 

reduction of sampling variability by lowering the order of moment is well reflected in the 

FM estimates. MM and ML methods are more general whereas FM method can be 

applied to positive random variables only. 
 

 We have also given the variances and covariances of fractional moments but we did 

not compute them as these were not directly comparable with those given by Khalique 

(1983). 

 

Table 3 

Estimates by Different Methods in Burr Distribution a = 3, 6 = 2,  

(Replication = 100) (MM, ML and FM are taken from Khalique, 1983) 

Sample 

Size 
Method Mean   Bias Mean   Bias 

10 

MM 3.4682 0.4682 2.3113 0.3113 

ML 3.2999 0.2999 2.2723 0.2723 

FM 3.3942 0.3942 2.2984 0.2984 

(Khalique, 1983)     

25 

MM 3.1604 0.1604 2.1168 0.1168 

ML 3.0668 0.668 2.0942 0.0942 

FM 3.1077 1.1077 2.1066 0.1066 

(Khalique, 1983)     

50 

MM 3.1323 0.1323 2.0475 0.0853 

ML 3.0483 0.0483 2.0313 0.0801 

FM 3.0839 0.0839 2.0400 0.0841 

(Khalique, 1983)     

For 

any 

size 

FM: 1r  = 1/4 

  2r  = 3/4 
2.9930 0.0070 1.9972 0.0028 

  1r  = 1/4 

  2r  = 1/2 
2.9806 0.0094 1.9940 0.0060 

  1r  = 1/2 

  2r  = 3/4 
2.9878 0.0122 1.9972 0.0028 
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ABSTRACT 
 

 The method of moments has been widely used for estimating the parameters of a 

distribution. Usually lower order moments are used to find the parameter estimates as 

they are known to have less sampling variability. With this approach in mind some 

authors (Wolfe (1975), Min (1977), Marx (1980), Khalique (1983) and Almarzoug and 

Ahmad (1985)) used the method of fractional moments to estimate the parameters of 

certain distributions. 
 

 The gamma distribution is quite widely used as a lifetime model. The gamma 

distribution does fit a wide variety of lifetime data adequately. However, there are failure 

process models which lead to it. The gamma distribution arises mathematically as the 

sum of independently distributed exponential random variables. 
 

 In the present study we use the method of fractional moments to estimate parameters 

of the gamma distribution and obtain their asymptotic variances and a comparison is 

made with those of the moment estimators and ML estimators. We also minimize the 

determinant of the var-cov matrix w.r.t r  to obtain the values of r , In terms of 

asymptotic variances the FM method is far better than the method of moments and is 

almost equal to the method of ML. Small sample properties of the three methods are also 

discussed and FM method is found to be slightly better than the method of ML. 

 

KEYWORDS 
 

 Gamma distribution, factorial moments, lower order moments, asymptotic variances. 

 

1. INTRODUCTION 
 

 In the conventional method of moments lower order moments arc used to estimate the 

parameters of distributions as it is known that sampling variability of the moments 

increases as their order is increased. Therefore, the order of moments may be reduced to 

less than 1 with order of moments variable over (0,1)  However, to be more general, the 

order of moments may be taken as variable over  ,  . Then the rth fractional moment 

of a non-negative random variable X  with density function  ,f x   is defined as 
 

   0
; 0r

r X f x dx r
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 The corresponding sample rth fractional moment from a random sample 1 2, ,... nX X X , 

can be defined as 
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 The method of fractional moments will consist of obtaining as many values of rm , as 

the no. of parameters to be estimated and equating rm , with r
 , for some values of 

,0 8.r r    

 

2. ESTIMATION BY THE METHOD OF MOMENTS AND ML 
 

 The pdf  f x  of the gamma distribution is given by 
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f x x e x


 
 


  

            , 0     
 

The moment estimates of   and   arc 
 

  1

2
2 1

ˆ m

m m


 

 
   

2
1

2
2 1

ˆ m

m m


 

 
  

 

and the asymptotic variance-covariance matrix of the moment estimators of   and 
 
is  
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 The estimating equations to find the maximum likelihood estimates of   and   arc 
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(2) can be solved numerically to obtain the maximum likelihood estimates of   and then 

the value of   can be obtained from equation (1). 
 

 The asymptotic variance-covariance matrix of MLEs of   and 
 
is given by 
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 The determinant of V is 
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3. ESTIMATION BY THE METHOD OF FRACTIONAL MOMENTS 
 

 The rth fractional moment of the gamma distribution is given by 
 

   
1

r r
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 The gamma distribution has two parameters   and  , we therefore need two 

fractional moments to estimate these two parameters. We take two arbitrary values of r  

say 1 1 2 2,0 and ,0r r r r      
 

 Then the population fractional moments are 
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 The corresponding sample fractional moments or the estimating equations are 
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 Equations (3) and (4) can be solved for ̂  and ̂  numerically to obtain the fractional 

moment estimates of   and   

 

4. ASYMPTOTIC VARIANCE-COVARIANCE MATRIX  

OF FM ESTIMATORS 
 

 Let V be the asymptotic variance covariance matrix of the fractional moment 

estimators of   and  . Then the elements of V are given by 
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 Let D be the determinant of the variance covariance matrix of fractional moment 

estimators of the gamma distribution then 
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        (A) 

 

 D is minimized w.r.t. 1 r  and 2 r  for given values of   and  . It has been observed 

that the values of 1 r  and 2 r which minimize D are almost invariant for shape and scale 

parameters, therefore rounded values of 1 r  and 2 r  1 2   =0.001 and = 1.0r r  have been 

used. The comparison of the FM estimators with those of the ML estimators and moment 

estimators in terms of their asymptotic variances is given in Table-I. The asymptotic 

efficiencies of FM estimators and moment estimators w.r.t. MLEs arc also given in 

Table-II. FM and ML estimates arc equally efficient whereas moment estimates arc 50% 

as efficient as MLEs. 
 

 To investigate the small sample properties of the three estimation methods 100 

samples of different sizes were generated, for  1 and 2    , using MINITAB and the 

results are given in Table-III and Table-1V. For small samples method of FM is more 

efficient than the methods of moment and ML. 
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5. EXAMPLE 
 

 The rainfall data for the month of January from the years 1960 to 1994 was obtained 

from the Meteorological Dept. University of Agriculture, Faisalabad. The gamma 

distribution was fitted to the data and the estimates of the parameters were obtained using 

the three estimation methods mentioned in the previous sections. The results of this 

example arc given below. 

 

January 

36.322, 15.240, 30.226, 6.350, 12.954, 6,604, 7.620, 0.762, 2.794, 12.446, 

1.270, 12.700, 5.500, 7.000, 33.600, 16.600, 16.000, 2.200, 1.900, 2.000. 

8.300, 3.500. 30.000, 20.210, 30.000, 6.500, 6.500. 

 

Histogram 

Midpoint Count 

0 5 ***** 

5 8 ******** 

10 3 *** 

15 5 ***** 

20 1 * 

25 0 

30 3 *** 

35 2** 

 

 MOM MLE FM 

̂  0.109204 0.101224 0101254 

 ˆV   (0.05024776) (0.02467382) (0.02468685) 

̂  1.355340 1.256290 1.256660 

 ˆV   (6.38457303) (2.54428451) (2.54590773) 
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Table 1 

Asymptotic Variances of the Estimators of Shape and Scale  

Parameter of the Gamma Distribution 

 
 =1 

 = 2 

  =2 

 = 5 

 =7 

 =1 

MOM    

 ˆV    3.5 10.40 245.00 

 ˆV   12.0 60.00 4.00 

MLE    

 ˆV   2.224922273 8.303650749 124.976758740 

 ˆV   6.899689014 46.897813433 1.550546097 

FM    

 ˆV   2.224922865 8.303650316 124.976845278 

 ˆV   6.899689146 46.897814476 1.550547863 

 

Table 2 

Relative Efficiency of Different Estimating Methods for the Gamma Distribution 

 
 =1 

 = 2 

  =2 

 = 5 

 =7 

 =1 

MOM    

 ˆEff   0.63569 0.79843 0.51011 

 ˆEff   0.57497 0.78163 0.38764 

Overall eff. 0.57497 0.78163 0.38764 

FM    

 ˆEff   1.00 1.00 1.00 

 ˆEff   1.00 1.00 1.00 

Overall cff. 1.00 1.00 1.00 
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Table 3 

n = 10 

 MOM MLE FM 

 ˆE    1.363947 1.235152 1.235021 

 ˆV   0.472254 0.3593874 0.358687 

 ˆMSE   0.604711 0.414684 0.413922 

 ˆE   2.646975 2.421351 2.421137 

 ˆV   1.072720 0.894802 0.892764 

 ˆMSE   1.491296 1.072338 1.070121 

 

 

Table 4 

n = 15 

 MOM MLE FM 

 ˆE    1.331982 1.257851 1.257091 

 ˆV   0.236694 0.173416 0.173322 

 ˆMSE   0.346906 0.239903 0.239418 

 ˆE   2.514766 2.392305 2.392800 

 ˆV   0.535597 0.518820 0.511433 

 ˆMSE   0.800581 0.672723 0.665725 
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ABSTRACT 
 

 An estimator of a common population correlation coefficient  from ( 2)k   

independent random samples drawn from bivariate normal populations is derived. Mean 

and MSE of the proposed estimator are computed using an approximate method and 

standard score estimator (Donner and Rosner, 1980) of . The relative efficiency of the 

proposed MLE to standard score estimator is one for equal sample sizes and close to one 

for unequal sample sizes. The proposed estimator is also compared numerically with 

standard score estimator and MLE. Finally, following the Samiuddin’s statistic, proposed 

estimator is used to test the equality of several independent correlation coefficients. An 

example is given to illustrate the calculations. 

 

KEYWORDS 
 

 Bivariate normal distribution; Maximum likelihood estimator; Standard score 

estimator; Samiuddin’s statistic; Taylor’s expansion. 

 

1. INTRODUCTION 
 

 In a Monte Carlo study, Donner and Rosner (1980) compare four estimators of a 

common correlation coefficient  from 2k   independent random samples drawn from 

bivariate normal populations. These are Fr , based on Fisher’s (1921) Z-transformation, 

Hr , based on modification of Fr (Hotelling, 1953), Sr , based on averaging the simple 

correlations (Donner and Rosner, 1980) and Mr , the maximum likelihood estimator 

(Pearson, 1933). As Donner and Rosner’s study is limited to the case of equal sample 

size, Paul (1988, 1989) develops two new estimators based on Hotelling’s adjusted  

Z-statistic, which are applicable to both equal and unequal sample sizes. 
 

 In this paper we develop an estimator based on Pearson (1933) equation. The 

proposed MLE is compared theoretically and numerically with other methods. Samiuddin 

(1970) considers a statistic for testing an assigned value of correlation coefficient  in a 

bivariate normal population. In this paper we propose a statistic based on Samiuddin’s 

statistic to test the equality of ( 2)k   independent correlation coefficients. 

 

                                                 
* 
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2. ESTIMATION OF A COMMON CORRELATION 
 

 Consider k independent random samples ( , )ij ijX Y , 1 , 2 ,...., ij n , 1, 2 ,....,i k  

drawn from a bivariate normal population having means 1 2( , )i i  , standard deviations 

1 2( , )i i   and common correlation . The most frequently recommended procedure  

for estimating  is based on Fisher’s (1921) Z-transformation and is given  

by exp(2 ) 1 exp(2 ) 1F F Fr Z Z         , where 
1 1

( 3) ( 3)
k k

F i i i
i i

Z n Z n
 

     and 

12 ln (1 ) (1 )i i iZ r r      as ir  is the product moment correlation coefficient for the ith 

sample in . Hotelling (1953) proposes an adjustment to FZ  by (2 4.5)H F FZ Z r n    

and estimating  by tanhH Hr Z , when all 'in s are equal. When 'in s are not equal, 

Paul (1988, 1989) develops two estimators based on Hotelling’s (1953) adjusted  

Z-statistic for bias. Donner and Rosner (1980) compute the estimator Sr  of  by standard 

score method as 
1 1

( 1) ( 1)
k k

S i i i
i i

r n r n
 

     [See also Paul (1988)]. The maximum 

likelihood estimator, ˆ
Mr   of  is the solution to the equation [See David (1938)] 

 

     
1

ˆ ˆ1 0
k

i i i
i

n r r


    .              (2.1) 

 

 Though the solution to (2.1) can numerically be found, yet we expand  
1

ˆ1 ir


   as 

powers of ̂  and obtain  
 

     
1

ˆ ˆ1 0
k

i i i
i

n r r


    ,              (2.2) 

 

as 1ir  and ˆ 1   and ˆ 1ir  . If 0ir   then ˆ 0  ; if 1ir   , then ˆ 1   . The 

equation (2.2) is equivalent to 2ˆ ˆ 1 0b    , where  2

1 1

1 .
k k

i i i i
i i

b n r n r
 

    Solving 

the quadratic equation, we get an estimate Qr  
(say), a function of ir , 1, 2,....,i k

 
of  

as 

   21
4

2
Qr b b    .                 (2.3) 

 

 If 1ir   , 0b   and then 1Qr   . Since the numerator of b is positive, the sign  

of b depends on 
1

k

i i
i

n r


 . If each 0ir  , then 
1

0
k

i i
i

n r


 , and b > 0 and we take 

 21
4 .

2
Qr b b      If each 0ir  , then 

1

0
k

i i
i

n r


 , and b < 0 and we take 
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 21
4 .

2
Qr b b     If each 0ir  , then 

1

0
k

i i
i

n r


 , and from (2.2), 0Qr  . If some 

'ir s
 
are positive and some 'ir s

 
are negative such that 

1

k

i i
i

n r



 

is either positive or 

negative. Then in case of 
1

0
k

i i
i

n r


 , Qr


 holds and in case of 
1

0
k

i i
i

n r


 , Qr


 holds. 

 

3. MEANS AND MSE’S OF Qr  AND Sr  

 We find the means and MSEs of Qr  in all the cases. For the case, 
1

0
k

i i
i

n r


 , b > 0 

and 1 2 3 kn n n n    , we expand Qr


 in Taylor’s expansion about  and get 

 

     1

1
i

k
Q

Q i
i i r

r
r r O n

r

 





   


            (3.1) 

 

 The mean of Qr


 is 

     
1

.

i

k Q

Q i
i i r

r
E r E r
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             (3.2)  

 

 Now  

  

i

Q i

i
r

r n

r N









, where 

1

k

i
i

n N


             (3.3) 

 

 We have, using Hotelling (1953) relation,  
 

   
 21

2( 1)
i

i

E r
n

 
 


 to  2

iO n              (3.4) 

 

Putting (3.3) and (3.4) in equation (3.2), we get 
 

   
 2

1

1
1

2 1

k
i

Q
i i

n
E r

N n





        
    

 ,           (3.5) 

as Qr


 is a biased estimator of 
 
and 

 2

1

1

2 1

k
i

i i

n
Bias

N n

   
  

 
 . Bias = 0 as in  . 

 

 Now  
 

     
2

Q QMSE r E r  .                (3.6)  
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 As 1 2, , ......, kr r r  are independent and all having the same location parameter , 

therefore    0i jE r r   
 

 for all .i j  

 

     

2

2

1
i

k
Q

Q i
i i r

r
MSE r E r

r






 
  
 
 

 , ( )iE r   .         (3.7) 

 

 Using Hotelling’s (1953) relation  

  
 

2
2

2
2

1 23
( ) 1

1 4( 1)
i

i i

E r
n n

  
   

   

, to  3
iO n ,          (3.8) 

 

and using (3.3) in (3.7) we get, 

   
 

   

2
2 2 22

2 2
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1 23
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k k
i i

Q
i ii i
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  .      (3.9) 

 

 When in n  (say), 1, 2, ,i k  , we have 

   
2(1 )

1 ,
2( 1)

QE r
n


 

   
  

 
2(1 )

2( 1)
Bias

n

  



  

and 

   
2 2 2(1 ) 23

1
( ) 4( 1)

QMSE r
N k n


  

  
   

.             (3.10) 

 

 In case of 
1

0
k

i i
i

n r


 , b < 0 and 1 2 kn n n    , we have (2.5) 

 

 Then Qr
   ,

i

Q i

i r

r n

r N


 



, 

 

   
2

1

(1 )
1

2 1

k
i

Q
i i

n
E r

N n





  
    

   
 .             (3.11) 

 

 QMSE r  remains the same, as in equation (3.9). 

 

 The mean and MSE of Sr  for unequal sample sizes are  
 

  
 
 

21
( ) 1

2
S

k
E r

N k

 
   
 
  

 and 
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2
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2

1 23
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4
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,  
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respectively, where ( , ) 0i jCov r r   for all i j  as 1 2, , , kr r r  are independent and all 

having same location parameter . For equal sample sizes the mean and variance of Sr  

are 

  
 21

( ) 1
2( 1)

SE r
n

  
   

 
 

  

and  

  
 

2
2

21 23
( ) 1

( ) 4( 1)
SMSE r

N k n

  
  

   

, respectively.  

   

4. EFFICIENCY COMPARISON  
 

 When in n  (say), 1, 2, ,i k  , the relative efficiency of Qr  to Sr  is one, showing 

Qr  and Sr are equally efficient. When samples are not equal, then the relative efficiency 

of Qr  to Sr  is given by  

  
 

 

2

2

2 2 22

2
1 1

23
( )

4

( ) 23

( 1) 4 ( 1)

s

f
k k

Q i i

i ii i

k
N k

MSE r N
E

N kMSE r n n

n n 

 
  

  
 

  
 

   
 

,  

 

which is more than one for all values of . 

 

5. NUMERICAL COMPARISON OF Sr , Qr , Mr  

 

 In Table 1 we compute Sr , Qr  and Mr  for different values of k, in  and ir , 

1, 2, ,i k  , where Mr  is obtained by solving (2.1) iteratively using Newton Raphson 

method. Table 1 shows that for equal sample sizes, Sr , Qr  and Mr  are identical and for 

unequal sample sizes, S Q Mr r r  . It is observed that Sr  gives better results for small 

values of  and Mr  for large values of  whereas Qr  is better than the two for moderate 

values of . 
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Table 1 

Numerical Values of Sr , Qr  and Mr  for Different Values of  

k, in  and ir , 1, 2, ,i k  . 

2k   3k   4k   5k   

1n  1r   Sr  

2n  2r   Qr  

  Mr  

1n  1r   Sr  

2n  2r   Qr  

3n   3r   Mr  

1n  1r   Sr  

2n  2r   Qr  

3n   3r  Mr  

4n   4r  

1n  1r   Sr  

2n  2r   Qr  

3n   3r   Mr  

4n   4r  

5n   5r  

10  0.10  0.085 

10  0.07  0.085 

   0.085 

10  0.065  0.0853 

10  0.089  0.0853 

10  0.102  0.0853 

10  0.82  0.84 

10  0.86  0.84 

10  0.78  0.84 

10  0.90  

10  0.32  0.27 

10  0.28  0.27 

10  0.19  0.27 

10  0.21 

10  0.37 

25  0.27  0.23 

25  0.19  0.23 

  0.23 

30  0.422  0.460 

30  0.388  0.462 

30  0.569  0.464 

25  0.56  0.64 

25  0.73  0.64 

25  0.61  0.64 

25  0.65 

25  0.53  0.532 

25  0.55  0.532 

25  0.51 0.532 

25  0.49 

25  0.58 

18  0.45  0.5016 

16  0.56  0.5029 

  0.5038 

10  0.30  0.4193 

15  0.40  0.4197 

25  0.49  0.4206 

20  0.41  0.5044 

30  0.60  0.5057 

40  0.51  0.5066 

50  0.48  

10  0.65  0.8546 

25  0.79  0.8552 

50 0.91  0.8630 

75  0.87  

100  0.85 

10  0.48  0.647 

25  0.71  0.649 

  0.664 

24  0.850 0.8277 

32  0.780  0.8285 

31  0.860  0.8310 

10  0.24  0.3236 

15  0.19  0.3245 

20  0.34  0.3302 

25  0.42  

25  0.25  0.2582 

25  0.19  0.2583 

50  0.23  0.2592 

50  0.30 

100  0.27 

98  0.78  0.8095 

95  0.84  0.8099 

  0.8117 

24  0.520  0.6666 

29  0.560  0.6777 

32  0.870  0.7062 

30  0.89  0.7023 

25  0.77  0.7102 

50  0.56  0.7113 

40  0.70 

75  0.47  0.5067 

75  0.49  0.5071 

100  0.50  0.5080 

150  0.48  

200  0.55 

 

6. TESTING OF EQUALITY OF SEVERAL  

CORRELATION COEFFICIENTS 
 

 If 1 2, ,..., kr r r
 
are independent product moment correlation coefficients with ir  

based 

on a sample of in  observations from a bivariate normal population having correlation 

coefficient i , there are several approaches to the problem of testing equality of  

several correlation coefficients  0 1: , 1,2, , : somei i jH i k vs H i j         . 

The most common is based on the normality assumption of Fisher’s Z-transform of  
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the sample correlation coefficients ir  (David, 1938). Paul (1989) derives two ( )C 

statistics and the likelihood-ratio statistic for testing the equality of several correlation 

coefficients and also the asymptotic relationship of these statistics is established. No 

attempt in the literature has been made to test the hypothesis that 

0 0 1 0: , 1,2, , . :i iH i k vs H        . 
 

 Samiuddin (1970) considers a test statistic  
 

    2 2( ) 2 1 1t r n r     ,            (6.1) 

 

and found that the statistic (6.1) has an exact student’s t-distribution for 0   and has an 

asymptotic t-distribution for 0  . We use Samiuddin’s statistic and propose a test 

statistic to test the equality of several correlation coefficients for 2k   independent 

random samples drawn from bivariate normal populations. Therefore, a test of 

significance for Qr  is  

 

         2 2
0 01 1 1Q Q Qt r N k r      ,          (6.2) 

 

which under the null hypothesis of equal correlations follows student’s t-distribution with  

(N-k-1) degrees of freedom for 0 0   and has an asymptotic t-distribution for 0 0  . 

The rationale for the degrees of freedom (d.f) of this test is that each of the k samples 

contributes ( 2in  ) d.f and that there are (k-1) d.f among the individual ,
ir s , which 

reflect sampling variation. Thus the statistic Qr  has associated with it a total of 

   
1

2 1 ( 1)
k

i
i

n k N k


      d.f. 

 

7. EXAMPLE 
 

 As an example, we use Tishler et al. (1977) data on the familial aggregation of blood 

pressure in children. The relationship of interest is between diastolic blood pressure and 

weight. It is relevant to investigate the correlations between blood pressure and weight 

separately in age-groups 6-8, 9-11, and 12-14. The simple correlations ir  in samples of 

30 boys from each of these age-groups are given by 0.422, 0.388 and 0.569, respectively. 

Under the assumption that these estimates are homogeneous, we test 0 : 0.4iH    

against 1 : 0.4iH   , 1,2,3i  . We have 0.707Qt 
 
for 0.462Qr  , 90N   and 3k  . 

Thus the Qt test gives strong evidence that 0.4  . 
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ABSTRACT 
 

 During the past three decades, inverted probability distributions have attracted the 

attention of a fairly large number of researchers, both in the theoretical and the applied 

areas. Seshadri (1965) has focused on distributions the functional form of which remains 

unchanged under the reciprocal transformation. He has presented some properties of such 

distributions. In this paper, we present some additional properties of this class of 

distributions. 

 

KEY WORDS 
 

 Inverted probability distributions, reciprocal transformation, life-testing, negative 

moments. 

 

INTRODUCTION 
 

 By the term ‘inverted distributions’ we mean those distributions each of which is 

obtained by applying the transformation 1/Y X  to a distribution ( )f x . During the past 

three decades, inverted probability distributions have attracted the attention of a fairly 

large number of researchers. Inverted distributions find applications in a variety of real 

life situations including Econometrics, Survey Sampling, Biological and Engineering 

Sciences, Life-testing, etc. [See Vysokovskii (1966, 1970), Pronikov (1973) and 

Kordonsky and Friedman (1976)]. Various authors have derived a variety of inverted 

distributions including the inverted gamma, inverted beta, inverted Weibull, inverted 

normal, inverted chi square, inverted Dirichlet and inverted multivariate t distributions, 

and a considerable amount of work has been done to obtain the basic properties of 

various inverted distributions. [See Bartholomew (1957),Ahmad and Sheikh (1983, 

1984), Sheikh and Ahmad (1982, 1983), Ahmad (1985), Habibullah (1987) and Ahmad 

(1995)]. Also, a number of researchers have worked on the negative or inverse moments 

of various discrete and continuous distributions. [See Stephan (1945), Grab and Savage 

(1954), Mendenhall and Lehmann (1960), Rider (1962), Chao and Strawderman (1972), 

Ahmad, Munir, A.K. Sheikh and A.K.A. Kattan (1998), Roohi (2002), and Ahmad and 

Roohi (2004)]. 
 

 Cobb (1980) has developed Pearson type differential equation that includes some 

inverted distributions. However, Seshadri (1965) has discussed distributions whose 
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functional form remains unchanged under the reciprocal transformation, and Habibullah 

and Ahmad (2006) have presented a functional form which yields Seshadri-type 

distributions over the domain 
1

,a
a

 
 
 

 , 0 1a  . 

 

2. PROPERTIES OF THE SESHADRI DISTRIBUTIONS 
 

 Seshadri (1965) defined a family of distributions that remain unchanged under the 

reciprocal transformation  
2

1 1
f x f

xx

 
  

 
, 0x  . Seshadri (1965) also discussed the 

family and derived some of its properties. We present some additional properties of the 

Seshadri (1965) family: 

 

Theorem 2.1: 
  

 If  f x  represents the Seshadri (1965) pdf , then    1E g X E g X      
, where 

 g X  is any function of X . 

 

The proof is trivial. 
 

 Some of the applications of Theorem 2.1 are given below: 
 

i) If   rg X X  , 1,2,....r   then    r rE X E X  , if  rE X   exists. 

ii) If 1r  , then    
11 11

HM E E X AM
X

  
   

 
.   

[See also Ahmad and Sheikh (1981)]. 

iii) If  
1itXg X e


 , then the Characteristic Function 

it

itXXE e E e
 

   
   

. 

iv) The geometric mean,   1GM x  , 0x  . 
 

Proof: 
 

 By definition, the geometric mean of any random variable is given by 

   lnE x
GM x e  where  GM x  denotes the geometric mean. Since  1ln lnE X E X  

 
, 

hence    

 
ln 1E X

GM X e
GM X


   or    

2
1 1GM X GM X       as X  is a positive 

random variable. 
 

 Combining Seshadri’s (1965) result with property (iv), we have   1X GM x   

where X …… is the median of the random variable X . Also, properties (ii) and (iv) 

lead to the following: 
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 The inequality 

 
 

1

1
1 E X

E X 
   holds, provided that  1E X   exists.  

 

Theorem 2.2: 
 

 Let 1X  and 2X  be identically and independently distributed random variables that are 

invariant under the reciprocal transformation. Then, the distribution of the product 1 2X X  

is the same as the distribution of the ratio 1 2/X X  (as well as the distribution of the ratio

2 1/X X ), and is also closed under inversion. 
 

 The proof is simple. 
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ABSTRACT 
 

 A statistical problem arises in estimating a variance component in an analysis of 

variance in various experimental designs when the estimate of the variance component 

becomes negative. Various authors [Hartely (1950), Link (1950), Patnaik (1950), Leslie 

and Brown (1966), Barlow et al. (1969), Pearson (1932, 1966) and Ahmad (1974, 1978)] 

have devised alternative methods to estimate variance that guarantee non-negative 

estimate of variance components. However, the distribution of the ratio of two ranges is 

restricted to two samples of unequal sizes.  
 

 In this paper, an attempt has been made to extend Leslie and Brown (1966) F-test 

 LBF  based on k samples of unequal sizes. The sampling distribution of ranges is 

derived based on k-samples of unequal sizes from a standard normal population. Since 

the integration is difficult to compute the critical regions, Monte Carlo procedure has 

been adopted. An example is given to compare it with Snedecor F-test  SF  and LBF . 

 

1. INTRODUCTION 
 

 A number of applications of range, maxima, minima and other order statistics for 

solutions of various problems arising in industrial quality control, floods, drought 

predictions, climatology, engineering, medical science etc. have recently been discussed 

by various authors [See Benjamini et al. (2004), Carbajal (2003), Fuentes (2002), Liu 

(2001), Meinshausen and Buhlmann (2005), Petricoin et al. (2002) and Stephenson and 

Tawn (2005)]. Among the known tests, Hartely (1950) used the ratio of maximum 

variances to minimum variances in a set of k independent sample variances in place of  

F-test. Link (1950) derived the distribution of ratio of two ranges from two independent 

samples of unequal sizes and computed values of ratios for all combinations of sample 

sizes at different levels of significance. McKay and Pearson (1933) derived distributions 

of the range from normal population whereas Daly (1946), Lord (1947), Gupta et al. 

(1964), Harter (1959) and others derived density of ranges. Leslie and Brown (1966) 

obtained the density of the ratio of maximum range to the minimum range of k samples 

each of equal size independently drawn from a normal population, proposed a test based 

on the ratio and computed tables for this purpose. Pearson (1966) gave Monte Carlo 

results on the three tests of heterogeneity of variance, including one of Leslie and Brown 

(1966). Later Ahmad (1974, 1978) obtained the probability function of the ratio of 

maximum range to minimum range of k samples of varying sizes drawn independently 
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from normal populations and proposed an alternative F-type ( WF say) test based on the 

ratio, but no table was prepared for computing critical regions.  
 

 In this paper, the distribution of the proposed WF  statistic has been used to obtain its 

values for different values of in  at 5% significance level. 

 

2. DISTRIBUTION OF ORDER STATISTICS 
 

 Let X  be a statistic in a sample of size jn  and its distribution function be  jG x  

with density    j jg x dx dG x . The distribution of thi  order statistic, iY  of a sample of 

size k drawn from each of   , 1,2,.....jG x j k  is given by 

 

       
1 1 1

1
i

y k iM

Y mr mr
m r i r

H y G t d G t
   

 
     

 
   ,       (2.1) 

 

where 
1

M

m

 extends over those values of m  for which i jm m  for i j . There are 

k
M

i

 
 

 
 terms in the summation. In particular, if 1i   the distribution of 1Y   

is    1
1

1 1
k

r
r

P Y y G y


      . The joint density function of 
thr  and ths  order  

statistics is given by         
1 1

1 1

,
r sM

r s r s mi r mi s mi r
m i i r i

h y y dy dy G y G y G y
 

   


 


    

      
1

1
k

mi r mr r mr s
i s

G y dG y dG y
 


 


  where 

1

M

m

  is over m such that ,i jm m i j  . 

The joint density of the smallest and the largest observations is  
 

         1 1
1 1

,
k k

k i k i k i
i i

H y y G y G y G y
 

      . 

 

 The distribution function of range 
1ii n nW Y Y  , is  

 

   iP W w      in
n G t w G t




       d G t  for 0w  . 

 

3. A TEST BASED ON THE RATIO OF RANGES 
 

 Leslie and Brown (1966) proposed a test based on max minW W W  where maxW  is the 

maximum of ranges and minW  is the minimum of ranges among k samples of equal sizes. 

Suppose the sample sizes are unequal. The joint distribution of maxW  and minW  [see 
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Ahmad (1974, 1978)] is    max min max,
k

j
j r

H W W G W


     max min
1

k

j j
j

G W G W


    , 

and the cumulative distribution function of W is 
 

     min min min
0

,
w

H w h x W W dW dx




   . 

 

The test based on W  is WF  where  1WF H w   , 
 

 If jn n  for each j ,    jG x G x  reduces  H w  to an equation of Leslie and 

Brown (1966). We have evaluated  H w  based on random samples each containing 

 2 1 10, 1,2,....10in i   observations drawn from a standard normal population and WF  

values for upper 5% have been computed. [See Dara (2007) at website www.pakjs.com]. 

 

4. COMPARISON AND A NUMERICAL EXAMPLE 
 

 The Snedecor SF , Leslie and Brown, LBF  and WF  values computed at α = 0.05 for 

two samples of equal sizes, are given in Table 1. 

 

Table 1 

Comparison of F-values for 1 2n n  

Sample Sizes/ 

Degree of freedom SF  LBF  WF  

(3,3) 9.28 9.392 6.308 

(4,4) 6.39 6.371 3.973 

(5,5) 5.05 5.149 3.161 

(6,6) 4.28 4.487 2.769 

(7,7) 3.79 4.070 2.510 

(8,8) 3.44 3.781 2.336 

(9,9) 3.18 3.568 2.216 

(10,10) 2.98 3.404 2.112 
 

 The WF  values are smaller than the SF  and LBF  values. SF  is based on ratio of 

mean square of treatments to error mean square whereas LBF
 
and WF  depend on ranges.  

 

Example: [Dougherty (1990)].  
 

 Suppose an engineer tests the abilities of three robots numbered 1, 2, and 3 to locate a 

box of machine parts. Each robot is tested five times. The observations are given below: 
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Robot Observations iW  Mean 

1 93 56 82 104 45 59 76.0 

2 42 64 112 73 100 70 78.2 

3 30 55 60 98 85 68 65.6 

 

 iW  is the range of the ith Robot giving max 70W   and min 59W  , then 

70 59 1.68W   . 
 

 The ANOVA gives 227 705 0.32SF    and  .05 2,12 3.89F  . Therefore SF  does 

not reject 0H . 
 

 Now,  3,5 4.018LBF   and  5,5,5 4.016WF  . The   705MS E   is much larger 

than the   227MS Robots   giving negative values of Robot variance component and as 

such SF  may not be a good test statistic. Either WF  or LBF  is applicable however with 

both of them not rejecting 0H  at 0.05  . 
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ABSTRACT 
 

 An extension of the Weibull distribution which involves an additional shape 

parameter is being proposed. Interestingly, the additional parameter acts somewhat  

as a location parameter while the support of the distribution remains the positive half-

line. Since the gamma distribution is a particular case of this distribution, the latter is  

referred to as a gamma-Weibull distribution. The gamma-Weibull distribution is in fact a 

reparameterization of the generalized gamma distribution, which has received little 

attention in recent years. Some parameters of the gamma-Weibull model have a more 

straightforward interpretation than those associated with the generalized gamma 

distribution. Moreover, the gamma-Weibull distribution does not contain a threshold 

parameter. Accordingly, it readily lends itself to various estimation methodologies and 

exhibits regular asymptotics. Numerous distributions such as the Rayleigh, half-normal 

and Maxwell distributions can also be obtained as special cases. The moment generating 

function of a gamma -Weibull random variable is derived by making use of the inverse 

Mellin transform technique and expressed in terms of generalized hypergeometric 

functions. This provides computable representations of the moment generating functions 

of several of the distributions that were identified as particular cases. Other statistical 

functions such as the cumulative distribution function of a gamma-Weibull random 

variable, its moments, hazard rate and associated entropy are also given in closed form. 

The proposed reparametrization is utilized to model two data sets. The gamma–Weibull 

distribution provides a better fit than the two parameter Weibull model or its shifted 

counterpart, as measured by the Anderson-Darling and Cramer-von Mises statistics. 

 

KEYWORDS 
  

 Weibull distribution; Gamma distribution; Moment generating function; Inverse 

Mellin transform; Hazard rate; Entropy; Moments; Parameter estimation; Goodness-of-fit 

statistics. 

 

1. INTRODUCTION 
 

 The Weibull distribution has been originally defined by the Swedish physicist 

Waloddi Weibull. He made use of it in Weibull (1939) in connection with the breaking 

strength of materials. Many applications in industrial quality control are discussed in 

Berrettoni (1964). Various distributional aspects of this distribution have been 
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investigated in several recent papers. For instance, products and ratios of Weibull random 

variables were studied by Nadarajah and Kotz (2006). Exact coverage probabilities of 

approximate prediction intervals for the number of failures to be observed in a future 

inspection of a sample were evaluated in Nordman and Meeker (2002). Hirose and Lai 

(1997) constructed confidence intervals for the parameters, including a location 

parameter, for the case of grouped data. A certain generalization of the Weibull 

distribution is described in Mudholkar et al. (1996) and applied to survival data. For the 

basic distributional properties of the Weibull distribution, techniques for the estimation of 

its parameters as well as numerous applications, the reader is refered to Johnson and Kotz 

(1976).  
 

 A reparameterization of the generalized gamma distribution called the gamma-

Weibull distribution is introduced in Section 2. Unlike shifted models whose asymptotics 

are not regular, the maximum likelihood estimators of the gamma-Weibull model have a 

normal asymptotic distribution whose covariance matrix can be obtained in terms of the 

partial derivatives of the log likelihood function. For various results in connection with 

the generalized gamma distribution and some of its asymptotic properties, the reader is 

referred to Prentice (1974), Farewell and Prentice (1977), Smith and Naylor (1987), 

Evans et al. (1993), Cheng and Traylor (1995), and Meeker and Escobar (1998). Several 

particular cases of interest are enumerated in Section 3. Techniques for determining 

maximum likelihood estimates are discussed in Section 4, and the proposed model is 

applied to two data sets in Section 5. 
 

 The remainder of this section is devoted to the inverse Mellin transform technique, 

which is central to the derivation of the moment generating function of the gamma-

Weibull distribution. First, the Mellin transform of a function and its inverse are defined. 
 

 If  f x  is a real piecewise smooth function that is defined and single valued almost 

everywhere for 0x   and such that  1

0

k
x f x dx


  converges for some real value k , 

then    1

0

s
fM s x f x dx

    is the Mellin transform of  f x . Whenever  f x  is 

continuous, the corresponding inverse Mellin transform is 
 

     
1

2

c i s
fc i

f x x M s ds
i

  

 



               (1.1) 

 

which, together with  fM s ; constitute a transform pair. The path of integration in the 

complex plane is called the Bromwich path where Bromwich path is a part of integration 

in the complex plane running from c i   to c i  , where c  is a real positive number 

chosen so that the path lies to the right of all singularities of the analytic. Equation (1.1) 

determines  f x  uniquely if the Mellin transform is an analytic function of the complex 

variable s for  1 2c s c c    where 1c  and 2c  are real numbers and  s  denotes 

the real part of s . In the case of a continuous nonnegative random variable whose density 

function is  f x , the Mellin transform is its moment of order  1s   and the inverse 

Mellin transform yields  f x . Letting 
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1 1

1 1

1

1

m n
j j i ij i

f q p
j j i ij m i n

b B s a A s
M s

b B s a A s

 

   

    


    

 

 
,      (1.2) 

 

where , , ,m n p q  are nonnegative integers such that 0 ,n p  1 ,m q   iA , 1,...,i p , 

, 1,..., ,jB j q  are positive number and , 1,..., ,ia i p  jb , 1,...,j q , are complex 

number such that    1i j j iA b v B a      and , 0,1,2,...,v    1,...,j m , and 

1,...,i n , the H -function can be defined as follows in terms of the inverse Mellin 

transform of  fM s : 

 

   
   

   
 

1 1,
,

1 1

, ,..., , 1

2, ,..., ,

p p c im n s
p q fc i

p p

a A a A
f x H x M x x ds

ib B b B

  

 

 
  
   
 

 ,      (1.3) 

 

where  fM s  is as defined in (1.2) and the Bromwich path  ,c i c i     separates the 

points  j js b B   , 1,...,j m , 0,1,2,...  , which are the poles of  j jb B s  , 

1,...,j m , from the points  1 i is a A   , 1,...,i n , 0,1,2,...,   which are the 

poles of  1 i ia A s   , 1,...,i n . Thus, one must have  
 

     1 1 1j m j j i n i iax b B c in a A      M R M R .         (1.4 

 

 The inverse Mellin transform approach is believed to be the only one that provides a 

closed form representation of the moment-generating function. If, for certain parameter 

values, an H -function remains positive on the entire domain, then whenever the 

existence conditions are satisfied, a probability density function can be generated  

by normalizing it. For example, the Weibull, chi-square, half–normal and F distributions 

can all be expressed in terms of H -functions. For the main properties of the H -function 

as well as applications to various disciplines, the reader is referred to Mathai and  

Saxena (1978) and Mathai (1993). When 1i jA B   for 1,...,i p  and 1,...,j q , the 

H -function reduces to Meijer’s G -function, that is, 
 

  
   

   

11, ,
, ,

1 1

,1 ,..., ,1,...,

,..., ,1 ,..., ,1

ppm n m n
p q p q

p p

a aa a
G x H x

b b b b

  
   
       

          (1.5) 

 

Moreover,  
 

  
1 1, ,

, ,
1 1

,..., 1 ,...,11

,..., 1 ,...,1

p qm n n m
p q q p

p p

a a b b
G x G

b b a ax

    
   
    
   

 .         (1.6) 
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2. THE GAMMA-WEIBULL DISTRIBUTION 
 

2.1 Introduction 

 The two-parameter Weibull density function is usually expressed as follows: 

       
1

/
2 ; ,

k
k

xk x
f x k e I x


  

   
  

,            (2.1) 

where 0   is a scale parameter and 0k   is a shape parameter. This distribution can 

be shifted by subtracting the location parameter   from x  in the density function, which 

yields,  

         *
2 2 ,

; , , ; ,f x k f x k I x
 

     .            (2.2) 

 

 This distribution will be called the shifted Weibull distribution. 
 

 We consider the reparameterized three-parameter extension, 

   
 

 
1 1

; , ,
1 /

k
k k xk x e

f x k I x
k





   
  

  
,           (2.3) 

with 0k   where   is the additional shape parameter and, referring to (2.1), k  

. Since the gamma and Weibull pdf’s can both readily be obtained as particular cases, the 

distribution whose pdf is specified in (2.3) will be referred to as the gamma-Weibull 

distribution. The gamma-Weibull is a reparameterization of the generalized gamma 

model proposed by Stacy (1962). 
 

 The cdf of the gamma-Weibull distribution with parameters ,k  and   is given by 
 

         ; , , 1 1 , 1 / , 0k kF t k k t k t         R ,       (2.4) 

where   1, a y

x
a x y e dy

      denotes an incomplete gamma function.  
 

( )f x
 

( )f x
 

  X  X  

Fig. 2.1: The gamma-Weibull pdf. Left panel: 1, 2k    and 1/ 2   (thick line), 

1/ 4   (dashed line), 1/ 8   (solid line). Right panel: 1/ 8, 1     and 

3.5k   (thick line), 3k   (dashed line), 2k   (solid line). 
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( )f x
 

( )f x
 

 
 X  X  

Fig. 2.2: The gamma-Weibull pdf. Left panel: 1/ 4  , 2k   and 0   (thick 

line), 2   (solid line), 4   (dotted line), 7   (short dashes), 12   

(long dashes). Right panel: 1/ 8,   .25   and 0.7k  . 

       

( )f x
 

 
X  

Fig. 2.3: The cdf for 1/ 4, 2k    and 0   (thick line), 2   (solid line),   4 

(dotted line),   7 (short dashes),   12 (long dashes). 

 

 The left and right panels of Figure 2.1 illustrate how the parameters   and k  effect 

the gamma-Weibull distribution while the left panel of Figure 2.2 as well as Figure 2.3 

show the effect of the additional parameter   on the distribution. Interestingly, the 

additional shape parameter acts more or less like a location parameter while the support 

of the distribution still remains the positive half-line. As seen from the right panel of 

Figure 2.2, the pdf decreases exponentially when 0 1k   .  
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2.2 Derivation of the Moment Generating Function 

 The inverse Mellin transform technique will be used to derive the moment generating 

function of the gamma-Weibull distribution. Let X  be a random variable whose pdf is 

specified by (2.3). Since  
 

  
      /1

0
1 /

k j kj k xk x e dx j k m j
           , 

 

the thj  raw moment of X  is given by  

  
 

 

  
 /

1 /

0 1 /
j j k

j km j

m k

   
  

   
.               (2.5) 

 

 By definition, the moment generating function of X  is 

   
 

1
1

01 /

k ksx k x
X

k
M s e x e dx

k




   

  

 .            (2.6) 

 

 We now show that the integral 
  

  
1

0

ksx k xe x e dx
   
                   (2.7) 

 

is proportional to the pdf of the ratio of the random variables 1X  and 2X  whose pdf’s 

are 
 

    1
1 1 1

kx
g x c e


   

and 

    2 2
2 2 2 2

sx kg x c e x  , 
 

respectively, 1c  and 2c  being normalizing constants. Let 1 2/u x x  and 2v x  so that 

1x u v  and 2x v , the absolute value of the Jacobian of the inverse transformation 

being v . Thus, the joint pdf of the random variables U  and V  is    1 2v g uv g v  and 

the marginal pdf of 1 2/U X X  is 
 

       1 1 20
h u v g uv g v dv


  , 

 

that this  

      2
1 1 2 0

k
uv k svh u c c e v v e dv

     , 
 

which, on letting 1/ku    and v x , becomes 
 

   1/ 1
1 1 2 0

.
kk sx k xh c c e x e dx

                  (2.8) 

 

 Alternatively, the pdf of 1 2/X X  can be obtained by means of the inverse Mellin 

transform technique. The required moments of 1X  and 2X  are respectively 
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     11 1 1
1 1 1 10

/
kxt t c

E X c x e dx t k
k

      

and 

     21 1
2 2 2 220

1
k t

sxt k tE X c x e dx c k t
s

 
     

      
 

 , 

 

 Provided   0s R  and   0k t  R . Then, the inverse Mellin transform of 

1 2/U X X  is  

   
 

     1 2
1

1
/ /

2

t

ck

c c
h u u s t k k t dt

ik s




     


 ,       (2.9) 

 

where C  denotes the Bromwich path described in the Introduction. Thus in terms of  

an H -function as defined in (1.3), one has  
 

   
 

 
 

1,11 2
1 1,1

1 ,1
, 0

0,1/k

kc c u
h u H s

ksk s


  
    

  
.          (2.10) 

 

 Since (2.10) is equal to (2.8) when 1/ku    and the integrals in (2.8) and (2.6) are 

identical, it follows that the moment generating function of X  is 
 

   
  

 
 

1 1/
1,1
1,1

1 ,1
, 0

0,1/1 /

k k

X k

k
M s H s

ksk s






   
   

      

.      (2.11) 

 

 Accordingly, it will be assumed that 0s   in the remainder of this dissertation.  
 

 When k  is rational number such that /k p q , where p  and 0q   are integers, one 

can express the integral in (2.9) as a Meijer’s G -function by letting /z t p  and making 

use of the Gauss-Legendre multiplication formula, 
 

     
1 1

2 2

1

0

2
q q

r qz

k

k r
r q z q z

q

 
 



 
      

 
 .           (2.12) 

Then, 

   
 

     
1 2

1 /

1
/ /

2

pz

cp q

c c q
h u u s q z p q p z dz

is




     


  

    
 

   
1 1

2 21 2

/
/ 2

2

q p
pz

cp q

c c q i
u s
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1

1/2 / 1/2

0

q
q z p q pz

j

j
q p z

q


   



   
    

   
  

      
1

0

/p

i

i p q
z dz

p





    
    
   
 , 
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that is, 

   
   

 

1 /2 1/2 / 1/2
1 2

1 /

2
p q p q

p q

c c q p
h u

s

   







 

      

/

,
,

0,1,..., 11 ,

0,1,..., 1/ ,

i p qp
q p q p
p q

i pup
G q

s j qj q




      
     

,    (2.13) 

 

which on letting  / 1/q p ku     , yields 

 

   
   

 

1 /2 1/2 / 1/2
1 21/

1 /

2
p q p q

k

p q

c c q p
h

s

   




 


 

      

/

,
,

1 , 0,1,..., 1

0,1,..., 1/ ,

q i p qp
q p p
p q

p i p
G

s q j qj q

               
 

.    (2.14) 

 

 Since the expression in (2.14) and (2.8) are equal when /k p q , the moment 

generating function of the gamma-Weibull distribution as given in (2.6) can be  

expressed as 
 

   
   

   

1 /2 / 1 1/2 / 1/2

/

2

1 /

q p q p p q

X p q

q p
M s

q p s

      



 


   
 

      

/

,
,

0,1,..., 11 ,

0,1,..., 1/ ,

q i p qp
q p p
p q

i pp
G

s q j qj q

              
 

.     (2.15) 

 

 
Fig. 2.4:  Moment generating function for p = 2; q = 1;   = 1/8 and  

 = 1 (short dashes),  = 2 (dotted line),  = 3 (solid line). 
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Equivalently, in light of (1.6), one has  
 

   
   

   

1 /2 / 1 1/2 / 1/2

/

2

1 /

q p q p p q

X p q

q p
M s

q p s

      



 


   
 

      ,
/,

1 / , 0,1,..., 1

0,1,..., 1

qp
q p

i p qp q

p

j q j qp
G

s q i p





               
 

.     (2.16) 

 

 This representation, unlike that given in (2.11), can readily be evaluated by means  

of computational packages such as Maple or Mathematica. Letting X  denote a  

gamma-Weibull random variable, the mgf of its shifted counterpart Y X   whose 

pdf, referring to (2.3), is  ; , ,f x k    is simply    t j
YM t e E X , and its thh  

moment is given by 
 

       
0

h h j j

j

h
E X E X

j

 



 
   

 
 . 

 

 We note that, in most instances, the location parameter   may not be required due to 

the presence of the parameter  . 

 

2.3 Moments, Hazard Rate, Entropy and Mean Residue Life Function 

 Closed form representations of the moments of a three-parameter gamma-Weibull 

random variable which is denoted by X , as well as the associated hazard rate, entropy 

and mean residue life function are provided in this section. 
 

i) The thj  raw moment X  is available from (2.5). Accordingly, the mean and variance 

of X  are 
 

   
  
 1/

1 1 /

1 /k

k
E X

k

  

   

                (2.17) 

 and 

   
       

 

2

22/

1 / 1 2 / 1 1 /

1 /k

k k k
Var X

k

        


   
.       (2.18) 

 

ii) The factorial moment of X  are  
 

       1 2 ... 1E X X X X    
 

   
1

0

1
j j

j
j

E X






    

       
1

/

0

1
j j k

j
j






   
  
 

1 /

1 /

j k

k

     


  
.         (2.19) 
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iii) The thi  negative moments is  
 

   
  

 

/ 1 /

1 /

i k

i
i k

E X
k


   


  

,              (2.20) 

 

 provided   0k i  R . 

 

iv) The hazard rate function defined as  
 

   
 

 

; , ,
; , ,

; , ,

f x k
Z x k

F x k

 
  

 
, 

 

 where    ; , , 1 ; , , 0F x k F x k        and  ; , ,F x k   is the cdf given in (2.4), is  

   
 

1 1 /

; , ,
1 / ,

kx k k

k

k e x
Z x k

k x

  
  

   
.              (2.21) 

 

v) The mean residual life function defined as  

   
 

   0

1
; , ,

; , ,
K x k y x f y dy

F x k


   

 
 ,  

      
  

 

1/ 1 1 / ,

1 / ,

k k

k

k x
x

k x

   
 

   
.           (2.22) 

 

vi) An extension of the Shannon entropy for the continuous case defined as  

        0
logH f f x f x dx


  , 

 is given by 

           log log / log 1 /H f k k k         

             0
1 1 / 1 / 1k k      ,        (2.23) 

 where 
       0

z z z     is the polygamma function. 

 

3. PARTICULAR CASES OF INTEREST 
 

 Some special cases of the gamma -Weibull distribution are enumerated below. The 

associated moment generating functions are also provided in terms of G -functions for 

the two-parameter Weibull, Maxwell, Rayleigh and half-normal distributions.  

 

i) The mgf of the two-parameter Weibull density function which can be expressed as 
 

     1 kk xf x k x e I x
    

 

 with 
k    in its original representation is  

 

NCBA&E



Chapter 1: Continuous Distribution 59 
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M s
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,
,

0,1,..., 11 ,

0,1,..., 1/ ,

q i p qp
q p p
p q

i pp
G

s q j qj q

              
 

      (3.1) 

            

which is a special case of (2.3) and (2.15) with 0 , assuming that 

/ , 0k p q q a   in the latter. An alternative form of the moment generating function 

was recently derived by Nadarajah and Kotz (2007).  

 

ii) The Maxwell density function 
 

    
 

 
2 222

3

2 x
f x x e I x

 



 

 

 and its associated moment generating function,  
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1,23

12

3 / 2,22
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M s G

s

 
 
  
 

 

      
2 2 2 2 22

1 1
2

s s
s e s erf   

          
         (3.2) 

 where 

   
2

0

2 terf z e dt
 


 , 

 are particular case of (2.3) and (2.16) with  21, 1/ 2 , 2k       2p   and 1q  . 

 

iii) The half-normal density function 
 

     
2 2 /2

, 0xf x e I x
  

  


 

 

 and its associated moment generating function, 
 

   
2

2,1
1,23/2 2

12

1/ 2,14
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M s G
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 2 24 2

2

1
,

2 4

s
e s
 

 
       

 

            
  

24 2 1se erf s  
      (3.3) 

 

 are special cases of (2.3) and (2.16) with 1   , 2 /    , 2k  , 2p   and 1.q   
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iv) The Rayleigh density function 
   

   
 

 

2 22

2

x a
xe

f x I x
a





  

 

 and its associated moment generating function, 
 

   
 

 
2

2,1
1,22

12

1,3 / 22,
X

a s
M s G

a s

 
 
 
 

            (3.4) 

     

2 2 /2 2 21
,

2 22 2

a sa s e a s 
    

 
,             (3.5) 

 

also turn out to be particular cases of (2.3) and (2.16) with 0  ,  21/ 2a  , 

2,k   2p   and 1q  . It is known that the moment generating function of the 

Rayleigh distribution can be expressed as 
 

   
2 2 /21 1

2 2

a s
X

a s
M s a s e erf

  
     

  
           (3.6) 

 

 
Fig. 3.1:  The mgf of the Rayleigh distribution evaluated for a = 2  

from (3.4) and (3.5) (dotted line) and (3.6) (long dashes)  

 

v) The gamma distribution with density function 
 

   
 

 
1 /

, , 0
v x

v

x e
f x I x v

v


  

  
 

, 

 

is a special case of (2.3) with 1v   , 1/    and 1k  , whose moment 

generating function is well known. It follows that the chi-square distribution with N  
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degrees of freedom, which is a gamma distribution with parameters / 2v N  and 

2  , and the exponential distribution, which is a gamma distribution with 

parameters 0   and 1v   are also special cases. 
 

It should be noted that on letting X  denote a gamma-Weibull random variable  

with parameters ,   and k , one has that kX  is distributed as a standard  

gamma random variable with parameter 1 / k , whose density function is 

   / / 1 /k zz e k I z
    . 

 

vi) The Erlang distribution with density function 
 

   
   

 
 

1 1 1

1

xx e
f x I x

   


 
 

 is also a particular case of (2.3) wherein 1,0,1,2,...    and 1k  . 
 

One could also consider the symmetrized versions of the above distributions whose 

density functions are given by 

   
 

 
2

s

f x
f x I x  

 

 For instance the normal distribution whose density function is  
 

   
 

 

2 2/ 2

, 0
2

x
e

f x I x

 

  
 

, 

is the symmetrized form of the half-normal distribution. Similarly, the double-

exponential distribution can be obtained from the exponential distribution. 

 

4. PARAMETER ESTIMATION 
 

 The maximum likelihood approach is used to estimate the parameters of the shifted 

Weibull and the gamma-Weibull distributions. Two goodness-of-fit measures are also 

defined.  
 

4.1 Maximum Likelihood Estimation 

 Johnson and Kotz (1976) provided the following three equations for estimating the 

parameters of the shifted Weibull distribution whose pdf is specified by (2.2): 
 

         

1
1

ˆ ˆ
1

1 1 1

ˆ ˆ ˆ ˆ ˆlog log
n nk k

i i i i
i i i

k x x x n x






  

  
          

     (4.1) 
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kn k
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n x



 
   

 
                 (4.2) 

and 
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ˆˆ 1

1 1

1ˆ ˆ ˆ ˆ1
ˆ

n n kk
i

i ii

k k x
x



 

   


  ,           (4.3) 

 

where the ix ’s denote the observations from a random sample of size n . 
 

 When 0, k   is estimated from (4.1) and then ̂  is determined from (4.2). When 

0  , (4.1), (4.2) and (4.3) are solved simultaneously by making use of the symbolic 

computational package Mathematica with its command FindRoot. The estimates of k  

and   obtained for the case 0   can be used as initial values, either for determining 

the parameters of the shifted Weibull distribution or those of the gamma-Weibull 

distribution discussed below.  
 

 Given the independent observations 1,..., nx x , the loglikelihood function of the 

gamma-Weibull distribution is 

  
    

1

, , log ; , ,
n

i
i

k f x k


      

             log 1 / log log 1 /n k n k n k        

          
1 1

1 log ,
n n

k
i i

i i

k x x
 

               (4.4) 

 

where  ; , ,f x k   is as given in (2.3). On equating the partial derivatives of (4.4) with 

respect to , k  and   to zero, one obtains the following equations: 
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k x
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     ,          (4.5) 

 

where        0
z z z    , 
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(4.6) 

and 

  
  ˆ

1

ˆˆ1 /
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ˆ

n
k

i
i

n k
x



 
 


 .                 (4.7) 

 

which can be solved simultaneously for ˆ ˆ,k   and ̂ . 

 

4.2 Goodness-of-Fit Statistics 

 The following statistics are widely utilized to determine how closely a distribution 

whose associated cumulative distribution function is denoted by cdf (.) fits that of a given 

data set:  
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1. The Anderson-Darling statistic given by 

      2
0 1

1

1
2 1 log 1

n

i n i
i

A n i z z
n

 


     ,           (4.8) 

 

 where  i iz cdf y , the iy ’s being the ordered observations.  

 

2. The Cramer-von Mises statistic given by 

  

2
2

0
1

2 1 1

2 12
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W z
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 .               (4.9) 

 

 The smaller these statistics are, the better is the fit. Upper tail percentiles of the 

asymptotic distributions of 2
0A  and 2

0W  are tabulated in Stephens (1976). 

 

4.3 The Asymptotic Result 

 Even though both the gamma-Weibull and shifted Weibull have an additional 

parameter controlling location, the gamma-Weibull belongs to the exponential family 

model, while the shifted Weibull does not. Since the Cramer-Rao regularity conditions 

hold for the gamma-Weibull model (which is not the case for the shifted Weibull), large 

sample properties of the MLEs can be developed for statistical inference. For example, 

the MLEs have large sample normal distributions (which are useful for computing 

confidence regions or calibrating tests). Accordingly, asymptotically, one has  
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,     (4.11) 

  

the inverse of the asymptotic covariance matrix is   ( , , )I k E H X   
 
with 
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        (4.12) 

 

 In practice,   E H X  is often estimated by differentiating the log likelihood 

function and substituting the MLEs in the resulting expression. This is referred to as the 

observed Fisher information. 

 

5. NUMERICAL EXAMPLES 
 

 In this section we give two practical examples using well known data sets easily 

available in literature, i.e. the ball bearing data set and the Carcinoma data set. 

 

5.1 The Ball Bearings Data Set 

 The gamma-Weibull model is applied to a data set published in Lawless (1982, p. 

228) and given in Table 5.1, which consists of the number of million revolutions before 

failure for each of 23 ball bearings in a life testing experiment. Meeker and Escobar 

(1998) fitted an extended generalized gamma to the ball bearing data and determined that 

the best fit corresponds to a generalized gamma model.  
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Table 5.1 

Ball Bearings Data 

17.88 28.92 33. 41.52 42.12 

45.6 48.8 51.84 51.96 54.12 

55.56 67.8 68.44 68.88 84.12 

93.12 98.64 105.12 105.84 105.84 

127.92 128.04 173.4   
 

Table 5.2 
Estimates of Parameters and Goodness-of-Fit  

Statistics for the Ball Bearings Data 

Distribution k̂  ̂  ̂  ̂  
2
0A  2

0W  

Two-Parameter Weibull 2.102 0.00009 - - 0.329 0.058 

Shifted Weibull 1.595 0.001 14.87 - 0.222 0.035 

Gamma-Weibull  0.604 0.815 - 5.759 0.190 0.033 
 

 
(a) 

 
(b) 

 

Fig. 5.1: (a) Two-parameter Weibull (dashed line), shifted Weibull (dotted line) and 
gamma-Weibull (solid line) density estimates superimposed on the 
histogram for the ball bearings data.  

 (b) Right panel: Two-parameter Weibull (short dashes), shifted Weibull (long 
dashes) and gamma-Weibull (solid line) cdf estimates and empirical cdf. 
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 The pdf and cdf estimates are plotted in Figure 5.1 for the two-parameter Weibull, 
shifted Weibull and gamma-Weibull distributions. The estimates of the parameters are 
given in Table 5.2 along with the values of the goodness-of-fit statistics. Clearly, the best 
fit is obtained with the gamma-Weibull model. 
 

5.2 The Carcinoma Data Set 

 We also apply the proposed model to a data set published in Lee and Wang (2003, 

Example 6.2), which is given in Table 5.3. The observations consist of the number of 

days elapsed until the appearance of a carcinoma in 19 rats that were painted with the 

carcinogen DMBA (dimethylbenz [a] anthracene). 

 

Table 5.3 

Carcinoma Data 

143 164 188 188 190 

192 206 209 213 216 

216 220 227 230 234 

244 246 265 304  

 

Table 5.4 

Estimates of Parameters and Goodness-of-Fit  

Statistics for the Carcinoma Data 

Distribution k̂  ̂  ̂  ̂  
2
0A  2

0W  

Two-Parameter Weibull 6.260 151.61 10  - - 0.457 0.069 

Shifted Weibull 2.849 61.725 10  121.426 - 0.299 0.044 

Gamma-Weibull  1.308 0.019 - 27.462 0.243 0.035 
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(a) 

 
(b) 

 

Fig. 5.2: (a)  Left panel: Two-parameter Weibull (dashed line), shifted Weibull (dotted 

line) and gamma-Weibull (solid line) density estimates superimposed on the 

histogram for the carcinoma data.  

 (b) Right panel: Two-parameter Weibull (short dashes), shifted Weibull (long 

dashes) and gamma-Weibull (solid line) cdf estimates and empirical cdf. 
  

 The pdf and cdf estimates are plotted in Figure 5.2 for the two-parameter Weibull, the 

shifted Weibull and the gamma-Weibull distributions. The estimates of the parameters 

are given in Table 5.4 along with the values of the Anderson-Darling and Cramer-von 

Mises goodness-of-fit statistics. Once again, the gamma-Weibull model provides the best 

fit.  
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ABSTRACT 
 

 In this paper, we derive a distribution of the mean of k-independent sample 

correlation coefficients each of which is based on “ n ” pairs of observations. This 

distribution has been developed by expanding the thr  power of the modified Bessel 

function by using the Taylor series. The mean distribution of sample correlation 

coefficients ( r ) has many applications in the field of medicine, accounting, stock 

exchange market, economics and finance. Particularly, if one is interested to find the 

distribution of average rate of return correlated with risk free, one may have high and/or 

low risk, in a multiple investment portfolios. 

 

KEY WORDS 
 

 Bessel Function, Correlation coefficient, Modified Bessel Function, Taylor series, 

Characteristic function. 

 

1. INTRODUCTION 
 

 Sample correlation is a widely discussed issue among the researchers. Correlation was 

explored much before the 20
th

 century. Galton (1877) originally conceived the modern 

concept of correlation and regression on the basis of a problem of heredity. Galton (1877, 

1888) introduced the concepts of regression and correlation and first referred to the term 

“correlation” and developed the product-moment correlation. Pearson (1896) published 

his work on correlation and regression and credited Bravais (1846) for his initial 

mathematical formulae of correlation. [See Weldon (1892) and Yule (1897, 1907)]. Some 

important features of correlation coefficient (  ) were studied by Student (1908) who 

discovered that the sample correlation coefficient is symmetrically distributed about zero. 

The exact distribution of sample correlation was derived by Fisher (1915), who showed 

that the sampling distribution of Z -transformation of correlation tends to normality. Any 

inference about the value of   is equivalent to an inference about the independence 

between two variables when the assumption of a bivariate normal distribution holds. 

Hotelling (1953) derived some mathematical properties of the distribution function of 

sample correlation coefficient r , and improved the Z -transformation to find better 

approximation to the distribution of r . He gave the moments of r  and Z , that are closer 

to the normal moments, even for the small samples. 
 

 The problem of estimating a common correlation coefficient ρ from 2k   

independent random samples drawn from normal populations were investigated by 

Anderson (1958), Rao (1965) and Sendecor and Cochran (1967). Donner and Rosner 

                                                 
* 
Published in Pak. J. Statist. (2011), Vol. 27(2). 
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(1980) made a comparative study of four different methods of estimating a common 

correlation ρ. It is usually assumed that each of the corresponding k  population has a 

bivariate normal distribution with means  1i 2i,    and standard deviations  1i 2i,     

and common correlation  . The usual correlation coefficient might not hold true over all 

pairs of observations because the means and variances in these populations are not 

necessarily homogeneous. Fisher’s method computed the correlation coefficient ir  for 

each sample and converted each ir  to iZ
 

(Fisher’s Z -transformation) which was 

approximately normally distributed. 
 

 Donner and Rosner (1980) developed the standard score method to estimate ρ. This 

method is a weighted average of correlation coefficients. This showed that the standard-

score estimator, sr , is approximately a minimum variance estimator and is also more 

“natural” estimator of  . The standard-score and Hotelling’s estimators provide better 

estimators than Fisher’s and the maximum likelihood estimators in small and moderate 

sized samples in terms of their relative efficiency. The standard-score estimator can also 

be used for cases of unequal sample sizes. 
 

 Samiuddin (1970) and Kraemer (1973) put forward function of r . Both used a test 

statistic which is a function of both r  and  . It provided an appropriate test for a 

specified value of  . It offered a simple method for estimating an interval for  . 

Kreamer (1973) derived and compared various approximations to the non-null 

distribution of correlation coefficient.  
 

 Paul (1988) discussed the estimation and testing the significance of a  

common correlation coefficient. It is also called equi-familial and / or sometimes  

related to intra class correlation. To test the hypothesis 0 : 0 .H vs    

1 : 0H   , Paul (1988) used the test statistic 
1

,
k

i i
i

Z n r N


   where 
1

k

i
i

N n


   and  

the statistic 0
1

( ) ( 3),
k

w i
i

Z z n


    where 
1 1

( 3) ( 3)
k k

w i i i
i i

z n Z n
 

     and 

   1
0 0 02

ln 1 1       to test 0 : 0.H    Paul (1988) showed that if   is less 

than 0.5 then a better estimate of the population correlation coefficient is 

1 1

( 1) ( 1)
k k

w i i i
i i

r n Z n
 

    , where  3 4( 1)i i i i iZ Z Z r n     . Similarly to compare 

  at a specified value 0 , ( 3in  ) would be used instead of ( 1in  ). Paul (1989) also 

derived likelihood-ratio statistic for testing the equality of several correlation coefficients 

for 2k   independent random samples from bivariate normal populations. The 

hypothesis of interest is : ,iH    1,2,......,i k  vs 1 : i jH     for some i j . The 

likelihood-ratio statistic has an asymptotic distribution as chi-square with (k-1) degrees of 

freedom and is given by       22 2 2
0

1

ˆ ˆ2 ln 1 1 1
k

l l i i i
i

l l n r r


       
  

 , where ̂  is 
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the maximum-likelihood estimate of  , which is obtained by solving 

   
1

ˆ ˆ1 0
k

i i i
i

n r r


     iteratively [See Cox and Hinkley (1974)]. 

 

 Bhatti (1990) developed the moment generating function of the mean distribution of 

correlation coefficients and found the upper tail area. Later Bhatti (1994) applied a linear 

regression procedure for diabetic patients to compute optimum quantity of insulin in 

testing the small sample mean correlation coefficient ( r ). He used the probability density 

function of ( r ) to compute the critical values of the null distribution of average sample 

correlation coefficient to make an efficient decision. Finally he used regression bands to 

assess the quantity of insulin which minimizes the risk of damage of diabetic patients. 

Aboukalam (1997) improved Bhatti’s procedure by using robustness technique. He 

(1997)computed more improved quantity of insulin with minimal risk to diabetic patient. 

He succeeded to narrow Bhatti’s confidence bands to make his estimates more efficient. 

However, both of them could not find the distribution of the average sample correlation 

coefficient  r . 

  

2. DERIVATION OF THE DISTRIBUTION OF THE MEAN  

OF CORRELATION COEFFICIENTS 
 

 We extend the results to k -independent values of the sample correlation coefficients. 

As mentioned earlier that Bhatti’s and Abukalam’s works use the classical and linear 

regression models. Unfortunately, the results obtained by the classical and linear 

regression procedure are unreliable if some outlying observations are present in the data. 

To overcome these problems we derive a distribution of mean of correlation coefficients. 

This method results in the exact distribution of the correlation coefficients based on thk  

power of modified Bessel function and provides 1  confidence interval as compared to 

the critical values of Bhatti (1994). 
 

 Bhatti (1990) derived the characteristic function of the distribution of the mean 

correlation coefficients ( r ) for k independent values of r and is 
 

         
3 3

2 2 3

2

1 2 2

k
n n

t k
r nt n t k J

  
 
  

 
      

  

, 

 

where 
 

 

2

0

( 1) 2
( )

!  1

n kk
n

n
k

x
J x

k n k








  
 . Expressing  r t  in terms of modified Bessel 

function, by using the relation   ( )I t i J it
   (See Gradshteyn and Ryzhik (1963)), 

we have the characteristic function in modified Bessel function form as; 
 

        2 1
k kk

r t it k I it k



          

 

         1 2
k kkk it k I it k


       . 
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 The distribution of r  is symmetric as,    r rt t    . By using the inversion 

formula for characteristic function, Bhatti (1990) found the pdf of the distribution of r ; 
 

     
1

2

itr
rf r e t dt






 

  

          
2

0

.rCos tr t dt




 

  

 

 By substituting the value of  r t  in the above expression we obtain  
 

  
  

    
2

0

1 2
( )

k k k
k

f r Cos tr it k I it k dt






    
  

  
 .     (2.1) 

 

 We know from Bender et al. (2003) that the k
th

 power of the modified Bessel function 

derived for an arbitrary value k is  
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     (2.2) 

 

 The result is expressed in terms of a recursive formula for a class of polynomial 

where the polynomials  mB k
 have the following relationship for different values of 

m=0, 1, 2, 3,…… 
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 By putting the value of (2.2) in (2.1), we have 
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 Let 

  
   

     

2
2

2

2 2
0 0! 2 1

r
m

m m
m m m

m

i B k
I y Cos y dy

m k r m









 

  . 

 

 By putting 0m   in the above equation, we get 
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 If m = 1, we have 
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If m = 2, we have 
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2 4
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4 3

2 2 2 2r Sin r r Cos r       

                 
2

3 2 12 2 24 2r Sin r r Cos r Sin r        . 
 

So by substituting these two values in (2.6), we have 
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 Now if we take m = 3, we obtain I3 as 
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 By integrating it and substituting the value of the polynomial, we have  
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 By substituting (2.4), (2.5), (2.6), (2.7) and (2.8) values in equation (2.3), we have 
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 Now by replacing  3 2n    in the above equation, we have 
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 It is the required distribution of mean of correlation coefficients for k independent 

sample values. 

 

3.  CENTRAL MOMENTS OF THE DISTRIBUTION OF  

MEAN CORRELATION COEFFICIENTS FOR  

K INDEPENDENT VALUES 
 

 In the light of (2.2) taken from Bender et al. (2003), we express the characteristic 

function of  r as follows 
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        (3.1) 

 

 By expanding the above expression (3.1) over different values of m, we obtain 
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 By substituting the different values of m = 0, 1, …. in the polynomial  mB k
, the 

equation (3.2) written as  
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 The coefficient of   !
m

it m  in the (3.3) expression of characteristic function will 

provide the m
th

 moment about zero. Here all odd order moments are zero i.e. 

1 3........ 0      and even orders give  
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 Now the first four moments about mean are  
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When  3 2n   , we obtain  
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 The moment ratios are 
 

  
2
3

1 3
2

0


  


 and  
 2

6
3

1n k
  


. 

 

 As 1 0   and for large n 2 3  , so the asymptotic distribution of mean correlation 

coefficients will have similar properties of a normal population. 
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ABSTRACT 
 

 A characterization theorem based on the recursive relation of negative moments  

is given for the Extended Katz’s (EK) family of discrete distributions. It is found  

that numerous discrete probability distributions belong to EK family. The theorem is  

then applied to numerous discrete probability distributions, providing specific 

characterizations for each of them. 

 

KEYWORDS 
 

 Characterization; Discrete distributions; Negative moments; Recursive relation. 

 

1. INTRODUCTION 
 

 The irreversible damage to manufacturing materials is generally caused by a damage 

process such as fatigue, creep, fracture, corrosion, wear and aging (Jiang and Xiao 2003). 

Virtuoso and Vieira (2004) have discussed the creep, shrinkage, cracking and deformation 

of concrete flange on the basis of negative moments. The probability models corresponding 

to the reciprocal transformation arise in these different types of stresses. A number of 

authors have studied the moments of reciprocals of random variables and negative moments 

of positive random variables, see Chao and Straderman (1972), Kabe (1976), Kumar and 

Consul (1979), Jones (1987), Jones and Zhigljavsky (2004), Ahmad and Roohi (2004a, 

2004b) and Anwar and Ahmed (2009). Less work is done on characterizations through 

negative moments. Ahmad and iZ
 
Roohi (2004a, 2004b, 2007) obtain negative moments 

of some discrete distributions in terms of hypergeometric series functions. Using the 

properties of hypergeometric series functions the recurrence relations between first order 

negative moments are obtained and used for characterization. 
 

 This paper proves a characterization theorem for the EK family of discrete probability 

distributions, based on recursive relations of first order negative moments. It is found that 

most well-known discrete distributions (see Table 1), such as binomial, negative 

binomial, geometric, Engset, Poisson, hyper-Poisson, Logarithmic series, Waring, Yule, 

geometric compound, discrete rectangular, hyper-logarithmic, hyper-negative binomial 

Naor’s, Sundt and Jewell Family, Factorial, Poisson-Lindley distributions belong to EK 

family. The theorem is then applied to numerous discrete probability distributions 

providing specific characterizations for each of the above distributions. 

                                                 
* 
Published in Pak. J. Statist. (2012), Vol. 28(3). 
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Table 1 

Values of , ,    for Discrete Distributions 

Distribution       

Binomial np q  p q  1 

Negative Binomial kq  q  1 

Geometric q  q  1 

Engset np  p  1 

Logarithmic     2 

Hyper-Poisson   0    

Poisson   0  1  

Waring a  1  1c   

Yule 1  1  1c   

Geometric Compound a  1  1a b   

Discrete rectangular 1  1  1  

Hyper-Logarithmic     1   

Hyper-negative Binomial kq  q    

Sundt and Jewell Family a b  a  1  

Naor’s ( 1)n n   n  n  

Factorial 1n  1  1   

Poisson-Lindley ( 3) ( 1)   1 ( 1)  2  

 

 The article proceeds as follows. Section 2 introduces briefly the EK family that is 

going to be characterized. Section 3 contains a general characterization theorem based on 

recursive relations of first order negative moments for EK family of discrete 

distributions. The theorem is then applied to numerous discrete probability distributions, 

providing specific characterization theorems for each of them. 

 

2. EXTENDED KATZ’S (EK) FAMILY OF DISCRETE DISTRIBUTIONS 
 

 A three-parameter family of distributions which belongs to Kemp’s wide class, and 

which extends a two-parameter family of Katz, is investigated by Tripathi and Gurland 

(1977). They designated it as EK family and the recurrence relation between probabilities 

can be written as 
 

  1 ( ) ( ), 0, 1, 0, 0,1,2,....x xf f x x x                   (1) 
 

The solution of Eq. (1) is: 
 

  
 

 0

x

x
x

x

f f
  




, 0,1,2,....x                (2) 

where 
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 1

2 1
0

1
,1; ;

!

j
j j

o
j

j

f F
j






  
     


   

and 

  ( ) ( 1)( 2) ( 1), 1,2,....ja a a a a j j        

  0( ) 1a  . 
 

The probability generating function (pgf) of EK family has the form 
 

  
 

 
2 1

2 1

,1; ;
( )

,1; ;

F z
G z

F

   


   
. 

 

3. CHARACTERIZATION OF EK FAMILY 
 

Theorem 1 

 A non-negative integer-valued random variable X defined over a given domain, 

belongs to the general family with probability mass function (pmf) xf  (2) if and only if 
 

  1 1 1
0(1 ) ( ) ( 1) ( 1)( 1) ( ) ( ) ,A E X A A f A E X A                 (3) 

 

  holds for all 1A  and ( )A     , 
 

where 0 ( 0)f P X  , 1( )E X A   denotes the negative moment of first order, , ,    

are real numbers that provide a pmf. 

 

Proof: 

 Suppose X follows a pmf (2), we have 
 

  
 

 
 1 0

0 3 2
0

( ) , ,1; 1, ;
( )

x

x

x
x

f
E X A f F A A

x A A






  
       

 
 , for all 1A  , (4) 

 

after replacing A by (A-1) we get 
 

   1 0
3 2( 1) ( 1), ,1; , ;

( 1)

f
E X A F A A

A

       


, for all 1A  .     (5) 

 

Using the recurrence relation (Rainville 1960) 
 

    3 2 1 2 3 1 2 3 2 1 2 3 1 2(1 ) , , ; , ; 1, , ; , ;z F z F z               

         
  

 
 2 1 3 1

3 2 1 2 3 1 2
1 2 1

, , ; 1, ;z F z
    

      
  

 

         
  

 
 2 2 3 2

3 2 1 2 3 1 2
2 2 1

, , ; , 1; .F z
    

       
   

 (6) 

 

On putting 1 2 3 1 2, , 1, , ,A A z               , in (6) we get; 
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     2 1 3 2(1 ) ,1; ; 1, ,1; , ;F F A A z           

          3 2

( )( 1)
, ,1; 1, ;

( )

A A
F A A

A A

 
     

 
 

          2 1

( )( 1)
,1; 1; .

( )
F

A

  
     

  
      (7) 

 

Again using the recurrence relation (Rainville 1960) 
 

  1 1
2 1 1 2 1 2 1 1 2 1 2 1 1 2 1

1

( )
(1 ) ( , ; ; ) ( , 1; ; ) ( , ; 1; )

z
z F z F z F z

 
             


. (8) 

 

On putting 1 2 1, 1, , z           , in (8) we get; 
 

     2 1 2 1

( )
,1; 1; 1 (1 ) ,1; ;F F


             

.       (9) 

 

Putting (9) in (7) and after applying (4), (5) we get (3). 
 

Suppose (3) holds, then we have 
 

 
1 1 1

0
0 0 0

(1 ) ( ) ( 1) ( 1)( 1) ( ) ( ) ,x x x
x x x

f A x A f A f A x A f
  

  

  

                

 

  
1 1 1

1 1 0 0 0

( ) ( 1) ( ) ( ) ,x x x x x
x x x x x

f A x A f x A f A x A f f
    

  

    

               

 

  
1 1 1

1 1 0 0

( ) ( 1) ( ) ( )( ) ,x x x x
x x x x

f A x A f x A f x A A x A f
   

  

   

               

 

  
1 1

1 1
0 0 0

( ) ( ) ( )( )x x x
x x x

f A x A f x x A f
  

 
 

  

         , 

 

  
1 1

1
0 0

( ) ( ) ( ) ( )x x
x x

x A x f x A x f
 

 


 

       , 

 

hence, we can get the following equivalent set of equations (for similar results, see also 

Osaki and Li 1988, Ahmed 1991, Kemp and Kemp 2004): 
 

  1( ) ( )x xx f x f    , 0,1,2,....x  .                 (10) 
 

its solution gives xf . 

 

4. SPECIAL CASES 
 

 In this section the Theorem 1 is applied to numerous discrete probability distributions 

by taking different values of , ,    and provided specific characterizations as corollaries. 
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1.  Putting , , 1
np p

q q


      , in theorem 1; we have 

 

 Corollary 3.1 

A non-negative integer-valued random variable X has binomial distribution with pmf 
 

  , 0,1,....,x n x
x

n
f p q x n

x

 
  
 

, 0 1, 1p q p    , 

 

 if and only if 
 

  1 11 ( 1) ( 1) ( ) ( ) ,q A E X A p n A E X A                 (3.1) 
 

 holds for all 1A  . 
  

 When 1n  , it reduces to Bernoulli distribution. 
 

 Corollary 3.1 was proved by Ahmad and Roohi (2007). 

 

2. Putting , , 1kq q      , in theorem 1; we have 
 

 Corollary 3.2 

A non-negative integer-valued random variable X has negative binomial distribution 

with pmf 
 

  
1

, 0,1,2,k x
x

x k
f p q x

x

  
   
 

, 0 1, 1p q p    , 0k  , 

  

 if and only if 
 

  1 1( 1) ( 1) ( ) ( ) ,p A E X A q k A E X A                  (3.2) 
 

 holds for all 1A   and A k . 
 

 Corollary 3.2 was proved by Ahmad and Roohi (2007). 
 

 Put 1k   in corollary 3.2; corollary 3.3 results. 
 

 Corollary 3.3 

A non-negative integer-valued random variable X has geometric distribution with pmf 
 

  , 0,1,2,x
xf pq x   , 0 1, 1p q p    , 

 

 if and only if 
 

  1 1 1(1 ) ( 1) ( ) ,p A E X A qE X A                   (3.3) 
 

 holds for all 1A  . 
 

 Corollary 3.3 was proved by Ahmad and Roohi (2007). 

 

3. Putting , , 1np p       , in theorem 1; we have 
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 Corollary 3.4 

A non-negative integer-valued random variable X has Engset distribution with pmf 
 

  

1

0

k
x x

x
x

n n
f p p

x x





    
     

    
 , 0,1,2,.....,x k , 0 1p  , 

 

 if and only if 
 

  1 11 ( 1) ( 1) ( ) ( )A E X A p n A E X A p         ,         (3.4) 
 

 holds for all 1A  . 

 

4.  Putting , 2,      in theorem 1; we have 
 

 Corollary 3.5 

A non-negative integer-valued random variable X has Logarithmic series distribution 

with pmf 
 

  
 2 1

, 0,1,2,....,0 1
( 1) 1,1;2;

x

xf x
x F


    

 
, 

 

 if and only if 
 

  1 1 1
0( 2) ( 1) (1 ) ( 1) ( 1) ( ) ,A E X A A f A E X A                (3.5) 

 

 holds for all 1A   and 2A  . 
 

 Corollary 3.5 was proved by Ahmad and Roohi (2007). 

 

5.  Putting , 0, ,        in theorem 1; we have 
 

 Corollary 3.6 

A non-negative integer-valued random variable X has hyper-Poisson distribution with 

pmf 

  
1 1(1; ; )( )

x

x
x

f
F




  
, 0( ) ( 1).....( 1), ( ) 1, 0, 0x x            , 

 

 if and only if 
 

  1 1 1
01 ( ) ( 1) ( 1)( 1) ( )A E X A A f E X A           ,      

 (3.6) 
 

 holds for all 1A   and A   . 
 

 Corollary 3.6 was proved by Ahmad and Roohi (2004b). 
 

 Put 1   in corollary 3.6; corollary 3.7 results. 
 

 Corollary 3.7 
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A non-negative integer-valued random variable X has Poisson distribution with pmf 
 

  , 0, 0,1,....
!

x

x

e
f x

x


    , 

 

 if and only if 
 

  1 11 ( 1) ( 1) ( )A E X A E X A       ,            (3.7) 
 

 holds for all 1A  . 
 

 Corollary 3.7 was proved by Ahmad and Roohi (2004b). 

 

6. Putting , 1, 1a c        in theorem 1; we have 
 

 Corollary 3.8 

A non-negative integer-valued random variable X has Waring distribution with pmf 
 

  
( )( 1)!( )!

( 1)!( )!
x

c a a x c
f

c a c x

  


 
, 2, 0,1,2,....c a x   , 

 

 if and only if 
 

  1 1 1
0( 1) ( 1) ( 1) ( ) ( ) ,c A E X A c A f a A E X A                (3.8) 

 

 holds for all 1A    and ( 1)c A a   . 
 

 Put 1a   in corollary 3.8; corollary 3.9 results. 
 

 Corollary 3.9 

 A non-negative integer-valued random variable X has Yule distribution with pmf 
 

  
( 1)( )!( )!

( )!
x

c x c
f

c c x





, 1, 0,1,2,....c x  , 

 

 if and only if 
 

  1 1 1
0( 1) ( 1) ( 1) (1 ) ( )c A E X A c A f A E X A           ,      (3.9) 

 

 holds for all 1A    and ( 1)A c  . 

 

7.  Putting , 1, 1a a b         in theorem 1; we have 
 

 Corollary 3.10 

 A non-negative integer-valued random variable X has geometric compound 

distribution with pmf 
 

  
( ) ( ) ( 1)

( 1)
x

a b a x b
f

a b a b x

     


     
, 0, 0, 0,1,2,....a b x   , 

 

 if and only if 
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  1 1 1
0( 1 ) ( 1) ( )( 1) ( ) ( ) ,a b A E X A a b A f a A E X A                (3.10) 

 

 holds for all 1A   and ( 1)a b A a    . 

 

8. Putting 1     , in theorem 1; we have 
 

 Corollary 3.11 

A non-negative integer-valued random variable X has discrete rectangular 

distribution with pmf 
 

  
1

, 0,1,2, ,
( 1)

xf x n
n

  


, 

 

 if and only if 
 

  1 1( 1) ( )E X A E X A     ,               (3.11) 
 

 holds for all 1A  . 

 

9. Putting , 1,       in theorem 1; we have 
 

 Corollary 3.12 

A non-negative integer-valued random variable X has hyper-logarithmic distribution 

with pmf 
 

  
 2 1

! !
,0 1, 0,1,2,....,

( )! 1,1; 1;

x

x

x
f x

x F

 
    

    
 

 

 if and only if 
 

  1 1 1
0(1 ) ( 1 ) ( 1) ( 1) (1 ) ( ) ,A E X A A f A E X A                (3.12) 

 

 holds for all 1A    and A   . 

 

10. Putting , ,kq q        in theorem 1; we have 
 

 Corollary 3.13 

A non-negative integer-valued random variable X has hyper-negative binomial 

distribution with pmf 
 

 
0

( 1)!( 1)! ( 1)!( 1)!
,0 1, 0, 0, 0,1,2,

( 1)!( 1)! ( 1)!( 1)!

x x

x
x

k x q k x q
f q k x

k x k x





     
      

     
 , 

 

 if and only if 
 

  1 1 1
0( ) ( 1) ( 1)( 1) ( ) ( ) ,A E X A A f p q k A E X A               (3.13) 

 

 holds for all 1A   and A k   . 
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11. Putting ( 1), ,n n n n          in theorem 1; we have 
 

 Corollary 3.14 

A non-negative integer-valued random variable X has Naor’s distribution with pmf 
 

  
( 1)!( )

!
x n x

n n x
f

x n 

 
 , 0,1,2,..., 1,x n  1n  , 

 

 if and only if 
 

  1 1 1
0( ) ( 1) ( 1)( 1) ( 1) ( 1 ) ( ) ,n A E X A n A f n n n A E X A              (3.14) 

 

 holds for all 1A   and ( 1)n A n     . 

 

12. Putting , , 1a b a        in theorem 1; we have 
 

 Corollary 3.15 

A non-negative integer-valued random variable X has Sundt and Jewell Family with 

pmf 
 

  
 

 1 0

( )

( ) ; ; !

x

x
x

a b a a
f

F a b a a x




 
, 0,1,2,....x  , 

 

 if and only if 
 

  1 1(1 ) ( 1) ( 1) ( ) ( ) ,a A E X A a b aA E X A                  (3.15) 
 

 holds for all 1A   and ( )A a b a  . 

 

13. Putting 1, 1, 1n         in theorem 1; we have 
 

 Corollary 3.16 

A non-negative integer-valued random variable X has Factorial distribution with  

pmf xf  

  
 

   2 1

1

1 1,1; 1;1

x
x

x

n
f

F n

 


     
, 0,1,2,....x  , 

 

 if and only if 
 

  1 1 1
0( 1 ) ( 1) ( 1) ( 1 ) ( ) ,A E X A A f n A E X A               (3.16) 

 

 holds for all 1A   and ( 1 ) ( 1)n A     . 

 

14. Putting ( 3) ( 1)    , 1 ( 1)   , ( 2)    in theorem 1; we have 
 

 Corollary 3.17 

A non-negative integer-valued random variable X has Poisson-Lindley distribution 

with pmf 
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2

3

( 2)
,

( 1)
x x

x
f



  



0, 0,1,2,....,x    

 

 if and only if 
 

  1 2 1 1
0( 1)( 2 ) ( 1) ( 1) ( 1) ( 3 ) ( )A E X A A f A E X A               ,  

                       (3.17) 

 holds for all 1A   and 2 3A    . 
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ABSTRACT 
 

 Saboor and Ahmad [4] defined a bivariate gamma-type function involving a confluent 

hypergeometric function of two variables and discussed some of its mathematical 

properties. They also gave its probability density function and derived some of its 

statistical properties. Saboor et al. [5] generalized their probability density function by 

introducing one more parameter and obtained its generalized moment generating function 

in terms of a generalized hypergeometric function using inverse Mellin transform 

technique and discussed its application. In this paper, contiguous function relations and 

pure recurrence relationships of a bivariate gamma-type function defined by Saboor and 

Ahmad [4] are derived. Explicit expression for reliability for probability density function 

defined by Saboor et al. [5] is also discussed. 

 

KEYWORDS 
 

 Hypergeometric function of two variables; Bivariate gamma-type function; 

Contiguous functions; Recurrence relations; Reliability. 

 

1. INTRODUCTION 
 

 Recently, Saboor and Ahmad [4] introduced a bivariate gamma-type function 

involving a confluent hypergeometric function of two variables [1]: 
 

     1 2 1 2 1 21 1
2

0 0

exp ; , ; ,x y p x y a b c x y dxdy


            
    

    1 2 1 2, , , , , , ; , ,B a b c p       ,           (1.1) 
 

where 2 2Re( ) 0, Re( ) 0, Re( ) 0,p      with 
 

   1 2 1 2, , , , , , ; , ,B a b c p        

   
   

   
 

1 1 2 2

1 1 2 2
2 1 1 2 2

1 2

; , ; , ; , ,F a b c p p
p

    

     
      

 
    (1.2)  

 

where 2  and 2F  are hypergeometric functions of two variables [1] defined as  
 

                                                 
* 
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   2
, 0

, , ; ,
! !

mj

j m

j m
j m

x y
x y

j m







    

 
  

and 

   
       

   2
, 0

, , ; , ; ,
! !

mj

j m j m

j m
j m

x y
F x y

j m






  
     

 
        (1.3) 

     2 11 , ; , .
1

y
x F

x

  
     

 
            (1.4) 

 

Moreover, 
 

   1 2 1 2, , ,0, , , ; , ,B a b c p    
 

 

      1 2 1 2 21 1
1 1

0 0

exp ; ;x y p x y F a c y dxdy


          
       (1.5) 

 

   
   

   
 

1 1 2 2

1 1 2 2
2 1 2 2

1 2

, ; ;F a c p
p

    

     
   

 
,        (1.6) 

 
and 

   1 2 1 2, , , ,0, , ; , ,B a b c p      
 

      1 2 1 2 11 1
1 1

0 0

exp ; ;x y p x y F a b x dxdy


          
       (1.7)  

 

   
   

   
 2

1 1 2 2

1 1 2 2
1 1 1

1 2

, ; ;F a b p
p

    

     
   

 
,        (1.8) 

 

where 1 1F  is confluent hypergeometric function and 2 1F
 

is Gauss hypergeometric 

function [3] defined as 
 

   
 

 1 1
0

; ;
!

k

k

k
k

z
F z

k






  


 , 

and 

   
   

 2 1
0

, ; ; , 1.
!

k

k k

k
k

z
F z z

k





 
    


  

 

 A confluent hypergeometric function  1 1 1; ;F z 
 

in which one parameter is 

increased or decreased by unity is called contiguous to  1 1 ; ;F z  . There are four 

functions contiguous to  1 1 ; ;F z  . A homogenous linear relation exists between 1 1F
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and two of its contiguous functions. Here, the following contiguous function relations [6] 

of 1 1F  are given which will be used in next Section: 
 

       1 1 11 1 1; ; 1; ; ; 1;F z F z z F z         ,       (1.9) 
 

           1 1 11 1 11 ; ; 1; ; 1 ; 1;F z F z F z          ,   (1.10) 
 

 Similarly, a function  2 1 1, ; ;F z   in which one parameter is increased or 

decreased by unity is called contiguous to  2 1 , ; ;F z   . There are six functions 

contiguous to  2 1 , ; ;F z   . Gauss proved that between 2 1F  and two of its contiguous 

functions, there exists a linear relation with coefficients at most linear in z. For Gauss 

contiguous functions, a common notation shall be used illustrated by 
 

   2 1 , ; ;F F z    , 
 

   21 1 1, ; ;F F z     , 
 

   21 1 , 1; ;F F z     . 
 

The few relations by Gauss which will be used in next section are: 
 

    1 1F F F    , 
 

        1 12 1z F z F F       , 

 

     1 11 1F F F     , 
 

       1 11F z F F        
 

     1
1 11 z F F zF

     , 
 

     1
1 11 z F F zF

     , 
 

        1 11 z F F F       , 
 

         1 11 1 1 1z F F z F        . 

 

2. CONTIGUOUS FUNCTIONS 
 

 We obtain contiguous functions relationships for the bivariate gamma-type function 

defined in (1.2) and (1.6) using Gauss hypergeometric function 2F1 given in Section 1 to 

facilitate computation. For them we shall use a common notation illustrated by 
 

  
 1 2 1 2 ,, , , , , , ; , ,B B a b c p      

 
 

  
 1 2 1 21 ,1, , , , , , ; , ,aB B a b c p        
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 1 2 1 21 ,, 1, , , , , ; , ,bB B a b c p        

 
 

  
 1 2 1 21, 1 ,1, , 1, , , , ; , ,a cB B a b c p          

 
 

  
 1 2 1 2 ,, , ,0, , , ; , ,B a b c p      

 
 

  
 1 2 1 2-1 ,1, , ,0, , , ; , ,a B a b c p       

 
 

  
 1 2 1 2-1 ,, 1, ,0, , , ; , ,b B a b c p       

 
 

  
 1 2 1 2-1, -1 .1, , 1,0, , , ; , ,a c B a b c p        

 
 

 The following relations are obtained by using (1.2), (1.4) and contiguous functions  

of Gauss hypergeometric function given in Section 1. They are derived by replacing  

  by ,  a   by 2 2/ ,      by ,  c x  by / p  and y  by / p . 
 

  
   1 1,1 1a ca c B a B c B     

            (2.1) 
 

  
   2 2 1 1 ,2 / 1 a aa c a B a B c a B

p p
 

    
           

        (2.2) 

 

  
   

2 22 2 1 2 2 / 1/ / ,aa B a B B        
 

 

  
   

2 22 2 1 2 2 / 1/ 1 / ,aa c B a B c B
p

   

 
         

   

 

  
 1

1 2 2 11 / ,a cB B c c B
p p


 

  
     

    

 

  
 

2 2

1
/ 1 11 ,cB B c c a B

p p


   

  
    

    

 

  
     

2 22 2 1 2 2 / 1/ 1 / ,aa B c a B c B
p

   

 
         

   

 

  
     2 2 1 11 / 1 1 1 .a ca c B c a B c B

p p
 

    
            

      

 

 The following relations are obtained by using (1.6) and contiguous functions of Gauss 

hypergeometric function given in Section 1. They are derived by replacing   by ,  a   by 

2 2/   and   by ,c z  by 2y . 
 

  
   1 1,1 1a ca c a c     B B B
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   2 2 1 1 ,2 / 1 a aa c a a c a

p p
 

    
           

    
B B B

 

 

  
   

2 22 2 1 2 2 / 1/ / ,aa a         B B B
 

 

  
   

2 22 2 1 2 2 / 1/ 1 / ,aa c a c
p

   

 
         

 
B B B

 

 

  
 1

1 2 2 11 / ,a cc c
p p


 

  
     

 
B B B

 

 

  
 

2 2

1
/ 1 11 ,cc c a

p p


   

  
    

 
B B B

 

 

  
     

2 22 2 1 2 2 / 1/ 1 / ,aa c a c
p

   

 
         

 
B B B

 

 

  
     2 2 1 11 / 1 1 1 .a ca c c a c

p p
 

    
            

   
B B B

 

 

2. RECURRENCE RELATIONS 
 

 Pure recurrence relationships are derived for the bivariate gamma-type function 

defined in (1.2) and (1.6), using contiguous function relations of bivariate gamma-type 

function given in Section 2 and for (1.5), and using contiguous function relations of 

confluent hypergeometric function given in Section 1, to facilitate computation. 
 

 One can derive many recurrence relationships for the bivariate gamma-type function 

defined in (1.2), using contiguous function relations of the bivariate gamma-type function 

discussed in Section 2.  
 

 Eliminating 1aB   from (2.1) and (2.2), then replacing a  by 1a  , one obtains the 

following pure recurrence relationship 
 

  

     2 2 1 1.1 1 / 1 1 c aa c B c c B c a B
p p

 

    
             

      
 

 Similarly, one can derive following recurrence relationships for the bivariate gamma-

type function defined in (1.2). 
 

  
       2 2

2 2 2 2 1 2 2 / 1
/ / / ,aa a B a c B c B

p
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       2 2
2 2 1 2 2 / 1

1 / 1 1 1 / ,ca c B c c B c B
p p

   

    
               

      
 

  
         2 2 2 2

2 2 2 21, / 1 / 1
,/ 1 1 /

c
B c B c B

      
        

 
 

  

   

   

2 2

2 2

2 2 1, / 1

2 2 2 2 / 1

1 / 1

/ 1 2 / ,

a
B a B

p p

c a a B
p

   

  

    
        

    

 
         

 

 

 

  

     

     

2 2

2 2

2 2 2 2 / 2

2 2 2 2 / 1

1 / 1 / 1

2 / 2 / 1 ,

B c B
p

c a B
p

  

  

 
        

 

 
         

 

 

 

  

       2 2
2 2 1 2 2 / 1

/ 1 / ,aa B c a B c B
p

   

 
          

   
 

  

       
2 2

2 2 2 2 1/ 1
/ 2 1 1 / 1 .ca c a B c B c B

p p
  

  
             

    
 

 Similarly, using same procedure discussed above, one can get following recurrence 

relationships for the bivariate gamma-type function defined in (1.6). 
 

  

     2 2 1 1.1 1 / 1 1 c aa c c c c a
p p

 

    
             

   
B B B

 
 

  
       2 2

2 2 2 2 1 2 2 / 1
/ / / ,aa a a c c

p
   

 
            

 
B B B

 
 

  

       2 2
2 2 1 2 2 / 1

1 / 1 1 1 / ,ca c c c c
p p

   

    
               

   
B B B

 
 

  
         2 2 2 2

2 2 2 21, / 1 / 1
,/ 1 1 /

c
c c

      
        B B B

 
 

  

   

   

2 2

2 2

2 2 1, / 1

2 2 2 2 / 1

1 / 1

/ 1 2 / ,

a
a

p p

c a a
p

   

  

    
        

   

 
         
 

B B

B
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2 2

2 2

2 2 2 2 / 2

2 2 2 2 / 1

1 / 1 / 1

2 / 2 / 1 ,

c
p

c a
p

  

  

 
        

 

 
         
 

B B

B  

 

  

       2 2
2 2 1 2 2 / 1

/ 1 / ,aa c a c
p

   

 
          

 
B B B

 
 

  

       
2 2

2 2 2 2 1/ 1
/ 2 1 1 / 1 .ca c a c c

p p
  

  
             
 

B B B

 
 

 We also obtain recurrence relationships for the bivariate gamma-type function defined 

in (1.5). Substituting the value of 1 1F  from (1.9) in (1.5) and replacing   by ,  a   by 

,c z  by 2y


 , one obtains 

  

   

   

1 2 1 2 2

1 2 2 1 2 2

1 1
1 1

0 0

1 1
1 1

0 0

exp 1; ;

exp ; 1;

x y p x y F a c y dxdy

x y p x y F a c y dxdy
c


      


       

     
 

      
 

 

 

B

 

 

   
   

   
 2

1 1 2 2

1 1 2 2
1 2 21

1 2

1
, 1; 1;F a c p

c p
     

     
      

 
a-1B .  

 

 Simplifying and then replacing 2 2/ 
 
by  2 2/ 1   , c  by 1c   in second term of 

right hand side of (2.1), one gets 
 

  

        
2 2 2 2

2 2 2 / 1, 1 1, / 1
1 .

c a
c

       
      B p B B

  

 Similarly, substituting the value of 1 1F  from (1.10) in (1.5) and replacing   by ,  a   

by ,c z  by 2y


 , one can have  
 

  

     1 1, 11 2 .a a ca a c a      B B B

  

 Using the methods discussed above, one can also obtain recurrence relationships for 

the bivariate gamma-type function defined in (1.7) and (1.8). 

 

4. RELIABILITY 
 

 Bivariate gamma distributions arise as tractable ’lifetime’ models in many areas, 

including telecommunications, reliability engineering, extreme value theory, failure 

analysis, life testing, industrial engineering (manufacturing times and distribution 

process), risk management (probability of ruin) and queuing systems. In the context of 

reliability, the stress-strength model describes the life of a component which has a 
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random strength Y  and is subjected to a random stress X . The component fails at the 

instant that the stress applied to it exceeds the strength and the component will function 

satisfactorily whenever Y X . Thus, ( )PrR X Y   is a measure of the component 

reliability. It has many applications especially in engineering concepts such as structures, 

deterioration of rocket motors, static fatigue of ceramic components, fatigue failure of 

aircraft structures, and the aging of concrete pressure vessels. e.g. If X  represents the 

maximum chamber pressure generated by ignition of a solid propellant and Y  represents 

the strength of the rocket chamber, then R is the probability of successful firing of the 

engine. For further details reader is referred to Nadarajah [2]. 
 

 Saboor et al. [3] defined following probability density function 
 

     1 2 1 2 1 21 1
1 2 2, exp ; , ; , , ,

R R
f x y C x y p x p y a b c x y dxdy I x y 

       


      
 

                        (4.1) 

where, 

  
   

 
1 1 2 2

1 1 2 21
2 1 1 2 2 1 2

1 2 1 2

; , ; , ; ,C F a b c p p
p p



   

     
      

 
   (4.2) 

 

and 2  and 2F  are defined in Section 1. 
 

 Reliability for a bivariate distribution can be calculated by following formula 
 

   
0

, .
x

R f x y dy dx


                  (4.3) 

 

  
 1 2 1 2 1 21 1

1 2 2
0

exp ; , ; ,
x

R C x y p x p y a b c x y dydx


             
  

 

   

     
   

1 2

1 2 1 21 1
1 2

, 00

exp
! !

j m

j m

j mx j m

a x y
C x y p x p y dydx

b c j m

 
 

     



 
   
   

 

   
 

   
1 2

1 1 1 2 2 21 1

, 0 0

.
! !

j m

j m j p x m p y

j m xj m

a
C x e y e dy dx

b c j m

  
        



 
      (4.4) 

 

 Since  
 

   2
2 2 2 2 2 21 /

2 2 2 2
2

1
/ , .

m p y m

x

y e dy p m p x


       
   


      (4.5) 

 

 Substituting (4.5) in (4.4), we obtain, 
 

  
   

   
 1

1 1 1 2

2 2

2 1
2 2 2/

, 0 02 2

/
/ , .

! !

mj

j m j p x

j m
j m

a pC
R x e m p x dx

b c j mp


     

 


 
   


   

                       (4.6) 
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 For 1 2 1    , (4.6) becomes,
  

  
     

   

   

 

1 2

1 1

2
1 2

, 01 2 2 1 2 1 2

1
2 2

0

/

; , ; , ; , ! !

, .

mj

j m

j m
j m

j p x

a pp p
R

F a b c p p b c j m

x e m p x dx

  





   

 

       

   





 

 

   
     

   

   

1 2 2
1 2

, 01 2 2 1 2 1 2

/

; , ; , ; , ! !

mj

j m

j m
j m

a pp p

F a b c p p b c j m

  




 

       

  

 

    
 

 
 1 2

2 1 1 1 2 1 1 2
1

, ; 1; / .
j m

F j j m j p p
j

   
       


(4.7) 
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ABSTRACT 
 

 Rayleigh distribution is one of the well-known continuous distribution developed by 

Lord Rayleigh and J.W. Strutt (1880, 1919) used in modeling lifetime data. A reciprocal 

transformation of Rayleigh variable generates inverse Rayleigh distribution derived by 

Voda (1972) which is also being used in lifetime experiments. While keeping in mind the 

famous of Rayleigh and inverse Rayleigh distribution, we hereby proposed the discrete 

version of continuous inverse Rayleigh distribution by adopting the simple approach and 

presented as an appropriate lifetime model for discrete data. Non-monotonicity of the 

hazard function of discrete Inverse Rayleigh distribution is studied, suitability of the 

model in over dispersed data is highlighted with real lifetime data examples, basic 

mathematical properties, order statistics and characterization issues of the model are also 

presented.  

 

KEY WORDS 
 

 Inverse Rayleigh distribution; reliability parameters; negative moments; discretized 

version; generating functions.  

 

1. INTRODUCTION 
 

 Generally one associates the lifetime of the product with continuous non-negative 

lifetime distributions however, in some situations lifetime can be best described through 

non-negative integer valued random variables e.g. life of a switch is measured by the 

number of strokes, life of equipment is measured by the number of cycles it completes or 

the number of times it is operated prior to failure, life of a weapon is measured by the 

number of rounds fired until failure, number of years of a married couple successfully 

completed. Although continuous lifetime distributions are playing their roles in reliability 

analysis very well, yet in certain scenarios, when measured data is discrete and realized 

from continuous set up, researchers are trying to search out a proper alternate. For this 

purpose they developed discretized version of continuous lifetime distributions. This 

development is generally based on discrete lifetime phenomena which are expressed 

through grouping or finite precision measurement of continuous time phenomena. Such 

discretized versions are too much functional in small set of discrete type data and have 

applications in reliability theory in situation where clock time is not an appropriate scale 

for measuring the reliability of the product. The discretization approaches have expanded 

the scope of reliability modeling and provides methods for approximating integrals 

coming out of the continuous phenomena. The reliability of the discrete or counted data 

                                                 
* 
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is measured on the bases of success or failure and number of successes or failures are 

modeled through binomial, negative binomial, geometric and Poisson distributions. Such 

models yield imprecise results for small samples. However with the initiation of 

discretization approach, the discrete success-failure data based on small and to some 

extent large samples can efficiently be modeled through discretized version of continuous 

lifetime distributions.  
 

 The discrete success-failure data is realized from continuous set up in two common 

situations (i) a product is scrutinized only once a time period i.e. a day, an hour and a 

month etc. and observation is made on the number of time period successfully completed 

prior to failure of the product (ii) an equipment operates in cycles and researcher observes 

the number of cycles successfully completed prior to failure of the device. If the observed 

data values are very large e.g. thousands of revolutions, cycles, blows etc. then for 

modeling such a data it is better to use a continuous counterpart. In order to get an 

appropriate model for the success-failure data various discretizing approaches exist in the 

literature which are (i) Moment equalization approach (ii) Discrete concentration 

approach (iii) Failure rate approach (see Roy and Ghosh, 2009) (iv) Discrete differential 

equation approach (see Sreehari, 2008) (v) Time discretization approach. Due to these 

approaches discretized distributions are finding their way into survival analysis. In this 

regard, an initial attempt was made by Nakagawa and Osaki (1975) who discretized the 

Weibull distribution. Later on, a number of researchers like Stein and Dattero (1984), 

Khan et al. (1989), Szablowski (2001), Bracquemond and Gaudoin (2003), Roy (2003, 

2004), Kemp (1997, 2004, 2006), Inusah and Kozubowski (2006), Kozubowski and 

Inusah (2006), Krishna and Pundir (2007, 2009), Sreehari (2008), Roy and Ghosh (2009) 

and Jazi et al. (2010), Gómez-Déniz and Calderín-Ojeda (2011), Chakaraborty and 

Chakravarty (2012), Hussain and Ahmad (2012) and Al-Huniti and Al-Dayian (2012) and 

Nekoukhou et al. (2012) developed discretized version of continuous lifetime 

distributions and applied them on discrete sets of data in various disciplines of life like 

engineering, social sciences, medical sciences, and forestry etc.. Classifications of 

discrete distribution have been made by number of researchers like Khalique (1989) and 

Kemp (2004). In order to develop reliability theory in discrete discipline various attempts 

have been initiated in multiple directions. We hereby made an attempt to develop suitable 

discrete lifetime model in terms of discrete inverse Rayleigh distribution which is defined 

and discussed in section two along with failure rate function and related conditions, 

mathematical properties, order statistics and the link between discrete inverse Rayleigh 

and continuous distributions like Rayleigh and inverse Rayleigh and in section three the 

parameter’s estimation and goodness of fit with real data examples are studied.  

 

2. DISCRETE INVERSE RAYLEIGH DISTRIBUTION 
 

 As discretization of continuous lifetime distribution is an emerging issue of discrete 

reliability theory, so various discretization approaches exist in the literature. However, 

these approaches are used by various researchers under different circumstances. For 

example while using the discrete concentration approach researchers considered the 

discrete time space either as  0,1,2,3,...N   or as  1,2,3,...N   which was usually 

based on the support of continuous random variable i.e. if support of continuous random 

variable is  0,  or 0x   then the support for discretized random variable will be as 
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 0,1,2,3,...N   with survival function    rS x P X x   (see Nakagawa and Osaki 

(1975), Roy (2003, 2004), Krishna and Pundir (2007, 2009), Gómez-Déniz and Calderín-

Ojeda (2011), Chakaraborty and Chakravarty (2012), Hussain and Ahmad (2012) and  

Al-Huniti and Al-Dayian (2012)) and if support of continuous random variable is  0,  

or 0x  , then discretized random variable will based on  1,2,3,...N   with survival 

function      rS x P X x   (see Khan et al. (1989), Bracquemond and Gaudoin (2003) 

and Jazi et al. (2010)). The simplest discretized model of continuous exponential 

distribution is the geometric distribution
 
which is obtained after preserving the survival 

function of exponential distribution as  
 

   
 1

1, ,0 exp 1,  0,1,2,3,...x x x
x j x x x

j x

S p q p S S q q q x




            

 

 Since there is one to one correspondence between survival function of geometric 

distribution and exponential distribution, so a number of researchers considered  

the geometric distribution as discrete exponential distribution with lack of memory 

property. Moreover, if the survival functions of discretized distribution retain the  

same functional forms as their continuous counterparts then many reliability measures 

and class properties under series, parallel and coherent structures will remain unchanged 

(see Roy, 2004). In view of the above characteristics we have adopted this approach  

for discretizing the inverse Rayleigh distribution. The Inverse Rayleigh distribution  

is a special case of inverse Weibull distribution i.e. if  ~ ,  Y W   then 

 
1

~ ,X IW
Y

 
   
 

 and for 2=  we have  ~X IR   with survival function as 

     21 exp - ,  0,  0.rS x P X x x x        Although most of the continuous 

distribution exhibit monotonic failure rate yet the inverse Rayleigh distribution is among 

the rare distributions which is being effectively used in the area of reliability studies 

where failure rate exhibits non-monotonic behavior. It is used in lifetime experiments 

(see Voda, 1972), record values from Inverse Rayleigh distribution are being used for 

prediction purposes in real life problems like weather, economic and support data (see 

Soliman et al., 2010) and used in acceptance sampling plans (see Rosaiah and Kantam 

(2005) and Aslam and Jun, 2009) etc. The important feature of this distribution is that its 

variance and higher order moments do not exist. However its thr  moment, mean, mode 

and failure rate function are expressed as 
 

  
2' 1 ,mean  ,  mode

2 3 2

r
r

r  
        

 
 

and  

   
 

 
  

1
-3 22 exp 1 .

f x
h x x x

S x
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 It was first considered by Voda (1972), Mukherjee and Saran (1984) stated that a 

single parameter inverse Rayleigh distribution possessed increasing failure rate (IFR) for 

1.0694543 θx   and decreasing failure rate (DFR) for 1.0694543 θx  . 

 

2.1 Definition 

 A random variable Y  is said to have discrete inverse Rayleigh distribution with 

parameter 0 1q  , denoted by dIR(q), if   

       
2 21 1 1

1 , 0 exp - 1,  0,1,2,3,...
x x

r x x xP Y x p S S q q q x


            

 (1) 
 

where xS  is the preserved survival function of inverse Rayleigh distribution at integers 

expressed as  

   
21

01 ,  0 1,  0,1,2,3,....,  where 0, 1,x
x r j

j x

S P Y x p q q x q S



           

 Y X  denote the observed discrete random variable i.e. Y  is equal to the greatest 

integer less than or equal to X . If Y  is a random variable denoting the number of times 

a product fail in any given week/month/year and q  denotes the probability of failure of a 

product in any given week/month/year than  0P Y   gives the probability of no failure 

in any given week/month/year.  

 
 a) dIR, n=30, q=0.0071  b) dIR, n=30, q=0.3800  c) dIR, n=30, q=0.4000 

p
(x

) 

 

p
(x

) 

 

p
(x

) 

 

Fig. (2.2.1): Discrete Inverse Rayleigh Distribution 

 

 Fig. (2.2.1) shows the probability plots for discrete Inverse Rayleigh distribution for 

different values of the parameter q , which portrays that as 0q   the mode of the 
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distribution shifted towards the right and as q  increases the mode of the distribution 

shifted towards the left and distribution shows a reverse J-shaped.  
 

2.2 Hazard Function 

 Let Y  be a discrete random variable with probability mass function  xp P Y x   

and reliability function  x rS P Y x   then the failure rate function of Y  is defined as 

the conditional probability that failure is observed at x  given that the product has not 

failed before x  and expressed as  
 

  1 ,   0,1,2,3,...x x x
x

x x

p S S
h x

S S


                (2) 

 

 The hazard function defined in equation (2) has some misconception i.e. 
 

i) It is bounded i.e. 1.xh   this may add some confusion in industry that failure rate 

and failure probability are sometimes mixed up (see Xie et al., 2002). 

ii) Suppose that if we have m discrete component connected independently in series 

then their failure rate is not additive i.e.  
11

1 1 .
m m

x ix ix
ii

h h h


      (see Xie et al., 

2002).  

iii) The cumulative hazard function 
1

 .
k

x x x
x

H h l nS


    (see Xie et al., 2002). 

 

 Due to these problems an alternative hazard function for the discrete random variable 

is defined as 
*

1

 ,x
x

x

S
h l n

S 

 
  

 
 which is based on the fact that the hazard function defined 

in the continuous case and expressed as  
 

 

   d l nS xp x
h x

S x dx
    can be defined 

into discrete case by replacing   *by xh x h  and 
  

 1

 
 by -   x x

d l nS x
l nS l nS

dx
   so 

*

1

 , 0,1,2,3,...x
x

x

S
h l n x

S 

 
  

 
 which is not bounded like  h x , and shows the same 

monotonicity as shown by xh , *  x xH l nS   and additive in series system (see Xie et al., 

2002). Roy and Gupta (1999) named this failure rate function as second failure rate 

function. Now by using the above definitions the failure rate and second failure rate 

functions for discrete inverse Rayleigh distribution are defined as  
 

   
     

2 2 2 1
1

1 ,     0 1,  0,1,2,....
x x xx

x
x

p
h q q q q x

S
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Fig. (2.2.2): Failure Rate of Discrete Inverse Rayleigh Distribution 
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Fig. (2.2.3): Second Failure rate of discrete inverse Rayleigh distribution 
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failure rate (DFR) for 1.0694543 θx  . The same is true with the discrete inverse 

Rayleigh distribution which has discrete increasing failure rate (dIFR) when 

1.0694543 lnx q   and discrete decreasing failure rate when (dDFR) 

1.0694543 lnx q   at integers. However certain features of this non-monotonic 

behavior of hazard function are also explored like  
 

i) The hazard function of discrete Inverse Rayleigh distribution is an upside down 

bath tub function of x  with change points either at 1x   or at 2x   for 

0 0.75q  . However as 0q   the change point appears at 2x   see Fig. (2.2.2 

and 2.2.3). 

ii) The hazard function of discrete Inverse Rayleigh distribution is an upside down 

bath tub function of x  with constant failure rate at 1x   and 2x   for 

0.0636  0.0673q   see Fig. (2.2.2 and 2.2.3). 

iii) The hazard function of discrete Inverse Rayleigh distribution is a decreasing 

function of x  for 0.71 1.00q   see Fig. (2.2.2 and 2.2.3). 

 

Theorem 2.1.1: 

 Let  Y X  be an integer valued random variable which follows the discrete Inverse 

Rayleigh distribution with parameter q  i.e.  .Y dIR q  Then expectation for  Y x   

is expressed as 
 

  
          

2

1

1 1 0 ,x

x

E x x x q
 



        

where    
2

1  and exp ,   0 1,  0,1,2,3,....x
rP Y x q q q x



         

 

Proof: 

 We have by definition       
0x

E x x P Y x




   

  

 Consider               1 1 ,r r rx x P Y x x P Y x x P Y x           

 

 Taking summation over x  from 1 to  , we get  
 

   

                
1

1 1 1 0 1r r r r
x

x P Y x x P Y x P Y P Y




         

 
                   2 2 1 2 3 3 2 3 .....,r r r rP Y P Y P Y P Y        

 
                

0 1

1 0r r
x x

x P Y x x P Y x x P Y x
 

 

           

 

where  0 1rP Y   . 

  

            
1

1 1r
x

E x x x P Y x E x
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-2

1

1 1 0 .x

x

x x q




     

 

 
-2

where 1 ,  0,1,2,3,....x
rP Y x q x    . 

 

 The series converges i.e. as x   the tail probabilities approaches zero. This 

completes the proof. 

 

Corollary:  

 If   xx t   then resulting expression is probability generating function of discrete 

inverse Rayleigh distribution. 

 

Corollary:  

 If   txx e   then resulting expression is the moment generating function of discrete 

inverse Rayleigh distribution. 

 

Corollary:  

 If   rx x   then resulting expression is the thr moment about origin of discrete 

inverse Rayleigh distribution. 

Its mean and variance are 

          2 2

2

1
1

1 1

1 2μ'1
μ ' 1  and 2 1 ,

4 4

x x

x x

q Var Y x q
  

 


        

 

Corollary:  

 If    
1

x x a


    then resulting expression is the first order negative moment of 

discrete inverse Rayleigh distribution. 

 

Corollary:  

 If    
s

x x a


    then resulting expression is the ths  order negative moment of 

discrete inverse Rayleigh distribution. 

 

Corollary:  

 If  
 

1

s

x
x a

 


 then resulting expression is the ths  order negative factorial 

moment of discrete inverse Rayleigh distribution, where   
 

          1 .. 1 , 0,0 1 and exp .
s

x a x a x a x a s a q q              

 

 In order to check the suitability of distribution for specific type of data we define 
immediately the index of dispersion and showed mean and variance of the distribution in 
Table-1.  
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2.3 Index of Dispersion 
 Index of dispersion (ID) for any distribution is defined as the ratio between variance 
to mean which indicate whether the distribution is suitable for over or under dispersed 

data. If  1 1ID    the distribution is over-dispersed (under-dispersed) (see Chakraborty 

and Chakravarty, 2012). Table-1 portrays the dispersion pattern of discrete Inverse 
Rayleigh distribution in which upper values indicate mean and lower values indicate 

variance of the distribution against particular value of the parameter q . It is observed that 

discrete Inverse Rayleigh distribution is over dispersed for all values of the parameter q . 

Moreover it can also be seen that as mean and variance decreases the value of the 
parameter increases and vice versa.  

 

Table 1 

Mean (above) and Variance below of dIR(q)  
q  0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 -- 
3.3053 

68.5072 
3.0118 

105.7505 
2.8272 

94.7891 
2.6891 

87.0152 
2.5774 

80.9897 
2.4827 

76.0670 
2.3999 

71.9061 
2.3259 

68.3033 
2.2589 

65.1258 

0.1 
2.1970 

62.2833 
2.1396 

59.7178 
2.0861 

57.3719 
2.0356 

55.2120 
1.9877 

53.2180 
1.9424 

51.3622 
1.8990 

49.6250 
1.8574 

47.9912 
1.8173 

46.4497 
1.7788 

44.9966 

0.2 
1.7418 

43.6153 
1.7057 

42.2999 
1.6708 

41.0486 
1.6368 

39.8529 
1.6038 

38.7041 
1.5716 

37.6082 
1.5401 

36.5485 
1.5093 

35.5351 
1.4791 

34.5546 
1.4497 

33.6094 

0.3 
1.42092 
32.6959 

1.3926 
31.8118 

1.3649 
30.9572 

1.3376 
30.1281 

1.3108 
29.3222 

1.2843 
28.5397 

1.2584 
27.7801 

1.2328 
27.0391 

1.2075 
26.3203 

1.1826 
25.6177 

0.4 
1.1579 

12.3691 
1.1337 

12.0406 
1.1098 

11.7188 
1.0861 

11.4053 
1.0627 

11.0983 
1.0395 

10.7982 
1.0167 

10.5048 
0.9940 

10.2170 
0.9716 
9.9328 

0.9494 
9.6569 

0.5 
0.9277 
9.3871 

0.9059 
9.1205 

0.8844 
8.8585 

0.8630 
8.6025 

0.8419 
8.3500 

0.8209 
8.1025 

0.8001 
7.8586 

0.7795 
7.6203 

0.7590 
7.3838 

0.7387 
7.1526 

0.6 
0.7188 
9.7928 

0.6988 
9.4756 

0.6789 
9.1634 

0.6592 
8.8557 

0.6396 
8.5529 

0.6202 
8.2542 

0.6008 
7.9612 

0.5815 
7.6715 

0.5624 
7.3839 

0.5435 
7.1029 

0.7 
0.5246 
6.8243 

0.5058 
6.5500 

0.4871 
6.2799 

0.4686 
6.0126 

0.4502 
5.7499 

0.4319 
5.4887 

0.4137 
5.2327 

0.3956 
4.9792 

0.3775 
4.7285 

0.3595 
4.4819 

0.8 
0.3416 
3.1187 

0.3238 
2.9402 

0.3061 
2.7631 

0.2884 
2.5888 

0.2709 
2.4168 

0.2534 
2.2467 

0.2360 
2.0784 

0.2187 
1.9127 

0.2014 
1.7491 

0.1842 
1.5875 

0.9 
0.1670 
1.2030 

0.1499 
1.0697 

0.1331 
0.9383 

0.1162 
0.80874 

0.0993 
0.6818 

0.0826 
0.5575 

0.0659 
0.4357 

0.0493 
0.3173 

0.0328 
0.2028 

0.0163 
0.0942 

 

Theorem 2.1.2:  

 Let 1 2 3 ... ...i nY Y Y Y Y     
 
denote an order sample of size n  drawn identically 

independently from the discrete inverse Rayleigh distribution whose distribution function 

can also be written as 
 

-2-1
-1

-1 -1
0

,  1 ,  0 1,
x

x
x j x x

j

F p q S F q


     
 

then the probability 

function of thi order statistics is 
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-2 -2-2 -2 -1 -1
2 1 2 1, ; 1; , ; 1; ,

i x xix x
r ii

P Y x K q F n i i i q q F n i i i q
  

          
  

 

                        (3) 
 

the recurrence relation between thi  order statistics’s probabilities are 

 

             
-2 -2-2 -2 -1 -1

1

  
1 1 1 ,

  

n in i
i x xix x

r ri i

n
i P X x iP X x q q q q

i





    
          

    

 

                        (4) 

and  

              1 -11

  
1 ,

  

n i n i

r r x x x xi i

n
i P X x iP X x F S F S

i

 



 
      

 
  (5) 

where 

  

 
   

 
1 2

1 2 1 1 2 1
  0 1

  1 1
,  , ; ;  .

11 !

n
n n

i i
n

n

n n z
K K and F z

i ii i n






    
        

    
  

 

Proof: 

 By definition the probability function of thi  order statistics is  
 

          -1 ,r r ri i i
P Y x P Y x P Y x      

 

      at least  of '  are ,r ri
P Y x P i Y s x    

 

  
       

-

1 11- ,
n n jj

r r ri
j i

n
P X x P X x P X x

j

 
    

 


 

   

 1 2since ,  ,....,  are . .nX X X i i d

 where 

 

   
 

     
- --1

  0

1
1- 1 , - 1 ,

, - 1

x

x

Fn j n j n ii
x x F

j i

n
F F u u du I i n i

j B i n i

 
    

 
 

   , - 1
xF

I i n i 
 
is the incomplete beta function. 

 

 Therefore  
 

  
  

 
 

 
 

-1- --1 -1

0 0

1 1
1 1 ,

, - 1 , - 1

x xF F
n i n ii i

r i
P X x u u du u u du

B i n i B i n i
    

 
   

 

  

    
   

-2

-2 -2-1
,

, - 1 ,                                 where 
x x

x
r xi

q q
P X x I i n i F q

 
 
 

     

    
 

 

 
     

-2 -2
-1

0

1-!
,

   ! - !

j
n i

i j x i j x
r i

j

n in
P X x q q

ji n i i j


 



   
    

   
      (6) 
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since  

  
 

   
 

 
-2

-2 -2

2 1
0

1-
, ; 1; ,

   

j ixi jn i
x x

j

n i q
q F n i i i q

j i j i





 
    

 
   

and  

  
 

 
 

   
 

-2

-2 -21
1 1

2 1
0

1-
, ; 1; ,

   

j i xi jn i
x x

j

n i q
q F n i i i q

j i j i


 



     
       

     
  

 

on substituting the values of above expression in (6) we get (3). From equation (3) we 

have the probability function of   1
ththi and i  order statistics as 

   

          
-2 -2-2 -2 -1 -1

2 1 2 1, ; 1; , ; 1; ,
i x xix x

r ii
P Y x K q F n i i i q q F n i i i q

  
          

    
 

  
    

-2 -2 -2

1 2 11
1, 1; 2;ix x x

r ii
P X x K q q F n i i i q

      

 

    
     

-2 -2 -2
-1 -1 -1

1 2 1 1, 1; 2; ,
i x x x

iK q q F n i i i q
 

      
 

      (7) 

 

       1 2 21
,r ii

P X x K A B
  

 
where 

  
     

-2 -2-2 -2 -1 -1
2 2 1 2 2 11, 1; 2; , 1, 1; 2; ,

x xx xA q F n i i i q B q F n i i i q
 

            
   

 

 Using the Gauss’ recurrence relation for 
2 2
 and A B  (see Gradshteyn and Ryzhik, 

1965). 
 

  
     2 1 2 1 2 1, ; ; , 1; ; 1, 1; 1; 0,c F a b c z c F a b c z az F a b c z      

 
 

 Let 
 

-2
-1

,  ,  1 and 
x

a n i b i c i z q       then 
 

  
       

-2 -2
-1 -1

2 1 2 11 , ; 1; 1 , 1; 1;
x x

i F n i i i q i F n i i i q
   

            
     

    
     

-2 -2
-1 -1

2 1- 1, 1; 2; 0,
x x

n i q F n i i i q
 

        
   

 

for  2

-2 -2

 2 1 1, 1; 2;x xA q F n i i i q       

     
       

-2 -2

2 1

1 1
, ; 1; 1 ,

n i
x xi i

F n i i i q q
n i n i

 
     

 
 

  

NCBA&E



Chapter 1: Continuous Distribution 110 

   
2

-2 -2
-1 -1

 2 1for 1, 1; 2;
x x

B q F n i i i q
 
     
   

     

       
-2 -2

-1 -1
2 1

1 1
, ; 1; 1 ,

n i
x xi i

F n i i i q q
n i n i

    
        

    
 

 

 On substituting above expression 
2

 for A and 
2

 B  into equation (7) we get  
 

    
 

   
-2 -2

1 2 11

1  1
, ; 1;

11 -

ix x
i i

in
P X x q F n i i i q

ii n i
 

  
     

   

 

    

   
-2 -2
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q F n i i i q
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1 1 ,
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q q q q
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-2 -2

1 2 11
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, ; 1;

  1

ix x
i i

ni
P X x q F n i i i q

ii i
 

  
      

  

 

    

   
-2 -2

-1 -1
2 1 , ; 1;

i x x
q F n i i i q

 
     

 

 

    

   
-2 -2

-1 -1
2 1 , ; 1;

i x x
q F n i i i q

 
     

 
 

and then simplifying it we get (4). 
 

 The general recurrence relation is 

               1 -11

  
1 .

  

n i n i

r r x x x xi i

n
i P X x iP X x F S F S

i

 



 
      

   
This completes the proof. 

 

Theorem 2.1.3:  

 Let X  be non-negative continuous Inverse Rayleigh random variable and   Z X  

be an integer valued random variable. Then  Z dIR q
 
if  .X IR   

 

Proof: 

 Let  X IR   with    
2-1 ,x

X rS x P X x e     0,  0,x    then we observe 

that 0,1,2,3,....x    
 

       ,Z rS x P Z x   

         ,rP X x   

 

NCBA&E



Chapter 1: Continuous Distribution 111 

         
2

2

-
  , 1 exp , 1 ,x

Z r Z ZS x P X x S x S x q
x

 
      

 
  

 

since  X Z X Z     

where 0 1q   and  exp -q   . 
 

 This completes the proof. 

 

Theorem 2.1.4:  

 Let X  be non-negative continuous Rayleigh random variable and 
1

 W
X

 
  
 

 be an 

integer valued random variable. Then  W dIR q
 
if  .X R 

 
 

Proof: 

 Let  X R   with    
2-1 ,  0, 0,x

X rF x P X x e x        then we observe that 

0,1,2,3,....x   
 

       ,W rS x P W x   

     
1

  ,rP x
X

  
   

  
 

 

       
2

2

1 -
  , 1 exp , 1 ,x

Z r Z ZS x P X S x S x q
x x

   
        

   
  

since  X Z X Z     
 

where 0 1q   and  exp -q   . 
 

 This completes the proof. 

 

3. PARAMETERS’ ESTIMATION, GOODNESS OF FIT  

TESTS AND APPLICATIONS 
 

 In order to estimate the parameter q  of discrete Inverse Rayleigh distribution we 

have studied three methods like proportions, pseudo-moments (see Khan et al. 1989) and 

maximum likelihood. Simulation results of these methods are based on 100 replication 

and presented in Table 2.  

 

3.1 Method of Moments 

 While using the method of moments for estimating the parameter q , we have  

to first equate the population moment to the corresponding sample moment than  

solve the equation for q . Since moments are not in closed form so this equation  

cannot be solved by ordinary techniques. However Jazi et al. (2010) used the  
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method of pseudo-moments, as proposed by Khan et al. (1989), by minimizing 

       
22 2

1 2, - - ,S q M E X M E X    with respect to q  and   where 1
1

1 n

i
i

M x
n 

   

and 2
2

1

1 n

i
i

M x
n 

  . We have also used this method to estimate q  by minimizing 

    
2

1 -S q M E X  with respect to q . Unlike Jazi et al. (2010), though this method 

yields smaller variance yet the deviation from the true value is larger as compared to the 

other estimators for larger q  and n . 

 

3.2 Method of Proportions 

 The method of proportions, proposed and studied by Khan et al. (1989) and Jazi et al. 

(2010), are based on the proportions of 1’s and 2’s. Now we proposed the similar method 

for discrete inverse Rayleigh distribution but based on proportions of 0’s which is 

outlined below. 
 

 Let 1 2, ,..., nx x x
 
be a random sample of n  items from discrete inverse Rayleigh 

distribution, then the indicator function is defined as 
 

   
1,     0

0,     0.

i
i

i

x
I x

x


 


 

 As  
1

n

i
i

Z I x


   denotes the number of 0’s in the sample so the proportions of zeros 

i.e. 
Z

n
 estimates the probability 0,qp q . Hence, we have denoted q  as an estimate of 

q  and z  as observed value of Z  therefore .
z

q
n

  It is known that an empirical 

cumulative distribution function (cdf) is consistent and an unbiased estimator of the 

actual cdf the same is true for q  which is an unbiased and consistent estimator of 

 0P Y q   (see Jazi et al. 2010). 

 

3.3 Maximum Likelihood: 

 Let 1 2, ,..., nX X X
 
be the recorded lifetimes of a random sample of n  items. If these 

recorded lifetimes identically independently follow the dIR i.e.  'siX dIR q
 
then the 

likelihood function for dIR can be expressed as  

       

 

 

 

 
   

-2 -2
1 1 1

2 2
-2 -2

1

-2 -2
111 1

1
, 0.

i i

i i

i
i i

x x

n n n
x x i i

x
x xii i

q q

x xlnL q
L q p q q

q
q q

  



 


 

     
  

   

 

 A numerical solution of the above equation will yield the MLEs of q . 
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 As MLEs are generally unbiased and consistent estimators so the asymptotic 

distribution of MLE of q  i.e. q̂  is normal with mean q  and variance of q̂  is 

    
1

ˆ ˆVar q I q



 
i.e. 

 
1

ˆ  ~  ,  q N q
I q

 
 
 
 

 where  I q  is the Fisher Information and is 

defined as     '  ' ˆI q E L q 
 

an estimate of I(q) is  ˆI q  by virtue of invariance 

property of MLE and is expressed as    '  '

ˆ  
ˆ ˆ

q q
I q L q


  so we have variance of q̂  in 

this form     
1

ˆ ˆ .Var q I q


  

 

Table 2 

Estimation by Method of Proportions, Moments and Maximum Likelihood 

 
q  

(PM) 

 Var q  

(PM) 

q  

(MM) 

 Var q  

(MM) 

q̂  

(ML) 

 ˆVar q  

(ML) 

0.10q   

60n   0.0858 0.0055 0.1243 0.0110 0.0945 0.0010 

40n   0.0907 0.0023 0.1375 0.0249 0.0873 0.0014 

20n   0.0926 0.0045 0.1570 0.0979 0.1019 0.0034 

0.30q   

60n   0.2748 0.0034 0.3167 0.0061 0.2781 0.0030 

40n   0.2953 0.0053 0.3263 0.0129 0.2940 0.0046 

20n   0.2886 0.0105 0.3617 0.0516 0.2936 0.0101 

0.60q   

60n   0.5881 0.0040 0.5993 0.0024 0.5871 0.0039 

40n   0.6021 0.0059 0.6504 0.0052 0.6040 0.0057 

20n   0.6014 0.0120 0.6335 0.0215 0.5944 0.0112 

 

 Table 2 is based on 100 replication, from this table, it is evident that the estimators 

obtained by the method of moments are asymptotically unbiased and consistent for larger 

q  and n. It is also observed that method of proportion is much better than the method of 

moments in terms of smaller variances for all n  and 0.40q   and smaller deviation 

about the true value of q  for all n  and q . Finally, the maximum likelihood method is 

the most efficient procedure for almost all q  and n .  
 

 Now in the next section we deals with the goodness of fit tests which uses the above 

developed MLE to test the suitability of discrete Inverse Rayleigh Distribution in over 

dispersed data structure. 

 

3.3 Goodness of Fit Tests 

 Generally the goodness of fit (GOF) tests compute the compatibility of a random 

sample with a theoretical probability distribution function. In short, these tests measure 

the suitability of your data to the distribution you have selected. The general procedure 
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consists of defining a test statistic which is some function of the data measuring the 

distance between the hypothesis and the data. Here, we are using Kolmogorov-Smirnov 

and Chi-Squared goodness of fit tests for testing the suitability of various data sets. 

 

3.3.1 Kolmogorov-Smirnov Test 

 This test may be used to decide if a sample comes from a hypothesized 

continuous/discrete distribution (see Gibbons, 1971, p.85). In it an empirical cumulative 

distribution function (ECDF) is computed. Suppose that we have a random sample 

1,...,  nx x  from some continuous/discrete distribution with CDF  F x . The empirical 

CDF is denoted by  
 

   
  

n

Number of observations x
F x

n


  

 

Definition 

 The Kolmogorov-Smirnov test statistic (D) is based on the largest vertical difference 

between  F x  and  nF x . It is defined as  
 

    supn n
x

D F x F x   

0 :H  The data follow the specified distribution.  

:AH   The data do not follow the specified distribution. 
 

 The hypothesis regarding the distributional form is rejected at the chosen significance 

level    if the test statistic, D , is greater than the critical value obtained from a table.  

 

3.3.2 Chi-Squared Test 

 This test is used to determine whether a sample comes from a population with a 

specific distribution or not. It is applied to grouped data that is why its test statistic 

depends on how the data is grouped.  
 

 Since there is no optimal choice for the number of classes  k , so there are several 

formulas which are used to calculate the number of classes which are based on the 

sample size  N . For this purpose the Sturges’ empirical formula is frequently used i.e. 

1 3.3logk N  .  
 

 Generally the data can be grouped into intervals of equal probability or equal width. 

Each class should contain at least 5 or more data points, so, in order to satisfy this 

condition certain adjacent classes sometimes need to be joined together. 

 

Definition 

 The Chi-Squared test statistic is defined as 
 

2

2

1

k
i i

i i

o e

e


   , where io  and ie  are 

the observed and expected frequencies for class i  respectively. For testing the 

NCBA&E



Chapter 1: Continuous Distribution 115 

compatibility of the data with theoretical probability function we formulate the following 

null and alternative hypothesis  
 

0 :H  The data follow the specified distribution.  

:AH   The data do not follow the specified distribution. 
 

 The hypothesis regarding the distributional form is rejected at the chosen significance 

level    if the test statistic is greater than the critical value defined as  
2

1 , 1k m  
 . 

Where 1k m   denotes the degree of freedom with m  the number of parameters to be 

estimated. Usually a smaller computed value of chi-square indicates a good fit whereas 

larger value showed a poor fit.  

 

3.4 Applications 

 Here, we are now presenting some applications and comparisons of the proposed 

model with the Poisson under real life scenario.  

 

Example 1  

  The following data set give the number of times that computer break down in each of 

the 128 consecutive week of operation (see Chakaraborty and Chakravarty (2012)). The 

empirical failure function is presented in Fig. 3.4.1. 
 

{4, 0, 0, 0, 3, 2, 0, 0, 6, 7, 6, 2, 1, 11, 6, 1, 2, 1, 1, 2, 0, 2, 2, 1, 0, 12, 8, 4, 5, 

0, 5, 4, 1, 0, 8, 2, 5, 2, 1, 12, 8, 9, 10, 17, 2, 3, 4, 8, 1, 2, 5, 2, 2, 2, 3, 1, 2, 0, 

2, 1, 6, 3, 3, 6, 11, 10, 4, 3, 0, 2, 4, 2, 1, 5, 3, 3, 2, 5, 3, 4, 1, 3, 6, 4, 4, 5, 2, 

10, 4, 1, 5, 6, 9, 7, 3, 1, 3, 0, 2, 2, 1, 4, 2, 13, 0, 2, 1, 1, 0, 3, 16, 22, 5, 1, 2, 

4, 7, 8, 6, 11, 3, 0, 4, 7, 8, 4, 4, 5}   
 

 By using MLE’s, we have fitted the failure functions of discrete inverse Rayleigh and 

Poisson distributions. Kolmogrov-Smirnov (KS) test for goodness of fit (see Gibbons, 

1971, p.85) and AIC are computed to compare their performance. Findings are computed 

in R computational package. 

 

Table 3 

Data on the number of times that computer break down  

in each of the 128 consecutive week of operation 

Model K.S AIC p-value 

Discrete Inverse Rayleigh (0.02432) 0.1765 715.718 0.9631 

Poisson(2.99993) 0.4706 810.8884 0.04495 

 

 From the above table 3, it is evident that discrete inverse Rayleigh distribution 

provides marginally better fit as compare to Poisson distribution not only in larger  

p-value but also in least loss of information i.e. smaller AIC. 
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F
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 x 

Fig. 3.4.1: Empirical Failure Function 

 

Example 2: Modeling Probability distribution of Count data 

 We have also investigated that whether the proposed discrete inverse Rayleigh 

distribution can compete with the Poisson distribution in modeling real life count data, 

other than reliability. In this example we fitted the proposed and the Poisson distributions 

to an over-dispersed data set. The following data set is the distribution of yeast cells in 

400 squares of haemacytometer observed by “Student” (1907) (see Roy and Gupta 1999). 

 

Table 4 

Distribution of yeast cells in 400 squares of haemacytometer observed  

by “Student” (1907) Data is taken from Roy and Gupta(1999) 

No. of Cells 0 1 2 3 4 ≥5 Total Chi-square p-value 

Frequency 213 128 37 18 3 1 400 calculated right tail 

Expected 

frequencies 

dIR(0.5335) 

213.4 128.5 31.2 11.6 5.5 9.9 400 2.01 0.3660 

Expected 

frequencies 

Poi.(0.6825) 

202.1 138.0 47.1 10.7 1.8 0.3 400 10.09 0.0066 

 

 The above is an over dispersed data with mean = 0.6825, variance = 0.8137 and index 

of dispersion = 1.1922. Based on the value of chi-square and p-value it follows that 

dIR(q) provide a good fit to the data set. It is also worth mentioning that while using the 

same data set, our proposed model gives the closest fit among all the alternative models 

studied by Roy and Gupta (1999). 
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CONCLUDING REMARKS 
 

 In this paper, a discrete Inverse Rayleigh distribution is developed by using the 

discrete concentration approach, which can be used in over dispersed data structure as an 

alternate to single parameter Poisson distribution. Moreover, this newly proposed model 

can be applied to model not only the count data but also seems suitable for modeling 

number of claims in Actuarial science and in discrete life testing data where the hazard 

function shows non-monotonic behavior. 
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ABSTRACT 
 

 In this paper we consider the lower record values from a two-sided power distribution 

(TSP). Some distributional properties of the record values from the two-sided power 

distribution are given. The entropy, cumulative distribution function, survival function 

and hazard function have been derived of lower record values from two-sided power 

distribution. The possible shapes of pdf, cdf, entropy, survival and hazard functions of 

TSP from lower record value have also been discussed through graphs. 

 

KEYWORDS AND PHRASES 
 

 Cumulative distribution function; moments; entropy; TSP; probability density 

function; survival function; hazard function. 

 

1. INTRODUCTION 
 

 Record values are used in many real life applications such as sports, weather, 

economics, students grade sheets, purchase order, memos and any other type of 

documents. Let 1 2, ,X X  be a sequence of independently and identically distributed 

random variables with cumulative distribution function  F x , probability density 

function  f x . Let  1 2max(min) , , , , 1,2,n nY X X X n  . We say jX  is an upper 

(lower) record value of this sequence if 1( ) , 2.j jY Y j   1X is an upper record value 

as well as a lower record value. 
 

 Chandler (1952) developed the general theory of record values. Ahsanullah (1986) 

discussed the distributional properties of the record values from a rectangular distribution. 

Ahsanullah and Houchens (1989) discussed the distributional properties and estimators of 

record values from Pareto distribution. Ahsanullah and Bhoj (1996) discussed properties of 

record values from Extreme value distribution and a test statistic based on record values is 

proposed. Arslan and Ahsanullah (2005) considered two characterizations of the Uniform 

distribution using record values. Sultan, Dayian and Mohammad (2008) introduced the 

record values from the gamma distribution and derived the BLUEs for the location and 

scale parameters of the gamma distribution. Ahsanullah (2009) gave some basic properties 

of record values of univariate distributions and concomitants of record values. Khan and 

Zia (2009) gave some recurrence relations satisfied by single and product moments of 

upper record values from Gompertz distribution. Ahsanullah (2010) gave several properties 

of upper record values from exponential distribution and some characterizations are 

                                                 
* 
Published in Pak. J. Statist. (2014) Vol. 30(2). 
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discussed. Shakil and Ahsanullah (2011) investigated the distribution of record values of 

ratio of two independently distributed Rayleigh random variable. Moments, hazard function 

and entropy has been derived. 
 

 Triangular distribution has been investigated by D. Johnson (1997) as a proxy for the 

beta distribution, especially in problems of assessment of risk and uncertainty, such as the 

project evaluation and review technique. The parameters of a triangular distribution have a 

one-to-one correspondence with an optimistic estimate ‘a’ , most likely estimate ‘m’ and 

pessimistic estimate ‘b’ of a quantity under consideration, providing to the triangular 

distribution its intuitive appeal. Similarly to the beta distribution, the triangular distribution 

can be positively or negatively skewed (or symmetrical) but must remain unimodal. In this 

paper we consider the three-parameter triangular distribution, to be called the two-sided 

power (TSP) distribution, as a meaningful alternative to the beta distribution. 
 

 Nadarajah (2005) introduced a reformulated two-sided power distribution with the 

same number of parameters and compare it with the one suggested by Drop and Kotz 

(2002). They discussed the estimation of two-sided power distribution by the method of 

moments and method of maximum likelihood. The two-sided power distribution contains 

as special cases the triangular distribution, the standard power distribution and the 

uniform distribution. Drop and Kotz derived various properties of two-sided power 

distribution and discussed its flexibility as compared with beta family. The probability 

density function of two-sided power distribution is 
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where ‘m’ is most likely or mode value, ‘a’ is lower limit and ‘b’ is upper limit. If the 

distribution is symmetrical then ‘m’ is also the mean and median of the distribution. Its 

cumulative distribution function 
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 In section 2, we derive lower record values from two-sided power distribution (TSP) 

and its cdf. In section 3, some distributional properties (moments, survival function, 

hazard function, entropy) of the TSP distribution have been presented. In section 4, we 

discuss on numeric values of means, variances covariance and coefficients of skewness 

and kurtosis of the TSP. 

 

2. TWO-SIDED POWER RECORD VALUES 
 

 Let      1 2
, , ,

L L L n
X X X  be the lower record values from a sequence of  iX  

identically independently distributed from two-sided power distribution. Then the 

probability density function of lower record value  L n
X  is given by 

   
 

 
 

1

,

n

n

H x
f x f x x

n


  

    


        (2.1) 

 

where      ln ,0 1H x F x F x     
 

 Now the pdf of lower record value  L n
X

 
from two-sided power distribution 

   
 

   
1

3
22 exp 1 , 1,2,3,

f x
h x x n

xS x


       
 

       (2.3)
 

 

 Note if 1n   then the distribution of record value is the distribution of the parent 

TSP. By using (2.2) the cdf nF  of the nth record value from the two-sided power 

distribution is given by 

  

 
 

 

 
 

1
, ,

1
1 , ,

n

n x a x m
n

F x

n y m x b
n


  

 
    
 

         (2.3) 

where   1, a t

x

a x t e dt


   
 

is the upper incomplete gamma function and

  1

0

,
x

a ta x t e dt   
 

is the lower incomplete gamma function. 

 

 
     2

lnx x a m a b a     
 
and      2

ln 1y b x b a b m        

 

 The possible shapes of the graphs of pdf (2.2) and cdf (2.3) of the nth lower record 

value  L n
X  of the two-sided power distribution when n  2,3,4,5 are provided 
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Fig. 2.1: pdf plot for 

 0, 1, 1, 2,3,4,5a b m n     

 
Fig. 2.2: cdf plot for 

 0, 1, 1, 2,3,4,5a b m n     

 

3. DISTRIBUTIONAL PROPERTIES OF TWO-SIDED  

POWER RECORD VALUE DISTRIBUTION 
 

 In this section we will derive the moments, mode, survival function, hazard function 

and entropy of the lower record value from the two-sided power distribution (TSP). 
 

3.1 Moments 

 The first four single moments of the two-sided power lower record value distribution 

with pdf (2.1) are given by,
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where     ln m a b a    
 
and     ln 1 b m b a       

 

 By taking 0, 1, 1a b m    in equations (3.2), (3.3) and (3.4) we get the coefficients 

of skewness and kurtosis are as follows 
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 Now the joint pdf of  L r
X

 
and  L s

X
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              (3.7)

 

 

 Variances and covariance of (2.2) and (3.7) are   

  
      ,, ,r sL r L s

E X X xyf x y dxdy
 

 

             (3.8) 

 

 For 0, 1, 1, 1,2,3,4,5.a b m r s r s        
 

Table 1 

Means of the lower record value from two-sided power distribution 

n 1 2 3 4 5 

n  2/3 4/9 8/27 16/81 32/243 
 

Table 2 Variances and covariance of the lower record values 

from two-sided power distribution 

m 

n 
1 2 3 4 5 

1 0.056     

2 0.037 0.053    

3 0.025 0.035 0.037   

4 0.016 0.023 0.024 0.023  

5 0.011 0.015 0.016 0.015 0.014 
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3.2 Survival Function and Hazard Function 

 The survival function and hazard function of the nth lower record value for the pdf 

(2.2) and cdf (2.3) are respectively, given by 
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where  ,a x , is the upper incomplete gamma function and  ,a x , is the lower incomplete 

gamma function. The possible shapes of the survival function and hazard function are 

shown by graph for n  2,3,4,5. From Fig. 3.1 we see the survival function is decreasing 

and positively skewed with longer right tail. From Fig. 3.2 we see that hazard function is 

increasing and then decreasing function and negatively skewed with longer left tail. 
 

 
Fig. 3.1:  Survival function plot for  

 0, 1, 1, 1,2,3,4,5a b m n     

 
Fig. 3.2:  Hazard function plot for  

 0, 1, 1, 1,2,3,4,5a b m n     
 

3.3 Entropy 

 The entropy is defined as a measure of uncertainty or randomness of a random 

phenomenon. Shannon (1948) introduced the mathematical foundation of entropy 

(information theory). The entropy formula contains the expected information or 

uncertainty of probability distribution. If X  be a random variable from a continuous 

probability density function, then 

  
     lnH x f x f x dx





    

and the entropy of the lower record values ( )L nX  is given by, 
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 Now the entropy of the two-sided power lower record value distribution is as follows 
 

  
     2lnnH x n X X     

where 
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 Here we will present graph for entropy for n  1,2,3,4,…,10. From Fig. 3.3 we see 

that as n increasing the values of entropy are decreasing. 
 

 
Fig. 3.3: Entropy Graph for 0, 1, 1, 1,2,3,4,...,10.a b m n     

 
 

4. CONCLUDING REMARKS 
 

 In this paper, we have discussed the distribution of lower record values when the 
parent distribution is the two-sided power distribution. The associated cdf, pdf, moments, 
survival function, hazard function, entropy etc. have been derived along with graphs to 
describe the shapes of respective function. The joint distribution of lower record values is 
derived and numeric values of means, variances, and covariance are also derived for 
different values of ‘n’. The associated graphs of pdf shows that with the distribution of 
two-sided power record values is positively skewed with longer right tail, and plot shows 
the survival function is decreasing with ‘n’ increasing and plot of hazard function shows 
increase while decreasing function and negatively skewed with long left tail. We hope 
this paper will contribute a useful participation for the enhancement of research in the 
theory of record values. 
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ABSTRACT 
 

 The intensity of the random arrivals of failure is a reflection of the imstantaneours 

rate of deterioration of a system. In this paper non-homogeneous Poisson process is used. 

in conjunction with log-linear process intensity, to model the failures of a mechanical or 

aging hype system as function of time. The reliability and failure growth characteristics 

of such a system are discussed by using appropriate estimation of the process parameters. 

 

KEY WORDS 
 

 Reliability, repairable stystem, non-homoetneous Poisson, log-linear process 

intensity. 

 

1. REPAIRABLE SYSTEM 
 

 By a repairable system we mean such a system which can experience several failures 

during its entire useful life, and after every failure event, some sort of repair action can 

restore all required functions of the system. Cumulative number of failures,  N t , as a 

function of t, for such a system is illustrated in Figure I. Figure I represents the cumulate 

number of repairable failures occurred among the many solder connections in a circuit 

board subjected to accelerated life testing.  
 

 In several cases such as leak arrivals in pipelines (Figure 2), or level of road damage 

observed on a large highway as function of time (road age), etc., the growth of 

cumulative number of failures may have a well-defined underlying trend.  
 

 To deal with such a failure pattern in a probabilistic frame work, one can envision a 

population distribution of the cumulative number of failures (repairs) at age t, since 

different systems of the same type (i.e., a set of similar pipelines, turbines, heat pumps, 

fans, etc.) will accumulate different number of failures (repairs) by age t. Some 

accumulate no repair, some one repair, some two repairs, etc. Figure 3 shows the discrete 

distribution of the cumulative number of repairs (or failures) per system age, t. The 

distribution mean  N r , is called the “Mean Cumulative Number of Failure Function of 

the population. Alternatively, it may he referred as, Mean Cumulative Number of Repairs 

(or Failures) or Recurrence Function”, MCRF. 

 

  

                                                 
*
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2. INTENSITY F FAILURE EVENTS  
 

The intensity of failure events  t
 
is defined as the derivative 

  
 

   
0

lim
t

dN t N t t N
t

dt t 

 
  


           (2.1) 

 

and is often called as “Intensity Function” of the failure process. Other names of the 

function ( )t  in statistical literature are “Instantaneous Repair Rate Function” or 

“Recurrence Rate Function”. In this paper, we will refer ( )t  simply as Intensity 

Function. Figures 2 and 3 show that ( )t
 
quantifies the average number of failures per 

unit time per system, for example failures per month per heat pump, etc. ( )t  should not 

be confused with “hazard function ( )h t   which is a reliability index of a „non repairable 

system‟, (Usually a component)”. The hazard function       / 1h t f t F t 
 
has an 

entirely different definition, meaning and use. In statistical literature many authors have 

failed to make this distinction and thus created a lot of confusion and have obtained 

erroneous conclusions [1,4]. This confusion is the greatest for the renewal theory and the 

appropriate function characterizing the rate of expected number of renewals is known as 

Renewal Rate Function.  t
 
which is given by 

 

  
       1

0
1t f t df d                   (2.2) 

 

and in general    t t   . Ascher and Feingold [1984] have carefully pointed out the 

differences between the Recurrence Rate Function of repaired systems (i.e., failure 

intensity), and the hazard function of non repaired system. 

 

3. STOCHASTIC PROCESS OF FAILURE ARRIVALS 
 

3.1 Simple Homogeneous Poisson Process 

 The poisson process is the simplest model for recurrent events such as failures (or 

repairs), and its failure intensity is constant, whose reciprocal is called the Mean Time 

between Failures (MTBF) in reliability analysis [See Figure 4]. Underlying assumptions 

of a homogeneous poisson process are: 

1.  0 0N   

2.   , 0,N t k t  has an independent increment, i.e., failures in non-overlapping 

intervals are independent random variables. 

3.       2 0P N t t N t t t         ; being very small. 

4.     1 0P N t t N t t t          . 

 

 Since   is considered independent of time in the above assumption, therefore it will 

result into a simple (homogeneous) poisson process [4]. The number of failures at any 

time t, have the following probability: 
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 exp exp

! !

kk N tt
P N t k t N t

K K


                 (3.1) 

where 

  
   N t t V N t t       

 

 Coefficient of variation of number of failures is: 
 

  

  
  

 
1V N t t

K N t
tN t t


  

 
 

 

3.2 Non Homogeneous Poisson's Process (NHPP) 

 For most products ( )t
 
is not constant (Figure 1 & Figure 2) and its reciprocal cannot 

be interpreted as MTBF. Rather it is better to think only in terms of ( )t , which has a 

valid meaning whether constant or not. Evans [1985] has discussed this point in more 

details. There are a number of parametric relationships which can be used to model ( )t , 

depending upon the type of the system and the environment in which the system operates. 

In several instances for example, in case of leakage (failures) in a pipeline [Figure 2], we 

can characterize ( )t  as a log-linear function, i.e.; 
 

 
 ln ln

t
t


  

 
, 

 

where   and   are the parameter of the log-linear failure intensity process, Thus 
 

  

  exp
t

t
  

     
                (3.2) 

and  

  

   1

0

1
exp 1N t d
  

          
            (3.3) 

 

 Since  t
 
is now a function of time, hence the assumption (iv) in section 3.1 will be 

expressed as 

 

 (iv)       1 0P N t t N t t t t            

 

or if we define a modified time scale 
 

  
 1

0
,x dx    

 

then     / 1,d d       and  N    . Which means that on a modified time scale the 

above condition will lead to the following probability statement, as an extension of 

simple (homogeneous) Poisson‟s process: 
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          (3.4) 

or 

  

    
  

! !

e p / 0 1
e p e p exp 1

k
k x tt t

P N t K x t x
K K

         
        

    

  

                       (3.5) 

and 
 

  

     
0

k

j

P N t K P N t j


                (3.6) 

 

 The probability of finding no leak in time t, (also known as the reliability of pipeline 

in view of first leak) is given by 
 

  

      0 exp exp 1 ; ,
t

P N t R t R t
    

          
          

 (3.7) 

 

 Figure 5 illustrates the non homogeneous Poisson process both on actual time scale (t) 

and modified time scale  . 

 

4. MAXIMUM LIKELIHOOD ESTIMATORS  

OF PARAMETERS 
 

 Figure 6 Illustrate the type of information which we must have, to estimate the 

parameters   and  . The maximum likelihood function can be defined by first writing a 

likelihood function  1, 2 ,..., KL t t t  [Cox and Lewis (1968)]. 

 

  
   

1

K

K i
t

L R t t


                   (4.1) 

Differentiating log likelihood function with respect to   and   equating it to zero. Thus 

for time location Kt , the estimate of parameters is [7]. 
 

  
1

2

0̂
k

K
t

t t


                    (4.2) 

 

for 2,3,4,....k  , and 
  

  

ˆ exp
0̂

Ktk
  

    
  

                (4.3) 
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5. VERIFICATION OF THE PREDICTION  

METHODOLOGY 
 

 Several data sets were used to check the adequacy of the proposed method of failure 

predictions. In all such cases underlying trend was possible to characterize by log-linear 

intensity function, and in each case the proposed method provides very satisfactory result. 

In general the range of error in actual and predicted value was between 2 to 4% after a 

few initial failures. For illustrative purpose one set of result is presented here. 
 

a) Data by Bradford [1970] was analyzed. (Table 1). By considering only, first  

n observations 1n  , we estimated   and   from MLE equation given in 

Section 4, and Calculated 1,  2,  3,....,n n n   , etc. values of failure times. The 

following observations concerning the predicted and observed values: 

i) Even after first 4 observations the predictions become quite reasonable. 

ii) After first 8 observations the error in the prediction reduces significantly. 
 

b) The parameters   and   behave as illustrated in Figure 7 and 8. Both parameter 

  and   stabilized around a steady state value s  
and s . These values can he 

used  for a long range future forecast about the failure events. These steady state 

values can also be used to study the economic trade offs (i.e.; replacement versus 

maintenance strategies), of a repairable system. 

 

6. CONCLUSIONS 
 

1. Repairable system can be modelled as a non-homogeneous poisson process, if the 

underlying pattern of failure arrivals can be expressed as a well defined parametric 

model of failure intensity. 

2. Log-linear intensity model is one possible failure growth of characterization. The 

maximum likelihood estimation of future events based on this characterization 

gives very accurate prediction. From an engineering point of view these results are 

quite good.  

3. Often the parameters of the failure growth model    1

0
N t t dt   

stabilizes 

around there steady state values and the error of prediction reduces significantly. 

These steady state values of the parameters can be used in economic decision 

making regarding repairable systems. 
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Table 1 

Estimation of time to future leaks using Log-linear  

intensity process. Data from Bradford [3] 

K T 

Time 

(Months) 

(Estimated) 

n 

2 3 4 5 6 7 8 9 10 11 12 

1 17.00 - -  - - - - - - - - 

2 22.00 - - - - - - - - - - - 

4 25.00 23.25  - - - - - - - - - 

6 29.00 23.73 25.91 -  - - - -  - - 

7 32.00 24.75 29.01 29.95 - - - - - - -  

8 33.00 25.13 30.35 32.36 33.00 - - - - - - - 

9 34.00 25.46 31.51 34.01 35.12 33.83 - - -  - - 

10 35.00 25.76 32.54 35.48 36.65 35.50 34.73 -. - - - - 

12 35.00 26.02 33.46 36.80 38.03 36.80 36.08 35.69 - - - - 

13 36.00 26.48 35.07 39.21 40.45 39.08 38.27 37.82 36.02 - - - 

14 38.00 26.68 35.77 40.14 41.52 40.09 39.24 38.76 37.48 36.47 - - 

16 39.00 26.86 36.43 41.09 42.52 41.02 40.14 39.63 38.43 37.71 38.53 - 

17 40.00 27.19 37.61 42.81 44.32 42.72 41.76 41.21 40.15 39.3& 40.64 39.48 

18 41.00 27.35 38.15 43.60 45.14 43.49 42.50 , 41.94 40.93 40.11 41.44, 41.08 

19 42.00 27.49 38.66 44.34 45.91 44.22 43.20 42.62 41.67 40.82 42.20 41.91 

k   Number of leaks, t   Actual Time (Months) n   Number of Observations 
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Table 2 

Estimation of time to Future leaks using Log-linear  

intensity process. Data from NACE [2] 

K T 

Time 

(Months) 

(Estimated) 

n 

4 5 6 7 8 9 10 9 10 

- - - - - - - - - - - 

- - - - - - - - - - - 

35.78 - - - - - - - - - - 

33.60 38.33 - - - - - - -  - 

34.41 38.05 42.61 - - - - - - - - 

34.37 38.87 42.28 43.22 - - - - - - - 

34.65 39.54 43.33 42.98 44.01 - - - - - - 

34.88 40.10 44.22 43.81 43.87 44.88 - - - - - 

35.08 40.61 44.98 44.54 44.53 44.72 45.80 - - - - 

35.26 41.02 45.66 45,17 45.16 45.36 45.66 47.86 - 47.86 - 

35.41 42.41 46.27 45.75 45.72 46.93 46.25 47.77 48.80 47.77 48.80 

k   Number of leaks, t   Actual Time (Months) n   Number of Observations 
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HOURS, t 

Fig. 1: The cumulative number of repairable failures, N(t) by time, t. 

 

 

 
TIME (MONTHS), t 

 

Fig. 2: Number of leak in Pipelines, N(t) by time, t. 
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Fig. 3: Cumulative number of repair, N(t) per system age, t. 

 

 

 
 

Fig. 4: Cumulative number of failures, ( )N t k  at age, t. 
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Transformed Age,   

 

 

Fig. 5: Non-homogeneous Poisson Process, N(t) on actual time,  

t and on modified time,   
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Transformed Age,  

 

Fig. 6: N(t) Versus Age, t 
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Fig. 7: Time versus Number of Leaks 

 

 
Fig. 8:   Versus Number of Leaks 
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ABSTRACT 
 

 The method of saddle-point was first introduced by Flower (1936) in to statistical 

mechanics and latter Jeffreys (1948) and Cox (1948) used the technique in some areas of 

statistics. The method may be used to determine exact moments of positive powers of 

random variables and asymptotic moments of negative powers of continuous random 

variables. Moments of positive powers of random variables are well-known, but negative 

movements of continuous random variables are not discussed much in literature. 

However, negative movements of discrete random variables have been obtained by many 

authors. In this paper we discussed the method and apply it to obtain exact and 

asymptotic moments of the powers of random variable having some exponential-type 

distributions. 

 

KEY WORD 
 

 Diffuse probability density, moments of reciprocals, asymptotic expressions, normal, 

gamma, Rayleigh, inverted Rayleigh distributions. 

 

1. INTRODUCTION 
 

 The problem of estimation of the reciprocals often arise in many situations, for 

instance, in econometrics, biological sciences, survey sampling and engineering sciences, 

notably in life-testing(see Zellner, 1978; Cox and Tio, 1973; Srivastsva and Bhatnagar, 

1981; Bartholomew, 1957; and Epstein et al., 1953, 1954). 
 

 Moments of the power of reciprocals of discrete random variables have been 

investigated in the literature (see Chao and Strawderman, 1972; Grab and Savage, 1954; 

Mendenhall and Lehman, 1960; Stephen, 1945; Tiku, 1964; Kumar, and Consul, 1979; 

Govindarajulu, 1962; Rider, 1962; and Stephan, 1945), and recently expectation and 

variance of the reciprocals of continuous random variables have been approximated by 

Srivastava and Bhatnagar (1981) and Zellner (1978). The moments of the reciprocals of 

some random variables do not exist. Feller (1971) has remarked that the expectation of 

the square reciprocal of a normal random variable with mean zero and variance 
2  does 

not exist. Zellner (1978) studies in brief the bimodality of the posterior probability 

distribution of the reciprocal of mean. Zellner (1978) considered the model iy  

where the i ’s are NID  20,
 
with the value of 

2 assumed known with the diffuse 

prior probability density function  p 
 
for  , given by  p  

 
constant,     . 

 

                                                 
*
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The posterior pdf for 
 
is 

 

  

 
2

2
2/ , exp

2

z
p y 

  
           

 , 

 

where 1/ , 1/ and / .y z ny       The posterior sampling distribution of 
2  is 

bimodal and does not possess finite moments. 
 

 Srivastava and Bhatnagar (1981) have given some estimators of   which possess 

finite moments. It is of interest to investigate the moments of the reciprocal of mean 

asymptotically. In this paper, we use saddle point method to obtain exact and asymptotic 

expressions for moments of the positive integral powers of the reciprocals of random 

variable having an exponential family of distributions. We illustrate the method by 

applying it to normal and Rayleigh random variables. The saddle point method is also 

used to derive asymptotic expressions for higher moments of the maximum likelihood 

estimator of the reciprocal of mean and the results are compared with those obtained by 

Srivastava and Bhatnagar (1981), Zellner (1979) and Zellnerand Park (1979). 

 

2. THE SADDLE-POINT METHOD 
 

 Consider a random variable mX Y   where Y  is  ;f y 
 
and m  is any positive 

integer. Properties of the probability density function of Y  when X  is a normal random 

variable are discussed by Gusev and Roshchin (1975). The thr
 
moments about origin of 

the random variable X  when Y  is normal with mean 
 
and variance 

2  is 
 

  

 
1

2

r
r x u x dx





 
 

 ,              (2.1) 

 

where 

  

     
21 1/ 1/

2

1
exp

2

m mu x x x
   

   
 

.          (2.2) 

 

 The function  u x  appears to have a singularity at 0x  . The integral (2.1) is 

divergent as such, but we can find asymptotic expression for the integral for small values 

of   using the steepest descent method which enables us to pick up the dominant 

contribution to the integral from the neighborhood of the saddle point. For the details of 

the saddle point method with applications to statistics, reference may be made to Daniel 

(1954). We confine ourselves to describe only the salient features of the method. 
 

 Consider the integral 

 

 

  

   
1 .

h z

c

g z e dz


                  (2.3) 

where c is the path of integration in the complex z-plane along the real axis and the 

NCBA&E



Chapter 2: Mathematical Statistics 141 

functions  g z  and  h z  are functions of the complex variable z , not necessarily 

analytic, which as a special case may involve only real values of z . In order to evaluate 

the integral asymptotically for large values of  , the path of integration is deformed to 

satisfy the following conditions: 

i) The path passes through a zero 0z
 
(called saddle point) of  h z . 

ii) The imaginary part of  h z  is constant on the path.  
 

 If we write   1 2h z h ih   where 1h  and 2h  are real functions, 2h  is constant on a 

path of steepest descent, then the dominant part of the asymptotic expansion arises from 

the part of the path near the highest saddle-point. If the path c  is deformed to pass 

through the saddle-point, then the integral will be obtained in the neighborhood of the 

saddle point. The saddle point is obtained by solving / 0dh dz   and the path of 

integration (2.3) will be the locus of the points determined by the equation  
 

  
    2

0 , .h z h z s s                   (2.4) 
 

 The saddle point corresponds to the value 0s  . The integral (2.3) taken over c  is 

now replaced by the integral of the same integrand over the new path of integration given 

by the equation (2.4) which transforms z  to s  through    
dz

s g z
ds

  and the 

dominant contribution to the integral now stems from the vicinity of the saddle point. 
 

 The integral (2.3) is written as 
 

  

   
2

0[ ]
1 ,

h z s
e s ds


 



   

   

   
2

0 .
h z se e s ds


 



                (2.5) 

 

 For large values of  , only small values of s  will contribute significantly to the 

integral. 
 

 Expanding               
2

1 2
0 0 0 ... 0 ...

! !

k
ks s

s s
k

          
  

in a series of 

powers of s , substituting in (2.5), and integrating over s and using the formula 
 

  

 
 

2 1

/2

0, when is odd

! 2
2 , when is even

2 / 2 !

mm s

m

m

s e ds m
m

m

  






 




  

 

 We obtain the following asymptotic expansion of the integral for large values of  : 
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1

2
20

1
1 exp / 0 0 ... ,

4
h z

 
            

       (2.6) 

where

   

  

     
0

0 , 0, 1, 2, . . .
k

k

k s

d
s k

ds 
       

 

 The expression (2.6) is terminated when 
   0 0
k

 
 
for some values of k and may 

become exact in some cases as shown in section 3. 

 

3. MOMENTS OF ONE PARAMETER 

EXPONENTIAL DISTRIBUTION 
 

 A one-parameter family of distributions is 
 

  
         1; exp , .zf z B g z h z z R                (3.1) 

 

 The higher moments of the random variables and the reciprocals of the random 

variables be rewriting (3.1) 
 

  
         1

1 1, , expf z B f z g z h z          

 

are given by 
 

       1
1 .

z

r h zr
r

R

E z z g z e dz
                (3.2) 

 

 Let 

     1 .rg z z g z  
 

 The integral (3.2) is written as in (2.5) 
 

  

 
 

2
0h z s

r e s ds
   

 



    

and is expressed as in (2.6) giving exact or asymptotic moments whether 
   0 0
k

 
 
or 

not for some values of k . 
 

 Some one-parameter probability distributions such as normal, gamma, exponential 

and Rayleigh, etc., may belong to one-parameter exponential family for which exact or 

asymptotic moments may be expressed in terms of functions of moments of normal 

random variables. Some examples are given below to illustrate the method. 

 

3.1 Exact Moments of Normal Random Variable 

 If X  is a normal random variable with mean, 
 
andvariance, 

2 , then rth moment is 

given by 
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2

2

1 1
exp .

2 2

r
r z z dz





 
    

  
          (3.3) 

 

 In this case, we rewrite (3.3) as 
 

  

 
2

2

1 1
exp .

2 2

r
r z z dz





 
    

  


 
 

 If

   

  

  ,
2

rz
g z 


 

  
   

21

2
h z z    

and  

  
21/    

 

then for small values of , 
 
is large. The saddle point is 0z  

 
and also  0 0h z  . 

The path of integration in (2.4) is given by
  

  
2z s   

 

and the function  s  is

 

  

  2
2

r rz z
s  


 

    1
2

r

s 


.  

 

 Using the saddle point method and substituting these values in (2.6), we have 

         

1

2 2!
0

1
exp 0 0 ... ,

4
r h z

   
                

 

  
     

0
0 , 0, 1, 2, ...

k
k

k s

d
s k

ds 
       

      
1

1 ... 1 r kr r r k     


 

 

where k r , 

     
!

0
r r

 


 

  
   0 0
k

for k r   . 
 

 Thus, the exact expression for r


 
is given by 
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2

2 1

01 2

2 ! 2

k

r k kk 


 




  

   

 /2 2

1
0

1

!

r r k

k
k k








 
                 (3.4) 

 

 Let 2r m , then 
 

  

 
2

2
2

0

/

!

m k

m
m

k k

 
    .              (3.5) 

 

3.2 Asymptotic Moments of Power of Reciprocal of Normal Random Variable 

 In case of the integral (2.1), we have 
 

  

  1/, where
2

mr
mz

g z z r


 


 

  

   
21

2
h z z    

  
21/ .    

 

 For small values of  ,  is large. The saddle point is 0z   and also  0 0h z  . The 

path of integration in (2.4) is given by 
 

  
 2 ,z s   

 

and the function  s is given by 
 

  

   1
2

mr

s s


  


 

 

 Using the saddle point method and substituting these values in (2.6), we have 
 

  

 

 

2
2

1

1
2 !

j
jmr

r j
j

mr

j






  
      

   

             (3.6) 

 

where 

  
     1 ... 1 .

k
a a a a k     

 

3.3 Exact Moments of Rayleigh Random Variable  

 Given the Rayleigh distribution, 
 

  

   
2

2 2

1
exp , .

2

z
f z z z
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 The rth  moment about origin is  
 

     
2

2 2

1 1
exp .

2

r
r z z z dz





 
     

  
          (3.7)  

 

Let  

  

   2 21/2
1

zrz z e dz


  



   

  
       

2

0

1 2
, ' 0 .

2 2
h z z h z z z           

  
2

1
 


 

  
   rg z z z   

  
    2

0h z h z s   

  
 

2 21

2
z s    

  
2 .z s  

 
 

Taking the +ve root only as z    , the saddle point should be    and 
 

  
2 .z s 

 

  
       2 2

rdz
s g s s s

ds
  

 

  
 0 0 

 

  
  1 1 1" 0 2 2 4r r rr r r        

 

  
      30 16 1 2iv rr r r     

 

  
  5

5
2vi rr     

 

 and so on, 
 

  

     2 2 2 1

2 1
0 2

k k r k

k
r  


    

  

 

   

 

2

2 2 1
0

01 2

2 2

k

r k k
k k






 
 

   
  

 

  

   
 

 

2 12 1 2 1

0

.
r kk k

k

r

k

 
  



 
   
 
 

            (3.8) 
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 When 0  then 
 

  
 / 2 ! / 1/ 2 .r

r r r                   (3.9) 
 

 The mean and variance of Rayleigh distribution when 0  are 
 

  
1

2


    

and 

  

2
2 2 1 .

4

 
    

 
 

 

 

3.4 Asymptotic Moments of Inverted Rayleigh Random Variable 

 Theinverted Rayleigh distribution is obtained from 
 

  
   

2 2/2

2
, .

xx
f x e x

  
  


            (3.10) 

 

 By letting

 

1
z

x
 , we obtain 

 

  

   
2

2 3 2

1 1 1
exp , .

2

z
f z x z

z

  
       

 
 

The rth moment about origin is 
 

  

 
 

2

2 3 2
0

1 1
exp .

2

r
r

z
z x dz

z

   
    

  
           (3.11) 

 

 Let 

  

   
2

1 1 1
, ' 0gives .

2
h z h z z

z

 
     

 
 

 

 Thus the transformation is 
 

  
 

1

2z s


   

 

 Now consider 
 

   

 
2

3

2

1 1
1 1 exp .

2

rz z dz
z


  

     
    

  

 

 Now 
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     3 2
1

( 2 )

rs z z
s

 
  


 

    
 

3

2

2
2 1

2 2

r u
s

s s

    
         

 

     2 2
r

s s s


     

 

   0 0   
 

    3" 0 4 2 rr      
 

  
    3

3
0 16 2iv rr      

 

  
 

 

 

2 1

2 1

2 2 1
0

1 2

2

r k

k
r k

k

r

k

  








 

 

  

   
 

 

2 1
2 1 2 1

0

2

k
r k k

k

r

k


   



   


            (3.12) 

 

 As an illustration of the usage of the method we consider the estimation of the inverse 

of mean and compare our results with those obtained by Srivastava and Bhatnagar (1981) 

who consider a similar problem. 
 

 The maximum likelihood estimate of 1/   is 1/ x  which does not possess finite 

moments. Srivastava and Bhatnagar (1981), Zellner (1978) and others have recently 

discussed the estimation of 1/  . Srivastava and Bhatnagar (1981) considered the 

estimator 
 

  
 2 2/ 0kt nx nx ks for k                (4.1) 

 

where x  and 
2s  are unbiased estimators of population mean 

 
and variance 

2  

respectively of a normal population. They obtained  kE t
 
and  2

kE t . The moments of 

kt  
exist for 0k   and for small values of k  or large values of n . kt  

is an approximate 

estimate of 1/  . Following Srivastava and Bhatnagar (1981) notations, Ahmed et al. 

(1982a,b) find explicit expressions for the thr
 

moment of S-B estimator when  

(i) 2r m  and 2 1r m  : 
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   /2

2 2
0 0

2 1 1
1 ,

/ 2 11
.

1 1
!

2 2

m n

m m
a j

m
a b c

n e n

n
j j



 
 

 

   
    

     
   

     
   

 
2

j
n 

 
 

(4.3) 

 

3 1
where 2 , 2  and and

2 2 2 2

n n
a j m b j m c a          

 

  
  /2

2 1 2 1
0 0

/ 2 2 21
1 .

1 1

2

m an

m m
a j

n e m a k

n a n

 
 

 
 

    
    

      
 

   

 

  
   1 2,

.
3 2

!
2

j
a b c n

j j

     
 

   
  
 

              (4.4) 

 

 If 1m  , we obtain S-B expressions for  kE t
 
and  

2

kE t . 

 

 Similar results can be obtained when the variance 
2  is unknown. If 

2  is unknown 

then 
2  is replaced by its unbiased estimator s

2
. Ahmed et al. (1982a) find the 

asymptotic expression for the rth moment of the randomvariable 1( )x 

 
for large n using 

the formula (2.6). Here 
 

  

 
2

,
2

x
g x 


 

 

  

   
2

2

1
,

2
h x x  


 

and 
  ,n   
 

 The saddle point is 0x  
 
and also 0( ) 0h x  . The transformation from x  to s is 

given by 
 

  
 2x s   

 

and the function  s is given by 
 

  
   1

2
r

s s


  


 

 

 Substituting these values in (2.6), we have for large n  
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  2
2

1

1
2

j
jr

r j j
j

r

n






  
      

   

             (4.7) 

 

where      1 ... 1
k

a a a a k    . The thr moment about origin is not finite unless n  is 

large. Using the first two terms of (4.7), we have 
 

  
     

2 4

2

1 1 2 3
1 ,

2 8

r
r

r r r r r r

n n


        
        

      

     (4.8) 

 

 If 1r   and 2, the results are identical to the S-B estimator when 0.k   
 

 If 
 
and 

2 are unknown, / 
 
can be replaced either by their unbiased estimators 

or by the consistent estimator of / 
 

which is the coefficient of variation of the 

observations. 
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ABSTRACT 
 

 In this paper we introduce the theory of generalized functions developed by  

L-Schwartz (1950-51) and discuss the generalized Fourier Transform and its applications 

in probability and statistics. The notion of the generalized weight functions for 

orthogonal polynomials is introduced. The use of the generalized function technique in 

determining the probability functions corresponding to the given moment functions is 

discussed. 
 

Subject Classification: 60-62 and 60 B15. 
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INTRODUCTION 
 

 The singular functions have long been used in the fields of Physics and Engineering, 

although these cannot be properly defined within the framework of classical function 

theory. The simplest of the singular functions is the delta function. It is common defined 

as 
 

   
0 if 0

1 if 0

x
s

x


  


                  (1) 

and 

    1x dx



                     (2) 

 

 According to the classical definition of a function and integrals, the definitions (1) 

and (2) are inconsistent. There are several extensions and generalization of the concept of 

a mathematical function, see [3], [5] and [10]. However, we shall briefly discuss here the 

theory of generalized functions developed by Schwarts [14] and point out its applications 

in probability in the subsequent sections. 

 

NOTATIONS 
 

  2: ,1n
aK x R x a i n      is a compact subset of nR  and 

 2 2 2
1 2 ... nx x x x     is the norm of  1,... nx x x . Let  1 2, ,.... nk k k k  

nZ . Then, 

                                                 
*
Published in Pak. J. Statist., (1989)A, 5(1), 
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we define 
 

  1 2 ... nk k k k     
 

  1 2

1 2 .... nk k kk
nx x x x   

 

  
1 2

1 2 ... n

k
K

k k k
n

D
x x x



 

  

 

 
Supp f = The support of the function  f x   the closure of the set of all points x  

such that   0f x  . 

 

1. THE TEST SPACE,    aD a D K  
 

 An infinitely differentiable function  x  is said to belong to the space  D a  if for 

each 1,2,3,....p    
 

   SupSup K

p
k px

D x


      

 

  . ; 1,2,3,....
p

p   define a sequence of norms on  D a  and : 

 

  
1 2

... ...
p

                      (1.1) 

 

 Let  pD a  be the completion of  D a  with respect to the norm .
p

. Then, it 

follows from (1.1) that: 
 

         1 2 ... ....pD a D a D a D a      

 

 As a matter of fact 
 

     
1

p
p

D a D a



    

 

and therefore, it is complete countably wormed space [3],[9]. 

 

2. THE TEST SPACE D 
 

 The space D consists of infinitely differentiable functions outside a compact set 

(depending upon the function) vanish identically. It can be seen that 
 

   
a

D D a    

   
1

p
a p

D a
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Ɑ 

 

REMARKS: 
 

(1) D is complete [1], [3], [9] 

(2) D is not metrizable [3] 

(3)  
1n n

D


   converges to   iff  1,2,3,....and 0,1,2,3,...k
nD n k      

vanishes outside the same compact set and for all 0,1,2,3,...k k
a nK D D k      

 

EXAMPLE: 
 

 Let 

   

2

2 2
exp for

;

0 for

a
x a

x a a x

x a

  
  

   




            (2.1) 

 

 Then 
 

  
   :x a D a D    and supp  ,a a     

 

 Let  

     
1

,n x x a
n

     

and  

   
1

;n

x
x a

n n

 
   

 
 

 

Then, sup n = supp  , aa a K      

and supp  ,n na na     
 

 Now   0.
D

n x   However,   
1n n

x



  does not converge to zero in the sense of 

the convergence in D because all of   1,2,3,...n x n   do not have the same support. 

 

3. THE DISTRIBUTION SPACE (D)' 
 

 Let Ɑ be the field of complex numbers. Then,   :f D   Ɑ is said to be a continuous 

linear function if: 
 

 (1)  , , ,f f f            and 

 (2) Whenever , , , .
D

n nf f         
 

 The space of all continuous linear functionals defined on D is denoted by (D)'. The 

elements of (D)' are called generalized functions. The convergence in (D)’ is defined as 

follows: 
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Ɑ 

 A sequence ,  1,  2,  3,...nf n   of generalized functions is said to converge to 

generalized function ( )f D   and we write: 
 

  
  '

, ,
D

n nf f iff f f D                (3.1) 

 

4. EXAMPLES OF GENERALIZED FUNCTIONS 
 

1. (Regular Generalized Functions): 
 

 Let  f x  be a locally integrable function, i.e.,  f x dx


   for every bounded 

region   in nIR . Then, the map f D   Ɑ defined by: 
 

 

  
   ,

IR

f f x x dx D       

 

defines a continuous linear functional on D and hence is an element of   'D . Such type 

of generalized functions are called regular. 

 

2. (Singular generalized functions): 
 

 Let : D   Ɑ be defined by: 
 

   ,   0 D        
 

 Then.   '.D  We cannot find any locally integrable function  f x  for which 

   , ,
IR

f f x x dx D        . 

 

 Suppose there exists some  f x  (locally integrable) such that (10), is satisfied. Take 

   ;x x a    as defined in (2.1). Then, 
 

 L.H.S.    , ; ; 1/x x a e         

and 

 R.H.S.      , ; 0 0
R

f f x x x a dx as a         

 

which contradicts the assumption. 
 

 The type of generalized functions which are not regular (such as  -distribution) are 

called singular. 

 

REMARK 

 The singular generalized functions can be approximated by a sequence (or by a set) of 

regular generalized functions in the sense of the convergence defined in (3.1). 
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EXAMPLES 
 

1. It can be seen in [1],[3],[6],[9]  and [10]  that among other coverging regular 

generalized functions we also have 
 

i) 
 

 
sin Dnx

x as n
x

    

 

ii) The normal probability function coverges to  x  as 0t  , i.e.

 
21

exp 0
42

Dx
x as t

tt


 
      

 and  

 

iii)  
2 2

0
Dn

x as n
x n

 
  
 

.  

 

2. Consider the Heaviside function  H x  defined by: 

   
1 0

0 0

if x
H x

if x


 


  

 Than  
0

,H x dx


      

 

 defines a regular generalized function on D. 
 

 One can define a probability function on H as follows: 
 

 Since    0if and 1 i— f ,j j j jx HH x x xx xx x       

 Then          1 and 0 1 .j jP H x F x Px H x x F x         

 

3. Let us define    * :  F x D   Ɑ  by ;  

  
 

1

,   
n

F n






      

 Then,    
1

  
n

F x x n




      

 is a shifted singular generalized function. It is also called sampling distribution 

because it gives the information about the function  x  at x n   

4. The function 
1

x
 does not define a regular generalized function, because 

 x
dx

x








 

is not convergent for all test functions. Let us define 
1

PV
x

 
 
 

 as 

follows. 

NCBA&E



Chapter 2: Mathematical Statistics 156 

  

 1
,

x
PV PV dx

x x





 
   

 
   

   
 

0
lim

x

x
dx

x 


    

   
   0x

dx
x





 
    

 

 The integral in (11) is convergent because  x  is differentiable at 0x  . 

Moreover    
1

PV
x

 
 
 

 is continuous, [1],[3] . Therefore,    
1

PV
x

 
 
   

is a singular 

generalized function. 
 

5. Let us define 

  

   
1 1 1

2 2
x x PV

x


   
      

   
  

 Then,  , are also singular generalized functions on D and are called the 

Heisenberg distributions. It is shown  1  that: 

  
   

 
0

1
, lim

2

x
x x dx

x i


 




   

  
   

 

 It follows from (12) and (13) that: 
 

  

 
1 1

0
i x PV x

x i x

 
     

  
 

 

 
  

 
1 1

0
i x PV x

x i x

 
     

  
 

 

 (14) and (15) are called the Sokhotski-Plemelj relations. 

 

6. OPERATIONS ON GENERALIZED FUNCTIONS 
 

 Since the locally integrable functions are examples of generalized functions it is, 

therefore, natural to define operations on them that will remain valid for integrable 

functions. 
 

 Let  ,    ',f g D Ɑ and x Ay a   where A is an n n  matrix with det 0A   

and a is a constant vector, be a non-singular linear transformation of the space nIR  onto 

itself. Then, for every D  the following operations are defined: 
 

(a) Addition: ,    ,   ,f g f g              
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(b) Linear change of variables: 

  

       11
, , { }

det
f Ay a y f x A x a

A

               (6.1) 

 

  For a simple translation, i.e., when  A I , the unit matrix, (6.1) yields 
 

   
           – ,         ,  f y a y f x x a        

 

  For a simple scale expansion ,  0,A cl a   (6.1) becomes, 

   

       
1

   ,     ,  c
n

f cy y f x x
c

 
     
 






 

 

  For a simple reflection take  –  ,     –1x y c   
 

         ,    ,    ( x)f y f xy I       
 

  For a simple rotation, 
10, Ta A A   , we have 

   

   1
 ,  ( )) <

det
, Tf AA y xy f

A
x     

(c) Multiplication by    ' :t C IR   
 

   
, ,f f        

  e.g. 

    , [0) 0      . 
 

  Therefore 
 

   
     (0)x a x       

(d) Differentiation: The generalized derivative kD f  of the generalized function

     'f D  is defined as follows: 
 

   
 , 1 ,

kk kD f f D                    (6.2) 

  e. g. 

   
           0

, , ' ' 0
d

H x x H x x x dx
dx


             

 

  Therefore 
  

   
   

d
H x x

dx
    

 

 In other words, the derivative of the Heaviside function is Dirac's  -function which 

was one of the properties of the  -function deduced by Dirac. 
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 An important consequence of the definition (6.2) is that generalized functions have 

derivatives of all orders. It reveals an important fact that continuous and locally 

integrable functions are infinitely differentiable in the generalized sense which gives us 

relief from the difficulties that arise with non-differentiable functions. 

 

7. TENSOR PRODUCT AND CONVOLUTION OF  

TWO GENERALIZED FUNCTIONS 
 

 The tensor product of two generalized functions:   nf D IR

 and   mg D IR


 

is defined by: 
 

  
           , , , , ,f x g y x y f x g y x y           , .n mx y D IR     

 

 The product     f x g y  belongs to   n mD IR  
. It is commutative and associative 

when extended to any finite number of generalized functions. 
 

 Let  f x  and  g x  be two locally integrable functions on nIR . Then, their 

convolution; 
 

  

      (   )
* g

f t g x t dt

IR

f x x n


    

 

is also a locally integrable function      1 ,  2 ,  6  and  9 .  Therefore, if defines a 

functional on D, i.e., 
 

  
                , —  f x g x x x f t g x t dt dx


      

   
       f x g x y dy x dy    [By Fubini's Theorem]  

   
        ,  f x g x x y       

 

 The convolution of two generalized functions may be defined in the same manner. 

The difficulty is that  x y   need not have a bounded support even if

     n(IR 3 ,  9) x D  . To make the definition meaningful, we can put restrictions on  

f and g such that the support of   f g  intersects the support of  x y  in a bounded 

set. 

 

DEFINITION:  

 A generalized function f is said to vanish on a set a  if   f , 0nIR     for all 

D  with supp    . The complement of the union of open sets   on which f  

vanishes is a closed set, called the support of the generalized function f . 
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 If g  has a compact support, then the convolution  f g  is well defined and is  

given by: 
 

  
       ,     ,   f g f x g y y x y            

 

where   is any test function equal to 1 in the neighborhood of the support of     2 ,  6g  

and  10 .   
 

 It is easy to verify that  
* .

mm f f   Thus, if  p x  is polynomial,  *  =P y f  is 

an ordinary differential equation. Another property of the convolution is that if f  or g

has compact support, then 
 

  
  ( )   *  k k kD f g D f g f D g     

 

 These properties give a simple proof of the existence theorem for linear partial 

differential equations with constant coefficients: 
 

  
 P D y f                    (7.1) 

 

 The existence of the fundamental solution, i.e., the existence of solution of 

 P D E    is proved in    3 ,  6  and  9 .  If f has a compact support, then  y E f   

is the generalized solution of (7.1). If follows from the fact that: 
 

  
     * * *P D E f P D E f f f    . 

 

8. THE TEST SPACE S 
 

 A complex valued function  x  is said to belong to the space S if it has the 

following properties: 

(1)  x  is infinity differentiable, i.e.     nx C IR   

(2)  x as well as its derivatives of all orders, vanish at infinity faster than the 

reciprocal of any polynomial, i.e., 
 

   
  , 0,  1,  2,  ...pk

p k px D x C              (8.1) 

 

  where pkC  is a constant depending on ,  p k  and  . 

 

 A sequence   
1m m

x


  of test functions is said to converge to  x  in S  if for each

0,1,2,3,...,k   the sequence   1{ }   m
k

mD x 
 
converges uniformly to  kD x  in every 

bounded region   nof IR . This means that constants pkC  in (8.1) can be chosen 

independently of x  such that 
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(  pk

p k k
mx D D C      

 

for all values of m . 
 

 The space S  is closed and the testing function space D  is dense in       91 , 3 ,S  and

[12] . The dual space of S is denoted by ( )S  . The elements of ( )S   are called 

distributions of slow growth or tempered distributions. If follows from the definition of 

convergence in D  and in S  that a sequence   m x  converging to a function  x  in 

the sense D  of also converges to  x  in the sense of S . Accordingly every linear 

continuous functional on S  is also a linear continuous function on D  and therefore, 

( ) ( )S D  . This inclusion is strict because the distributions which grow too rapidly at 

infinity are not elements of ( )S  . For example the regular distribution 

   2 'f exp x D  but is not a member of ( )S  . 

 

9. THE FOURIER TRANSFORM 
 

 An essential part of the theory of generalized function and its application rests on the 

concept of the Fourier Transform. If  x  is an absolutely integrable on the real line 

then, its Fourier Transform is defined by: 
 

  
   ˆ  = iuxu e x dx




                  (9.1) 

 

the integral in (9.1) exists, since by assumption        u dx x



     . If 

moreover,  ˆ u  is absolutely integrable, the inverse Fourier Transform is given by; 
 

  
   

1 ˆ
2

iuxx e u du
 


  


                (9.2) 

 

 It follows that 
 

  
   2
ˆ̂

x x                    (9.3) 
 

 Now we state a theorem which reveals the characteristics feature of the space  1S  

 3  and   12 . 

 

Theorem 9.1 
 The Fouries Transform as defined in (9.1) and its inverse are continuous linear and 

one-to-one mapping of S  onto itself. 
 

 DEF (Fourier Transform of Tempered Distribution): 
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 The Fourier Transform  ˆ u  of a tempered distribution    x S    is defined by: 
 

         ˆˆ ,   , ,uu u u s                 (9.4) 
 

 The functional on the right hand side (9.4) is well defined because  ˆ u S  . 
 

 It is clearly linear and continuous. Hence    ˆ Su   . As a matter of fact we have the 

following theorem      3 , 6 , 9  and  12 . 

 

Theorem 9.2 

 The generalized Fourier Transform as defined in (9.4) and its inverse as defined by: 
 

  
   1 1   ,  ,F F                     (9.5) 

are continuous linear and one-to-one mapping of  S   onto itself. 
 

 The definitions (9.4) and (9.5) are consistent with the classical definitions (9.1) and 

(9.2) whenever the latter are applicable. 
 

 The extensions to n-dimensional space of the definitions and results art straight 

forward. We shall mention the n-dimensional generalization of the results when it is 

necessary. 

 

10. EXAMPLES 
 

(a) The delta function 
 

         , )ˆ ˆ,  ,  ,    (   ,ixyx x x y dy y dy Ie







                 

 

 Thus.  ˆ 1x    
 

 According to (9.3) we have 
 

  ˆ ˆˆ[1] [ ] (2 ) ( ) (2 ) ( )n nx x         

 or 

  

 
 

1 1
]=

2
[  

n
F x 


  

For 1n   this gives the well-known integral representation formula for the delta 

function: 
 

 
   

1 1
1

2 2

ixyx F e dy
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(b) If  S  , then, 
 

i)    
kkD F F ix   

  
 

ii)        F P P iu
d

F
d

x

  
  

 
 


  

iii)  k
k

d
F x i F

du

 
 

 
   
 

  

iv)    iauF x a e F         

v)    1 2
1 2

, ,..., , ,..., m
n

F p p iu u u F
x x x

    
      

     

  

vi)    
1

2
2

1 , ,..., F, ,..., =P  n
m

i i i
u u

F P x
u

x x
   
      
   

  

vii)     
11

det TF Ax A F A x
         

  

 

  For the proof see      1 ,  9 ,  11  and   14  . 
 

(c) The Heaviside function, 1n    
 

Since ( (  )   ) 0x x     , it follows that ( )y x     is a solution to the 

homogeneous differential equation 
 

      0x x        

Moreover,  
1

 py a x PV
x

 
  

  
 is a generalized solution of the inhomogeneous 

differential equation: 
 

 
      x x a x                    (10.1) 

where     .x RCa I


   

 

Therefore,  

 

   
1

y x a x PV
x

 
     

 
             (10.2) 

is the solution of (10.1). 
 

Since    
DH

dx
x x   we find that        
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     ˆ 1
dH

F x iu H u
dx

 
   

 
  

 

Therefore, by using (10.1) and (10.2) we get:  
 

 

     
1

      [ ]  F H x u C u i PV
u

 
    

 
  

 

Changing x  to x  in this formula we get: 

 

   
1

     F H x C u i PV
u

 
       

 
  

 
        [    2  ]F H x F H x C u                (10.3) 

 
           1 2F H x F H x F x                     (10.4) 

 

From the uniqueness of the Fourier Transform and by equating (10.3) and (10.4) we 

get .C    

 

    
1

(F H x u u iPV
u

 
     

 
             (10.5) 

 

If we write (10.5): 

 

   
1ixuH x e dx u i PV
u





 
    

 
   

and separate real and imaginary parts we get : 
 

 
   0

  cos xu dx u


   

 

 0

1
 sin xu dx PV

u

  
  

 
   

(d) The signum function: 

Since Sgn       x H x H x     

 
                [ ]F sgn x u F H x u F H x u            

 

1
2  i PV

u

 
  

 
  

 

Therefore, by inversion formula: 

 

 
1

  ]  sgn[  F PV x i x
u

 
  

 
  

 

 
1

    sgniaxi eF PV x x
u a
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(e) Since
 

 

1 1

1

11 1

1 !

m m

m m

d

m xx dx

 



  
  

  
  

    
 

 
   

1
111 1

1 !

m
m

m
F u iu F u

m xx


   

       
 

 
 

1

sgn
1 !

m
m u

i u
m



 


  

 

By the translation property: 

 
 

 
 

11
sgn

1 !

m
m iau

m

u
F u i e u

mx a

 
  

  

  

 

11. DISTRIBUTIONAL WEIGHT FUNCTIONS 
 

 Let  nP x  be a polynomial of degree n such that 
 

  
         0,  mm

b
na

P x x w x dx np     
 

i.e.,   
1

. 
n

P x


 is an orthogonal sequence of polynomials with respect to the weight 

function   w x . The numbers  0,1,2,...n n   defined by: 
 

  
 =

b n
n a

x w x dx                   (11.1) 
 

are called moments. The moments play an important role in the theory of orthogonal 

polynomials. As a matter of fact, every polynomial can be expressed in term of its 

moments [13]. 
 

 It follows from (11.1) that if we know the weight function of an orthonormal 

polynomial sequence, then we can calculate the moments. The theory of generalized 

functions helps us in solving the invers problem. That is, given the moments, we can 

determine the corresponding weight functions. For this purpose (11.1) can be written in 

the functional from as: 
 

   ,  n
np w x x 

 
for all 0,  1,  2,  3,...n    

 

 Let ( )x  a real analytic function whose Taylor series converges to for all .x   
 

 Then, 

  

   

0

0
, ,

!

n

n

n

w w x
n






      

   

   

0

0
,

!

n

n

n

w x
n
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 Since        ( ) ( )– 1 0  = < ,
n n n x x     [By definition of 

   ]n
x   

 

 Therefore, 

  
     

0

, 1 ,
!

n nn

n

w x
n






         

 

which implies 

  

 
     

0

1

!

n

n
n

n

w x x
n






    

in the sense of generalized function. It is important to note that when the moments 0{ }i iU 
  

are those associated with the classical orthogonal polynomiaIs-the Legendre polynomials, 

the Laguerre polyomials, or the Hermite polynomials-the weight function  w x  yields the 

same results as the classical weight functions concerning orthogonality and norms. 

However, when the moment 0{ }i iU 
  are those associated with the Jacobi polynomials or 

the generalized Laguerre polynomials, then w  remains a suitable generalized weight 

function belonging to certain space of generalized function[6],[12] and [13] . 

 

12. APPLICATIONS TO PROBABILITY AND STATISTICS 
 

 The theory of generalized functions developed by Schwartz has advantage over the 

measure theory and singular integral treatments used to explain singular integrals 

occuring in probability and statistics. 

 

Probability Distributions 

 Let X  be a random variable taking real values in ( , )   and  t  be the 

probability distribution function. The probability distribution  t  is called discrete or 

continous according to whether t takes on discrete or continuous values. For example, 

  
   

2 2/21

2

t
t

t e dt
  



 
 

   

 

is well known Gaussian distribution which is continuous, and in this case 

  
   

2 2/21

2

td
t e

dt

  
  

 
 

 

 It should be noted that  t  is a function, not a functional. Therefore, the probability 

distribution and generalized functions refer to different mathematical objects. 
 

 Suppose that it is certain that the random variable  X  takes the value 0x . Then: 
 

  
  0t 0   for t x   

  
  0t 1   for t x    

 

 Thus,    0t H t  x    is the Heaviside step function. In this case the probability 
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density  t  does not exist in the ordinary sense. However, in the sense of generalized 

functions we have 
 

  
   0t t x      

 

 Similarly, if the random variable X  takes the values 1 2,  ,  ..., ,nx x x  with the  

probabilities 31,  ,... ,np p p  respectively, such that 1 1,n
ii p   then, the probability 

distribution  t  is given by: 

  
   

1

n

i i
i

t p H t x


     

 

and the probability density function  t  is the generalized function given by : 

  
   

1

n

i i
i

t p t x


     

 

EXAMPLE 

 The binomial probability distribution function  t  is defined by: 

     
0

          
n

k n k

k

n
t p q H t k

k





 
   

 
   

 

 The probability density function is the generalized functions. 
 

  

     
0

n
k n k

k

nd
t t p q t k

kdt





 
      

 
   

 

Characteristic Functions 

 Given a probability density  t , the characteristic function  x u defined as ; 
 

  
   iute tu tx d




    

 

i.e.,  x u  is the Fourier transform of  t . Since  t  is the derivative of the bounded 

function  t , the characteristic function in (12.1) exists in the generalized sense. 
 

 Conversely, given a characteristic function  x u  it follows from (12.1) that the 

probability density would be the inverse Fourier transform of  x u , i.e., 

  
      1 1

2

iutt F eu x dux u
 


  


   

 

 Distributional Fourier transform permits us to treat the discontinuous distributions and 

the casual distributions alongside of the continuous distributions. 

 

EXAMPLE 1 
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 Let us take   i uX u e  . Then, from (12.9) 
 

  
     1 i ut F e t        

 

EXAMPLE 2 

 For the Gaussian distribution the probability density function  t is given by; 

  
 

 
2

2

2
1

2

t

t e

 

 
 

  

 

 Therefore,  

  

    1 2 21
exp

2
x u F t i u u  

      
 

  

 

 For the special case of taken to be zero, we have 
 

  

  2 21
exp

2
x u u

 
   

 
  

and 

  

    
2

2

1

1 21
, .

2

t

t F x u e t

 
 

        
 

  

 

Probability Fields 

 Let   be the set of elementary events and IB be the class of the subets   of a such 

that 
 

i) The family IB contains the empty set   and the total set  . 

ii) If A IB , and   is a real number. Then A IB  ; and 

iii) If the sets 1 2,  ,...,  nA A A  belong to 1B, then their sum belongs to IB.  
 

 The probability measure P or IB has the following properties: 
 

i)   1P     

ii) If the sets of 1 2,  ,...,  ,nA A A are mutually disjoint, that is, if for ,j iA A i j     

then 

  

 
11

.i i
ii

P A P A
 



 
 

 
   

 

 The system  , ,IB P  is called the probability field. 
 

 A random variable x  is a mapping ;x IR  such that 
 

  
       1 , : , .X t w x w t IB         
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 We associated with the random variable X  a probability distribution function,  

 t  as follows: 
 

  
    1 , ( ( ) )t P x t p x w t       

 

 The probability distribution function  t  is locally integrable and hence generates a 

regular distribution   defined by; 
 

  
     , ;t t dt t D




         

 

 Therefore,  D  .  
 

 On the other hand, 
 

  
   , , , t t dt




               

   
     

 d t
t t t dt

dt

 




           

   
   0 t d t




      

   
,      

 

 So the probability density it  t  is the distributional derivative of the probability 

distribution  t . 
 

 Now we can define the classical quantities in the following way; 
 

1) The expectation value is: 

  
         ,E x t t t dt td t x w dp w

 

 


           

 

2) The variance is: 

         
2 22 .t E x t E x d t




         

   =       
2

x w E x dp w


    

 

3) The non-central mth moment is : 

       , .
mm mt t d t x w dp w



 
           

 

4) The central mth moment is : 

                ,
mm m

t E x t E x d t x w E x dp w


 
            

 

 In this notation we can define the characteristic function  x u  by: 

  
   itux u E e   
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,itue    

 

and the Inverse Fourier Transform by 
 

  
 ,itue x u    

 

 The foregoing concepts can be extended to a finite system of random variables 

1 2, ,... nX X X  This system may be considered as a mapping from the set   into the  

n-dimensional space nIR . Such a mapping is called an n-dimensional random variable, 

the probability distribution is now: 
 

  
        1 2 1 1 2 2, ,.... , ,....n n nt t t P x w t x w t X t t       

 

 The moments are given by the formula : 
 

  
1 2

1 2 ... n
n n

k k kk
nk IR IR

t d t t t d        

 

             
1 2

1 2 ....
n

k k k

nx w x w x w dP w
   

 

where 1 2 ... .nk k k k      
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ABSTRACT 
 

 Al-Saqabi et al. [4] defined a gamma-type function and its probability density 

function involving a confluent hypergeometirc function 1  of two variables [7], where 

   
       

 
1

, 0

, ; ; ,
! !

k l

x
k l k

l k l k

a b x
a b c x x

c k l



 


 

 

 
      , 1x


   

 

and discussed some of its statistical functions. We propose extension of 1 by 

introducing more parameters in following form: 
 

  , , ; , ;
-δ δb b+1 d d +1

a ,c ,e, f -αx ,βx
2 2 2 2

 
 
 

 

   

       

   , 0

1

2 2

1
! !

2 2

m n

m n

m n

n
m m

n n
m m

b b
a c x x

d d
e f m n





 



   
    

   


   
   
   

 , 1x


  . 

 

 We then define gamma-type function involving newly defined hypergeometric 

function of two variables and discuss its probability density function along with some of 

its associated statistical functions. We use inverse Mellon transform technique to derive 

closed form of gamma-type function and moment generating function. 

 

KEYWORDS 
 

 Gamma function; inverse Mellon transform; hypergeometric function of two 

variables; moment generating function; moments. 

 

1. INTRODUCTION 
 

 Kobayashi [11] considered a generalized gamma function, ( , )m u v . Galue et al. [8] 

generalized Kobayashi [11] gamma function by introducing Gauss hypergeometric 

function in it. Agarwal and Kalla [1] defined and studied a generalized gamma 

                                                 
*
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distribution. They used a modified form of the generalized gamma function of Kobayashi 

[11, 12]. Ghitany [9] discussed additional properties for gamma function defined by 

Agarwal and Kalla [1]. Al-Musallam and Kalla [2, 3] extended gamma function by 

involving Gauss hypergeometric function. Al-Musallam and Kalla [2, 3] and Kalla et al. 

[10] then discussed some of its properties. Provost et al. [14], Saboor and Ahmad [16] 

and Saboor et al. [17] discussed such generalizations. 
 

 The remainder of this section is devoted to the inverse Mellin transform technique, 

which is central to the derivation of the closed form of gamma-type function and the 

moment generating function of the gamma-type distribution.  
 

 If  f x  is a real piecewise smooth function that is defined and single valued almost 

everywhere for 0x   and such that  1

0

kx f x dx
 
  converges for some real value k , 

then    1

0

s
fM s x f x dx

    is the Mellin transform of  f x . Whenever  f x  is 

continuous, the corresponding the inverse Mellin transform is 
 

     
1

2

c i s
fc i

f x x M s ds
i

  

 



              (1.1) 

 

which together with  fM s ; constitute a transform pair. The path of integration in the 

complex plane is called the Bromwich path where Bromwich path is a part of integration 

in the complex plane running from c i  to c i  , where c  is a real positive number 

chosen so that the path lies to the right of all singularities of the analytic. Equation (1.1) 

determines  f x  uniquely if the Mellin transform is an analytic function of the complex 

variable s for  1 2c s c c    where 1c  and 2c  are real numbers and  s  denotes 

the real part of s . In the case of a continuous nonnegative random variable whose density 

function is  f x , the Mellin transform is its moment of order  1s   and the inverse 

Mellin transform yields  f x . Letting 

   
     
     

1 1

1 1

1

1

m n
j ij i

f q p
j ij m i n

b s a s
M s

b s a s

 

   

    


    

 

 
,      (1.2) 

 

where , , ,m n p q  are nonnegative integers such that 0 ,n p  1 ,m q   are positive 

number and , 1,..., ,ia i p jb , 1,...,j q , are complex number such that 

   1j ib v a      and , 0,1,2,...,v   1,...,j m , and 1,...,i n , the G -function 

can be defined as follows in terms of the inverse Mellin transform of  fM s : 

     
1,

,
1

,..., 1

,..., 2

p c im n s
p q fc i

q

a a
f x G x M s x ds

b b i

  

 

 
  
  
 

 ,       (1.3) 
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where  fM s  is as defined in (1.2) and the Bromwich path  ,c i c i     separates the 

points  js b   , 1,...,j m , 0,1,2,...  , the poles of  jb s  , 1,...,j m , from 

the points  1 is a   , 1,...,i n , 0,1,2,...,   the poles of  1 ia s   , 1,...,i n . 

Thus, one must have  
 

     1 1 1j m j i n iax b c in a      M R M R .         (1.4) 

 The integral (1.3) converges absolutely when  
1

0
2

m n p q    .    

 Moreover,  
 

  
1 1, ,

, ,
1 1

,..., 1 ,...,11

,..., 1 ,...,1

p qm n n m
p q q p

p p

a a b b
G x G

b b a ax

    
   
    
   

.        (1.5) 

 

 For example, when p q , the G -function is defined for 0 1x  , and the identity 

(1.5) can be used to evaluate the hypergeometric functions for 1x  . For the main 

properties of the G -function as well as applications to various disciplines, the reader is 

referred to Mathai [13].  

 

2. NEW   FUNCTION 
 

 We introduce an extension of hypergeometric function of two variables in following 

form: 
 

  , , ; , ;
-δ δb b+1 d d +1

a ,c ,e, f -αx ,βx
2 2 2 2

 
 
 

 

   

       

   , 0

1

2 2

1
! !

2 2

m n

m n n
m m

m n

n n
n m

b b
a c x x

d d
e f m n

 





   
    

   


   
   
   

  

   
     
   

   

0 0

1

2 2
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where 1x  . 

 

 Using Lemma 5, [15, p.22], (2.1) becomes  
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(2.1) becomes,  
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3. A GAMMA-TYPE FUNCTION 
 

 We define a following gamma-type function involving newly defined hypergeometric 

function of two variables  .   
 

   , , , , , ; , , ; ,H a b c d e f p       

   

1

0

px -δ δb b+1 d d +1
x e a, , ,c; , ,e, f;-αx ,βx dx

2 2 2 2


   

  
 

 ,    (3.1) 

where, 

         Re 0,Re 0,Re 1 0,p Arg x        . 

 

 Using (2.1), one has 
 

   , , , , , ; , , ; ,H a b c d e f p     
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Note that  
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n s pxx e dx ds
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 . 

 

Hence,  
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G
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.  (3.4) 

 

where       Re 0,Re 0,Re 0p n s      .  

 

 Equivalently, in light of (1.5), one has  
 

   , , , , , ; , , ; ,H a b c d e f p     
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 . 

(3.5) 
 

 Since by Slater’s theorem [13], on can express Meijer G-function as a sum of residues 

in terms of generalized hypergeometric functions 1p qF   
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where ,or  and z 1p q p q   , and for the poles to be distinct no pair among 

, 1,2,.....,jb j m , may differ by an integer or zero. The asterisks in (3.6) remind us to 

ignore the contribution with index j h . For 2,m  3,n p  4,q  1 1 ,a a n  
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  , we have from 

(3.6). 
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After some simple steps, we get 
 

  , , , , , ; , , ; ,H a b c d e f p     

  

         

   /
0

/ //1

!

n

n n n

n
n n

a c p

e f np



 


     
  

  

   33

1 1
, , ; 1, , ;
2 2 2 2

b b d d
F a n n p

   
      

 
 

NCBA&E



Chapter 2: Mathematical Statistics 178 

 

 

     

   

      
    

/

0

2 / / 2 /

! 2 /

n

n n

n
n n

a n n b na cd

b e f n a n d n

 




            


      
  

3 3

1 1
2 , , ; , , 1;

2 2 2 2 2 2

b b d d
F a n n n n n n p

      
                 

      
. 

(3.7) 
 

3.1 Particular Cases 
 

 For 0  , we get from (3.2) and (3.7) 
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  For c f ,  
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.     (3.9) 

 

  R.H.S of (3.9) is generalized gamma function considered by Al-Zamel [5]. 

 

 For 0  , we obtain from (3.2) and (3.7) 
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 If we set b d in (3.10) to get 
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.     (3.11) 

 

 If we put 0   , 1/p k  and k   in (3.1) then we obtain  
 

   1 /

0

k
x k

kx e dx
      , 

 

which is k-gamma function [6].  

 

3.2 The Incomplete Gamma-Type Function 
 

 The incomplete bivariate gamma-type function is defined as 
 

  
1

0

x
pu -δ δ

, , ; , ;
b b+1 d d +1

u e a ,c ,e, f -αu ,βu du
2 2 2 2

   
 
 

   

 

    0 , , , , , ; , , ; ,xH a b c d e f p     ,            (3.12) 
 

and the complimentary incomplete gamma-type function is defined as 
 

  1 pu -δ δ

x

, , ; , ;
b b+1 d d +1

u e a ,c ,e, f -αu ,βu du
2 2 2 2


   

 
 

  

    , , , , , ; , , ; ,xH a b c d e f p     ,            (3.13)  

 

4. A GAMMA-TYPE PROBABILITY FUNCTION USING A NEWLY DEFINED 

HYPER GEOMETRIC FUNCTION OF TWO VARIABLES 
 

 We define the following gamma-type probability density function involving the 

newly defined hyper geometric function of two variables specified by (2.1): 
 

    1 p x
, , ; , ;

-δ δb b+1 d d +1
f x C x e a ,c ,e, f -αx ,βx

2 2 2 2

   
  

 
, 0x  ,  (4.1) 

 

where  1 , , , , , ; , , ; ,C H a b c d e f p      ,  1 0, 0, , 0, .p p Arg         
 

 As   0f x  ,  
0

lim 0
x

f x


 ;  lim 0
x

f x


  and  
0

1f x dx


 ,  f x defines a bona 

fide probability density function. 
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Fig. 4.1: The gamma-type pdf. a = 1.3; b = 0.6; c = 2.7;  = 0.4; d = 3.4;  

e = 2.4; h = 4.6; g = 3.4; f = 1.7;  = 0.3; p = 2.2;  = 1.2;

4.2(solid line);  5.2(dotted line); 6.2 (thick line)      .    
 

 
Fig. 4.2: The gamma-type pdf. a = 1.3; b = 0.6; c = 2.7;  = 4.1; d = 3.4;  

e = 2.4; h = 4.6; g = 3.4; f = 1.7;  = 0.3;  = 0.4;  = 1.2;

2.2(solid line);  3.2(dotted line); 4.2 (thick line)p p p   . 
 

 
Fig. 4.3: The gamma-type pdf. a = 1.3; b = 0.6; c = 2.7;  = 4.2; d = 3.4;  

e = 2.4; h = 4.6; g = 3.4; f = 1.7;  = 0.3;  = 0.4; p = 2.2;

1.2(solid line);  2.2(dotted line); 3.2 (thick line)      . 
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 Figure 4.1, Figure 4.2 and Figure 4.3 illustrate how the parameters , p  and   effect 

the gamma-type distribution.  
 

4.1 Particular Cases of Probability Function 
 

 I. If we set 0  and c f , (4.1) becomes, 

    
 

 
 

1 1

2 1

/ 1

//

δp x ; ;

; ; / p

F a e βxp x e
f x

F a, e β

   

 




  
,  

  which is modified form of pdf defined by Al-Zamel [5]. 
 

 II. If we set 0 
 
and b d , (4.1) becomes, 

    
 1

1 0
p x -δx e F a;-;- x

f x

  



, 

  where,  
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5. STATISTICAL FUNCTIONS 
 

 Closed form representations of the moment generating function of a gamma-type 

random variable which is denoted by X , as well as the associated moments are provided 

in this section. 
 

The Moment Generating Function of X  
 

 The moment generating function for density function is defined as 

       
0

t X t x
XM t E e e f x dx



    

 

 The inverse Mellin transform technique will be used to derive the moment generating 

function of the gamma-type distribution. Let X  be a random variable whose pdf is 

specified by (4.1).  
 

 The moment generating function with respect to the distribution specified by (4.1), is 

given by 
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 Letting 1  and using (3.8), (5.1) becomes 
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where,    Re Rep t ,    Re Re s  . 
 

Hence,  
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Equivalently, in light of (1.5), one has  
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The Moments 
 

 The thr  moment about the origin of a continuous real random variables X  with 

density function,  f x
 
defined by 

   
0

r
ru x f x dx



   . 

 

 For the density function defined in (4.1), we have  
 

  
 , , , , , ; , , ; ,r CH a b c d e f p r      ,           (5.3)  

 

where  1 , , , , , ; , , ; ,C H a b c d e f p      .           
 

Variance  
 

 The variance for the distribution of X  is given by 
 

  
    , , , , , ; , , ; , 2V X C H a b c d e f p    

 

       
 2 , , , , , ; , , ; , 1CH a b c d e f p     ,       (5.4) 

 

The Factorial Moments 
 

 Factorial moments for probability density function defined in (4.1) are as follows 
 

  
     1 2 ... 1E X X X X i     
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1 2 1...i i i

iE X X X X 
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   ,             (5.5) 

 

where k  is integer, 0k  ; which satisfy the first identity 
 

 Now,  
 

       1 2 ... 1E X X X X i     
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k
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         .      (5.6)  

 

The Negative Moments  
 

 Negative moments is defined as 
 

   
0

1 1
r r

E f x dx
X X

  
  

  
 ,              (5.7) 

 

using (5.5), we derive negative moments for density function defined in (4.1) 
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ABSTRACT 
 

 A relationship between the inverse Gaussian density function and the density function 

introduced by Chaudhry and Ahmad is exploited to find some characterizations of the 

new density function. 

 

1. INTRODUCTION 
 

 Chaudhry and Ahmad (1992) have recently introduced a new probability density 

function (pdf) 
 

     
2

12 exp 0, 0, 0f x x x x  
            

      (1) 

 

found useful in size modeling. 
 

 The mode of the function in (1) is  
1/4

0 /    . The substitution of 4
0  

 
in (1) 

leads to 
 

           2 22 2
0 0 0 02 exp 2 exp ,f x x x

       
  

  

               00, 0, 0.x        (2) 
 

Here, 0  
is the location parameter and 2

0  is the shape parameter. 
 

 It may be noted that if a random variable X  follows the inverse Gaussian distribution 

(see Johnson and Kotz, 1970), then the pdf of the 1
X

 will be the probability 

distribution (1) (see Chaudhry and Ahmad (1992)). In this paper we exploit this 

relationship of the new pdf with the inverse Gaussian pdf to find some of its 

characterizations. 

 

2. CHARACTERIZATIONS 
 

 Some characterizations of the new probability function are stated in the following 

theorems. 
 

  

                                                 
*
Published in Pak. J. Statist. (1993), Vol. 9(1)A. 
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Theorem 1.  
 

 Suppose        
1

2 4 2 2, , andE X E X E X E X


   
 

 exist and are different from 

zero. Then the necessary and sufficient condition that the variates Y  and Z  follow the 

probability distribution (1) is that 2Y X  and  
1

2 2 1Z X n X


   are 

independently distributed. 

 

Theorem 2.  
 

 Let 0 1 2, andX X X  be three independent random variables and let 
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1 1 0

1

2
W X X    

 

   2 2
2 2 1

1

2
W X X    

 

 Then the necessary and sufficient condition that 0 1 2,  andX X X  be identical new pdf 

(1) random variables is that  2,  IW W  has the joint probability distribution 
 

   
  

      

2 2
1 1 2 2

1 2 1
2 22

2 2 2
1 2 1 1 2 2

1 1
2

,

1 1 1 1 1

w w w w

g w w

w w w w w w

   




 
        

 

  

                 1 2, .w w        
 

Proof:  
 

 The proofs of the theorems (1) and (2) are involved. However, they can be traced 

following Khatri (1962) and the fact that the probability distribution of 21/ X  is inverse 

Gaussian when X follows the pdf (I) (see Johnson and Katz, 1970 and Chaudhry and 

Ahmad, 1992). 
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ABSTRACT 
 

 In this paper, a size-biased Geeta distribution (SBGET) is defined. Recurrence 

relations for central moments and the moments about origin are given. Different 

estimation methods for the parameters of the model are also discussed. R- Software has 

been used for making a comparison among the three different estimation methods and 

with the simple Geeta distribution. 
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1. INTRODUCTION 
 

 The weighted distributions arise when the observations generated from a stochastic 

process are not given equal chance of being recorded; instead they are recorded according 

to some weight function. When the weight function depends on the lengths of the units of 

interest, the resulting distribution is called length biased. More generally, when the 

sampling mechanism selects units with probability proportional to some measure of the 

unit size, resulting distribution is called size-biased. Size-biased distributions are a 

special case of the more general form known as weighted distributions. First introduced 

by Fisher (1934) to model ascertainment bias, these were later formalized in a unifying 

theory by Rao (1965). These distributions arise in practice when observations from a 

sample are recorded with unequal probability. 
 

 If the random variable X  has distribution  ;f x  , with unknown parameter  , then 

the corresponding size-biased distribution is of the form 
 

   
 * ;

;

c

c

x f x
f x


 


,               (1.1) 

 

   ;c
c x f x dx     for continuous case 

and 

    = ;c
c x f x     for discrete case.           (1.2) 

  

                                                 
*
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 When 1 and 2c  , we get the simple size-biased and area-biased distributions 

respectively.  
 

 In this paper, a size-biased Geeta distribution (SBGET) is defined. Recurrence 

relations for central moments and the moments about origin are obtained. The estimates 

have been obtained by employing the moments, maximum likelihood and Bayesian 

method of estimation. In order to make a comparative analysis among the three 

estimation methods for the parameter of the size-biased Geeta distribution (SBGET), one 

of the standard software packages R-Software is used which is meant for data analysis 

and graphics. Also, Comparison is made with the simple Geeta distribution. 

 

2. GEETA DISTRIBUTION 
 

 Consul (1990a) defined the Geeta distribution over the set of all positive integers with 

the probability mass function as 
 

  
1  11

[ ] (1 )
  

;  1,2
1

x x xx
P X x x

xx

    
    

  



 

            11      and 0 1   .    (2.1)  
 

 The Geeta distribution has a maximum at 1x   and is L-shaped for all values of  

  and  . It may have a short tail or a long tail depending upon the values of   and  . 

Its mean and variance are given by 
 

  1(1 )(1 )                     (2.2) 
 

  
      

 

2

2 3

1 1 1 1

1

     
 


 

 

  2 3 1( 1) (1 )(1 ) ( 1)( 1)( 1) .             
 

 The family of Geeta probability models belongs to the classes of the modified power 

series distributions (MPSD) and the Lagrangian series distributions. Consul (1990b) also 

expressed it as a location-parameter probability distribution given below: 
 

  
 

 
1

1 ;  1,2
1  11 1

[ ]
    

,3
 1 1 1

.

x x x
x

P X x
x

x
x

  
        

      
         

    (2.3) 

 

3. SIZE-BIASED GEETA DISTRIBUTION (SBGET) 
 

 A size-biased Geeta distribution (SBGET) is obtained by applying the weights ,cx  

where 1c   to the Geeta distribution (2.1). 
 

 We have from (2.1) and (2.2) 

  1

1

( ) (1 )(1 )
x

x P X x






     . 
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 This gives the size-biased Geeta distribution (SBGET) as  
 

  
1 1

2

  2
[ ] (1 ) (1 )

  1

x x xx
P X x

x

     
     

 
 ; x =1,2…  

            11      and 0 1       (3.1) 

 

3.1 Moments of SBGET 

 The r
th

 moment ( )r s  of SBGET (3.1) about origin is obtained as  
 

  2
1

( ) ( ) [ ]r r
r

x

s E X x P X x




    ; r =1,2…   

 

  ( )r s
1 1

1

  2
(1 ) (1 )

  1

r x x x

x

x
x

x


   



  
    

 
 .       (3.2)  

 

 Obviously  0 s = 1 and for r  1 
 

  
  1 1 1

1

1  21
( ) (1 )

 1(1 )

r x x x
r

x

x
s x

xx


    



   
    

  
  

 

    
  1

1

1
[ ]

(1 )

r

x

x P X x







 


  

 

   
 

1

1

(1 )
r rs 


   


,                (3.3) 

 

where 1r


 
is the (r + 1)

th
 moments about origin of Geeta distribution (2.1).  

 

 The moments of SBGET can be obtained by using relation (3.3) as  
 

   1 s = Mean 
 
 

2

2

1 2

1

   



,            (3.4) 

 

and similarly Variance of SBGET (3.1) is given as 
 

   
   

 
2 4

2 1 1

1
s

  
 


.               (3.5)  

 

 The higher moments of SBGET (3.1) about origin can also be obtained if the higher 

moments of Geeta distribution are known. 

 

4. RECURRENCE RELATIONS FOR THE MOMENTS ABOUT  

ORIGIN OF SIZE-BIASED GEETA DISTRIBUTION 
 

 The recurrence relation can be obtained by differentiating (3.2) as 
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 1 1

1

 2
(1 )(1 )

1

r r x x x

x

s x
x

x


   



      
         
   

 

   
    

 
1 1

1

1 1 1  2
(1 ) (1 )

   1 1

r x x x

x

x x xx
x

x


   



        
      

      
    

     
1 1

1

  2
(1 )

  1

r x x x

x

x
x

x


   



  
   

 
  

 

   
 

 
1 1 1

1

1   2
(1 ) (1 )

   11

r x x x

x

x
x

x


    



   
    

   
   

     
 

 
1 1

1

2 1   2
(1 ) (1 )

   11

r x x x

x

x
x

x


   



   
    

   
  

     
1 1

1

  2
(1 )

  1

r x x x

x

x
x

x


   



  
   

 
  

 

     
 

 
   1

2 1(1 )

(1 ) 1 (1 )
r r rs s s

 
       

    
 

 

   
 

 
 

 
 1 2

2 1(1 ) (1 )

(1 ) 1(1 )

r
r r r

s
s s s

     
       

  
.     (4.1) 

 

 The above recurrence relation can be used for getting the higher moments of the 

model (3.1) 

 

4.1 Recurrence Relations for Central Moments of Size-Biased Geeta Distribution 

 We define the k-th central moment k  of size-biased Geeta distribution (SBGET) as 
 

    1 1

1

  2
(1 ) (1 )

  1

k x x x
k

x

x
x

x


   



  
      

 
 . 

 

 Differentiating with respect to  , we get 
 

    1 1

1

2 
(1 )(1 )

1

kx x xk

x

x
x

x


   



                
  

 

  
 

   

 

 

 

 1 1

1 1 2 1

1 1 1 1

k kk
k kk 

      
      

        
. 

 

 The above expression gives the recurrence formula 
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 1 1

1 1

1 1

k
k k

k
 

    
   

   
 

     
      

 

2

2

2 1 1 1 1

1
k

       
  
  

. 

 

 The above recurrence relation can be used for getting the higher central moments of 

the model (3.1). 

 

5. ESTIMATION METHODS 
 

 In this section, we discuss the various estimation methods for size-biased Geeta 

distribution and verify their efficiencies. 

 

5.1 Method of Moments 

  In the method of moments replacing the population mean and variance by the 

corresponding sample mean and variance, we have 
 

   
 
 

2

2

1 2

1
x

   



                 (5.1) 

and   

  
   

 

2

4

2 1 1

1
s

  



.                (5.2) 

 

On simplifying (5.1), we get 
 

     2 1 2 1 1 0x x x           . 
 

 Solving above equation for  , we get the estimate of   in terms of x  and  . 

Substituting that value in equation (5.2) and using the iterative method with the help of 

R-software, we get the estimate for  . 

 

5.2 Method of Maximum Likelihood Estimation 

 The likelihood function of SBGET (3.1) is given as  
 

        1 1

1

   2
; ,   1 1

    1

n
n n

i
i ii

i i

x nn n x x ni

i i

x
L x

x


 


  



          
 

   

 

    ; ,L x      1 1
n y y ny nC

      .          (5.3)  
 

Where 
1

  and   C
n

i
i

y x


   
1

  2

  1

n
i

i i

x

x

  
 

 
  

 

 The log likelihood function is given as 
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  Log L=  
1

2
log log

  1

n
i

i i

x
nx n

x

  
   

 
  

              log 1 log 1nx nx n n           (5.4) 
 

 The likelihood equations are given as 
 

  
 

 
log

0
1 1

nx nL nx nx n n     
    

    
        (5.5) 

 

   
 

log
log log 1 0

1

L n
nx nx

 
    

 
.         (5.6) 

 

 For the numerical solution of above two likelihood equations, we operated with the 

iterative method of (NLM) function in R- software and the estimates of  and    are 

reflected in Tables 1.1 and 1.2.  

 

5.3 Bayesian Estimation of Parameter of Size- Biased Geeta Distribution (SBGET) 

 Since 0 1   , therefore we assume that prior information about α when   is 

known from beta distribution as  
 

   Thus  
 

 

11 1
;  0 1 0,  ,

,
0.

ba

f
b

b
a

a
B

 
             (5.7)  

 

 The posterior distribution from (5.3) and (5.7) can be written as 
 

    /  y 
   

   

11

1
11

0

1 1

1 1

n y y b ny a n

n y y b ny a n d

      

      

  

   

.  

 

 The Bayes estimator of   is given as 
 

   
1

0

ˆ  /y  d      

 

  ̂

   

   

1
1

0

1
11

0

1  1

1 1

n y y b ny a n

n y y b ny a n

d

d

     

      

   



   





,         (5.8) 

 

where     
1

1

0

1  1
n y y b ny a n d

        
 

    

       2
11 F , 1, 2 1,y a n y b y n n y a n y a b n                      (5.9)  
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and     
1

11

0

1  1
n y y b ny a n d

         
 

   

=      2
1  F , , 2 ,y a n y b y n n y a n y a b n                .  (5.10)  

 

 Putting these values in equation in (5.8), the Bayes estimator of   is obtained as 
 

  
   

 

2
1

2
1

   F , 1, 2 1,
ˆ

   F , , 2 ,

y a n n y a n y a b n

n y a n y a b n

           
 

       
.      (5.11) 

 

6. COMPUTER SIMULATION AND CONCLUSIONS 
 

 It is very difficult to compare the theoretical performances of different estimators 

proposed in the previous section. Therefore, we perform extensive simulations to compare 

the performances of the different methods of estimation mainly with respect to their biases 

and mean squared errors (MSE’s), for different sample sizes and of different parametric 

values. Regarding the choice of values of (a, b) in the Bayes estimator (5.11), there was no 

information about their values except that they are real and positive numbers. Therefore 25 

combinations of values of (a, b) were considered for a, b=1, 2,3,4,5 and those values of a, b 

were selected for which the Bayes estimator ̂  has minimum variance. It was found that 

for a=b=5, the Bayes estimator has minimum variance and 2  values between the 

simulated sample frequencies and the estimated Bayes frequencies were the least. Data 

given in tables (1.1) and (1.2) are the zero-truncated data of P.Garman (1923) and Student 

(1907) on counts of the number of European red mites on apple leaves and yeast blood cell 

counts observed per square. In table-1.1, comparison is made between the different methods 

of estimation for the parameter of size-biased Geeta distribution and it was observed that 

the Bayes estimator provides us the better fit against MLE or moments estimator. Also, 

table-1.2 reveals that the size-biased Geeta distribution provides a better result in 

comparison to simple Geeta distribution. 
 

Table 1.1 

No. of mites 

per leaf 

Leaves 

Observed 

Expected frequency 

Mom MLE Bayes 

1 
2 
3 
4 
5 
6 
7 

≥ 8 

38 
17 
10 
9 
3 
2 
1 
0 

37.96 
16.34 
9.43 
9.10 
2.46 
1.96 
1.14 
1.61 

37.95 
16.56 
9.53 
9.15 
2.73 
1.97 
0.98 
1.13 

37.98 
16.92 
9.83 
8.97 
2.95 
2.01 
0.99 
0.35 

Total 80 80.00 80.00 80.00 

  

  
 

0.02 
 

2.3 

0.24 
 

2.53 

0.56 
 

2.0 

2   0.254 0.057 0.017 
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Table 1.2 

No. of cells 

per square 

Observed No. 

of squares 

Expected frequency 

GET SBGET 

1 
2 
3 
4 
5 

 6 

128 
37 
18 
3 
1 
0 

126.58 
36.12 
17.34 
2.58 
1.34 
3.04 

127.34 
36.92 
17.62 
2.93 
0.97 
1.22 

Total 187 187.00 187.00 

  

  
 

0.01 
 

2.58 

0.43 
 

1.98 

2   0.255 0.028 
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ABSTRACT 
 

 In this paper we have derived the distribution of weighted mean of two correlation 

coefficients 1r  and 2r  and obtained its moments using Bessel function and confluent 

hyper geometric series function. 

 

1. INTRODUCTION 
 

 Correlation was explored much before the 20
th

 century. Recently Paul (1988, 1988 a) 

discussed the estimation and testing the significance of a common correlation coefficient. 

Bhatti (1990) developed the moment generating function of the mean distribution of 

correlation coefficients and computed the upper tail area but did not provide its moments 

(see Aboukalam, 1997). 
 

 In this paper we have derived the distribution of weighted mean of two correlation 

coefficients 1r  and 2r  
and obtained its moments using Bessel function and confluent 

hyper geometric function. 

 

2. WEIGHTED MEAN OF TWO CORRELATION  

COEFFICIENTS 1r  AND 2r  

 

 By considering the two independent sample correlation coefficients 1r  and 2r  with 

arbitrary weights 1a  and 2a , the moment generating function (mgf) of the weighted 

mean is defined as 
 

( )
rw

t , where 1 1 2 2

1 2
w

a r a r
r

a a





. 

 

 The m.g.f. of the sum of two independent random variables is  
 

  
 

   
1 21 2( ) .

rw
r rt c t c t    , 

 

where 1 2
1 2

1 2 1 2

      c
a a

c and
a a a a

   
    

    
. 

 

 Following Bhatti (1990) the characteristic function of the sample correlation 

coefficient (r) in terms of Bessel function, is 
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           1 1 2 2( ) 1 2 1 2
rw

t c t J c t c t J c t
  

 
        
      

    

 

           
2 2 2

1 2 1 21 2 c c t J c t J c t
  

       . 

 

 Using the relation (Slater, 1960),  
 

   
 

 
 1 1

2
1 2;2 1;2

1

ite t
J t F it



     
  

, 

 

 We have  
 

  
     1 2

1 1 1 1 1 2( )  1 2;2 1;2   1 2;2 1;2 ,
it c c

t e F c it F c it
 

       
 

replacing it = y 
 

  
     1 2

1 1 1 1 1 2( )  1 2;2 1;2   1 2;2 1;2
y c c

y e F c y F c y
 

       
 

 The first derivative of the confluent hypergeometric series (Slater, 1960) is  
 

     1 1 1 1 ; ;  1; 1;
d a

F a b t F a b t
dt b
      . 

 

 The mean (μ) is  
 

   μ1 = 0 
 

 The second derivative of ( )t  at t = 0 is 
 

  

     

 

 

2

1 2 1 2 1 1 2 20

1 1 2 1 2

2 1 2 1 2

( ) c c c

3 2
          c

1

3 2
          c .

1

t
t c c c c c

c c c c

c c c c


      

  
     

  

  
     

  

 

 

 or 
 

  
 

 2 2
2 1 2

1

2 1
c c  

 
. 

 

 Replacing  3 2n    , 1
1

1 2

 
a

c
a a

 
  

 
 and 2

2
1 2

c
a

a a

 
  

 
, we have, as 1 = 0 

and  
 

  
 

2 2
1 2

2 2

1 2

1

1

a a

n a a

 
  

   

. 
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 Similarly 3 is 
 

  

        

     

3 2 2 2
3 1 2 1 2 1 2 1 2 1 2

3 3
1 2 1 2 1 2 1 2 1 2

3 2
c 3 c c 3 c c

1

3 2 5 2
3 c 6 c c .
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c c c c c
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3 3
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3 2 5 2 3 2 5 2
=c 2 3 2 3 0
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 Hence 3 0   
 

 For fourth moment 
( )

( )
iv
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 ( ) 4 4
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 The skewness and kurtosis are 
 

  1 0   
 

and  

  
 

  

2
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1 2

2 2
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ABSTRACT 
 

 In this paper, a size-biased generalized Poisson distribution is defined. Moments of 

the distribution are obtained. Estimation for the parameter of the distribution is studied by 

employing different estimation techniques. R-Software has been used for the purpose of 

comparison among different estimation methods. Also, efficiency of the model is studied 

by AIC, BIC and chi-square techniques. 
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1. INTRODUCTION 
 

 The generalized Poisson distributions (GPDs) arise when the populations are 

Poissonian type having unequal mean and variance. Consul and Jain (1973a) are the early 

workers who derived a class of discrete distributions of the Poissonian type. The different 

aspects of these distributions have been studied by Consul and Jain (1973b), Jain (1975), 

Consul and Shoukri (1985, 1988), Consul (1986), Famoye and Lee (1992), Lee and 

Famoye (1996), Tuenter (2000), Sheth (1998), Shanumugam (1984) and Nandi et al 

(1999). The detailed review works on the book authored by Consul (1989) have been 

done by Kemp (1992), Olkin (1992) and Shimzu (1992).  
 

 The probability function of the generalized Poisson distribution (GPD) is defined for 

1 0 
 
and 2 1 

 
with the probability function as 

 

  
   

1

1 1 2 1 2

1 ,  0,1
x

2
p

(
!

,
e

)

x

x
x x

P X x
x


       


 

       (1.1) 

 

 For 2 0  , the distribution (1.1) reduces to Poisson distribution. The model (1.1) has 

been found to be a member of the Consul and Shenton’s (1972) family of Lagrangian 

distributions. 
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2.  ZERO-TRUNCATED GENERALIZED POISSON  

DISTRIBUTION (TGPD) 
 

 Shoukri and Consul (1989) redefined the distribution (1.1) by taking 1    and 

2  
 
as 

  
   

1

2

1 exp 1
( )

!

x xx x
P X x

x


     

  ;
1

0,1,2, , 0,0 .x      


 (2.1) 

 

 The distribution (2.1) can be truncated at x = 0 and is defined with the probability 

function as 

  
  

1
1

3

(1 ) exp (1 ) 1
( ;)

!
 

x xx x e
P X x

x


     

   

            1,  2..
1

0, 0, . x     


    (2.2) 

 

 For 0  , the distributions (2.1) and (2.2) reduce to Poisson distribution and David 

and Johnson’s (1952) truncated Poisson distribution. The different aspects of the 

distribution (2.2) have been studied by Consul and Famoye (1989), Jani and Shah (1981), 

Hassan and Mir (2007), Hassan et al (2007). A brief list of authors and their works can be 

seen in Consul (1989), Johnson, Kotz and Kemp (2005) and Consul and Famoye (2006). 
 

 In this paper, we have made an attempt to obtain the Bayes’ estimator of size-biased 

generalized Poisson distribution (SBGPD) for one parameter   when other parameter   

is assumed to be known. Furthermore, recurrence relations for the moments of the 

parameter are also obtained. In order to make comparative analysis among different 

estimation methods for the parameter of the size-biased generalized Poisson distribution 

(SBGPD), one of the standard software packages R- software is used. Also, the efficiency 

of the model is compared with truncated Poisson and truncated generalized Poisson 

distributions. 

 

3. SIZE-BIASED GENERALIZED POISSON DISTRIBUTION (SBGPD) 
 

 Rao (1965) has discussed a situation where an event that occurs has a certain 

probability of being recorded (or included in the sample). Let X  denote an integer-

valued random variable with the probability function ( , )P x 
 
and suppose that when 

X x  occurs, the probability of recording it is ( , )w x 
 
depending on the observed value 

x  and the unknown value of the parameter  . The probability function of the resulting 

random variable wX  is 
 

  
 

( ) ( , )
( )

( )

w w x P x
P X x

E w X


  . 

 

 If the weight function  1 2( )w x x    , then we obtain the Jain’s (1975) linear 

function Poisson distribution with the probability function as 
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    2 1 2 1 2

4

1 exp
( ) ; 0,1,2,.....

!

x
x x

P X x x
x

         
      (3.1) 

 

 Mir and Ahmad(2009) defined the size-biased generalized Poisson distribution as 
 

  

    

 

1

2 1 2 1 2

5

1 exp
( ) ; 1,2,...

1 !

x
x x

P X x x
x


         

  


1 20,  1.     

                       (3.2) 
 

 At 2 0  , we get the size-biased Poisson distribution. 
 

 For the mathematical tractability, the modified form of the model (3.2) can be 

obtained by putting 1  
 
and 2  

 
as 

 

  

     

 

11

6

1 1 exp 1
( ) ;

1 !

xx x x
P X x

x

       
 


 

             
1

0,0 2 .1, .x     


   (3.3) 

 

 Mishra and Singh (1993) also studied the distribution (3.2). 

 

3.1 Recurrence Relation for the Moments of SBGPD 
 

 The rth moment of the size-biased GPD is given by 
 

  
 

 2 1
1

01

1
( )r r

x

E X x P X x







 


 ,  

 

where 1( )P X x
 
is the probability function of GPD. 

 

 Thus, knowing the moments of GPD we find out the moments of SBGPD. 
 

 Using above relation, the mean and variance of SBGPD are 
 

  
   

1
1 2

2 2

1
,

1 1


  

 
              (3.4) 

 

  
   

2 1
2 4 3

2 2

2
.

1 1

 
  

 
              (3.5) 

 

3.2 Graphical Representation of Size-Biased Generalized Poisson Distribution 

(SBGPD) 
 

 We present below some probability functions of SBGPD in figures 1,2,3,4 and 5 

considering various values of 1 and 2 . 
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 In figure 1, for each small value of 1 , the SBGPD curve changes from L-shaped to 

symmetric and with the considerable change in the value of 1 , it becomes positively 

skewed. In figures 2, 3 and 4, we consider 2 0.09,0.1,0.5  . For each small value of 1 , 

the SBGPD curve is unimodal and extremely positively skewed. But it gradually changes 

to bell-shaped as the value of 1  and 2  
increase. In figure 5, we take 1 5.0 

 
and the 

different values of 2 . It is observed that the variation in the values of 2  alters the 

shape of the distribution substantially. For larger values of 2 , the bell-shaped form 

becomes more flattened. 

 

  

Figure 1- Size-Biased Generalized Poisson 

Distribution (Lambda2=0.05)
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Figure 2-Size-Biased Generalized Poisson 

Distribution (Lambda2=0.09)
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Figure 3- Size-Biased Generalized Poisson 

Distribution (Lambda2=0.1)
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Figure 4-Size-Biased Generalized Poisson 

Distribution( Lambda2=0.5)
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Figure5- Size-Biased Generalized Poisson 

Distribution(Lambda1=5.0)
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4. ESTIMATION OF SIZE-BIASED POISSON DISTRIBUTION 
 

 The estimation of the parameters of the GPD model have been studied by Consul and 

Shoukri (1984), Consul and Famoye (1988), Bowman and Shenton (1985) and Famoye and 

Consul (1990). In this section, the estimation of the parameter of SBGPD is discussed by 

various estimation techniques and their efficiencies are discussed in section 6. 

 

4.1 Moment Estimation for Size-Biased Generalized Poisson Distribution 
 

 By letting 21   , in equations (3.4) and (3.5), the mean and variance of SBGPD 

(3.2) can be expressed as 
 

  

 1
1 2

1 
 


                 (4.1) 

 

  

  1

2 4

2 1     
 


               (4.2) 

 

 This gives an equation in θ as 
 

  
4 2

2 1 2 1 0                      (4.3) 
 

 Replacing 1   and 2  by the corresponding sample values x  and 2S respectively, 

we get 
 

  
2 4 2 2 1 0S x                     (4.4) 

 

 It is a polynomial of degree four in   and can be solved using the Newton-Raphson 

method to estimate 2 . An estimate of 1  is then obtained as 

  

 2

1

ˆ 1
ˆ .

ˆ

x 
 


                 (4.5) 

 

4.2 Maximum Likelihood Estimation 
 

 The log likelihood function of a sample size n from (3.1) is 
 

  

   2 1 2 1 2
1 1 1

log log 1 log log( 1).
n n n

i i i
i i i

L n x n x n x x
  

   
              

   
    

                       (4.6) 
 

 The log likelihood equations are given as 
 

  

 

 11 1 2

1log
0

n
i

i i

xL
n

x


  

   
              (4.7) 

  
 

 

 1 12 2 1 2

1log
0

1

n n
i i

i
i ii

x xL n
x

x 

 
   

    
           (4.8) 

 

 By solving the above equations, we get the maximum likelihood estimates. 
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4.3 Bayes’ Method of Estimation 
 

 Let 1 2, , nx x x
 
be a random sample from size-biased generalized Poisson distribution 

(3.3), the corresponding likelihood function is given as 
 

  
   exp 1

ny nL K n y                   (4.9) 

 

where 
 

 1

1

1

n
i

i i

x
K

x

 
  

  
 ,

1

.
n

i
i

y x


   

 

 We assume that before the observations were made, our knowledge about   was only 

vague. Consequently, the non-informative vague prior of  , ( )g   proportional to 
1

  
is 

applicable to a good approximation. 
 

 Thus  

  
1

( ) ,   0g    


                (4.10) 

 

 The posterior distribution from (4.9) and (4.10) is given as 
 

  0

 ( )
( / )

L g( ) d

L g
y




 

 





 

    

   

   

1

1

0

 exp 1
.

 exp 1

ny n

ny n

n y

n y

 


 

     


     

 

 

 Under squared error loss function, Bayes’ estimator of   is given as 
 

  ̂ 

   

   

0

1

0

 exp 1

.

 exp 1

ny n

ny n

n y d

n y d





 

      

      





         (4.11) 

where 

  

   
0

 1
nn yy n e d


      

   
       

 

1 1
11 1  1, 2,

n y
y y n F y n y z

n

 
         


 

 

            

     

 

1
1

1

1  , ,
,

n

y

y F n y z

n y


    



  

(4.12) 
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and 

  

   1

0

 1
nn yy n e d


      

       
 

     

 

1 1
1 1 , 1,  , 1,

.

n y n

y

y y n F y n y z y F n y z

n n y


           

 
  

 

(4.13) 

where 
 n y

z
 




 

 

 Substituting the values from equations (4.12) and (4.13) in equation (4.11), we get the 

Bayes’ estimator of  . 

 

5. NUMERICAL EXPERIMENTS AND DISCUSSIONS 
 

 It is very difficult to compare the theoretical performances of different estimators 

proposed in the previous section. Therefore, we perform extensive simulations to 

compare the performances of the different methods of estimation mainly with respect to 

their biases and mean squared errors (MSE’s), for different sample sizes and of different 

parametric values. 
 

5.1 Average Relative Estimates and Average Relative Mean Squared Errors of  . 
 

 We consider sample sizes and different values of  . We take n  15, 20, 30, 50,100 

and   0.2, 0.5, 1.0, 2.0. For each combination of n and  , we generate a sample of size 

n from SBGPD (3.1) and estimate   by different methods. We report the average values 

of 
̂ 

 
 

 and also the corresponding average MSE’s. All the reported results are based on 

10,000 replications. The results are presented in table-1.1. Here we report the average 

values of 
̂ 

 
 

 for each method and the corresponding MSE’s are reported within 

brackets. From the table it is immediate that the average biases and the average MSE’s 

decrease as sample size increases. It indicates that all the methods provide asymptotically 

unbiased and the consistent estimators. It is also observed that the average biases and the 

average MSE’s of 
̂ 

 
 

 depend on  . On comparing the performances of all the 

methods it is clear that as far as the minimum bias is concerned, Bayes’ works the best in 

almost all the cases. 
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Table 1.1 

Average Relative Estimates and Average Relative Mean Squared Errors of   

n  Method  =0.2  =0.5  =1.0  =2.0 

n  15 
Bayes’ 

MLE 

1.056(0.256) 

1.432(0.788) 

1.254(0.123) 

1.412(0.547) 

1.125(0.365) 

1.351(0.541) 

1.221(0.778) 

1.366(1.241) 

n  20 
Bayes’ 

MLE 

1.051(0.241)  

1.416(0.657) 

1.214(0.119) 

1.401(0.501) 

1.114(0.288) 

1.301(0.412) 

1.211(0.554) 

1.297(0.201) 

n  30 
Bayes’ 

MLE 

1.041(0.145) 

1.368(0.514) 

1.1254(0.104) 

1.356(0.335) 

1.109(0.251) 

1.201(0.226) 

1.187(0.441) 

1.202(0.154) 

n  50 
Bayes’ 

MLE 

1.034(0.036) 

1.221(0.299) 

1.121(0.021) 

1.215(0.2151) 

1.015(0.125) 

1.154(0.119) 

1.101(0.0254) 

1.165(0.125) 

n  100 
Bayes’ 

MLE 

1.09(0.017) 

1.145(0.054) 

1.011(0.019) 

1.152(0.014) 

1.001(0.0101) 

1.012(0.032) 

1.021(0.021) 

1.125(0.031) 

 

5.2 Fitting of SBGPD 
 

 In order to see the efficiency of the SBGPD model in comparison to truncated Poisson 

and truncated generalized Poisson distribution, we have taken the data from Plackett 

(1953) which is listed in table-1.2. From Pearson’s chi-square, AIC and BIC measures, it 

was observed that the size-biased generalized Poisson distribution provides us a better fit 

and simultaneously, it is seen that Bayes’ works as a best estimator against maximum 

likelihood and moments method of estimation. 

 

Table 1.2 

A data set from Plackett (1953) showing the number of  

workers iN
 
having i  accidents 

i  iN  
Expected Frequency 

TPD TGPD 
SBGPD 

Mom MLE Bayes’ 

1 2039 2034.27 2039.00 2036.58 2037.24 2039.00 

2 312 319.48 311.18 311.25 311.54 311.92 

3 35 33.45 35.97 35.21 35.11 35.05 

4 3 2.63 3.50 4.01 3.02 2.98 

5 1 0.17 0.35 2.95 3.09 1.05 

Total 2390 2390 2390 2390 2390 2390 
2   0.772 0.034 0.243 0.128 0.00018 

AIC  285 276 261 260 252 

BIC  310 302 295 291 289 

̂   0.3141 0.2705 0.321 0.311 0.412 

̂   - 0.0759 2.15 2.35 2.0 
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ABSTRACT 
 

 Inverse ascending factorial moments of the hyper-Poisson distribution have been 

derived in terms of hypergeometric series function. A recurrence relation for the negative 

moments and inverse ascending factorial moments is also derived. The Poisson 

distribution as a special case of the hyper-Poisson distribution has also been dealt with. 

 

KEYWORDS 
 

 Negative moments, inverse ascending factorial moments, hypergeometric series 

function, hyper-Poisson distribution. 

 

1. INTRODUCTION 
 

 Negative moments have been under study for quite some time. Many authors [Grab 

and Savage (1954), Mendenhall and Lehman (1960), Govindarajulu (1962, 1963), Tiku 

(1964), Stancu (1968), Chao and Strawderman (1972), Lepage (1978), Cressie et al. 

(1981), Cressie and Borkent (1986) and Jones (1986, 1987) Roohi (2002)], have worked 

on the negative moments of discrete distributions, mainly binomial, Poisson, geometric 

and negative binomial distributions. Ahmad and Sheikh (1983) used Chao and 

Strawderman (1972) technique to obtain the first negative moment of the hyper-Poisson 

distribution and stated the conditions under which this moment is identical to that of the 

Poisson distribution. 
 

 In this paper, we derive inverse ascending factorial moments of the hyper-Poisson 

distribution in terms of hyper-geometric series function. The expressions are simple and 

easy to compute. A recurrence relation of negative ascending factorial moments is also 

derived so that higher moments are easily calculated. Similar results have been given for 

the Poisson distribution. 

 

2. INVERSE ASCENDING FACTORIAL MOMENTS  
 

Theorem 1:  

 Suppose the random variable X  follows a hyper-Poisson distribution with parameters 

  and  . Then the inverse ascending factorial moment of X  is: 
 

                                                 
*
Published in Pak. J. Statist. (2003), Vol. 19(2). 
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     (see Jones 1987) 

 

   
 

   
 

1

1
, 2 2

1

1
. 1, ; , 1;

1 ! !

s
k

s

C s F s s
s k s




 




   

 
    1

, 2 2 1,1, , 1;C s F s
       

  

(see Ahmad and Sheikh 1983, and Ahmad and Roohi 2002). 

 

Corollary: 
 

 For 1   we get the inverse ascending factorial moment of the Poisson distribution, 
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1
2 1
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1

1 2! 1; 1; 1,2,....e k F k k
     (see Ahmad and Roohi 2002). 

 

3. RECURRENCE RELATION OF NEGATIVE MOMENTS AND 

INVERSE ASCENDING FACTORIAL MOMENTS OF  

THE HYPER-POISSON DISTRIBUTION 
 

Theorem 2:  
 

 Suppose the random variable X has a Hyper-Poisson Distribution with parameters   
and  . Then 
 

       
1 1

,

1 1
1 1 for 1

1
E X A C A E X A A

A

 

 

 
           

    (2) 

 

Proof:  

 We have 
 

     
1 1

, 2 2 1, ; , 1;E X A A C F A A
 

       (see Ahmad and Sheikh 1983)  
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 Using the identity (see Rainville 1960) 
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 For 1 2 1 2, 1, , andA A x            we get: 
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We know that 
 

     2 2 1 11, ; , ; 1; ;F A A F      

and 

     2 2 1 11, ; 1, ; 1; 1;F A A F                 (4) 
 

 Then 
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 Hence 
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1 1 1 1

1
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C A
E X A F F
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1
1

A
E X A

 
  


. 

 

 We know that 
 

      1 1 1 11; 1; 1; ; 1F F


      


               (5) 

 

 Substituting (5) in (4) we get: 
 

       
1 1,

1 1

1 1
1; ; 1

1

C A A
E X A F E X A

A

      
        

      

   (6) 

 

 Hence the result. 
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Corollary: 
 

 For 1  , we get the recurrence relation for the negative moment of the Poisson 

distribution. 
 

        1 11
1 1 1 , 1E X A A E X A A

 
      


  

 

 This result was also obtained by Chao and Strawderman (1972) by integrating the 

probability generating function. 

 

Theorem 3: 
 

 Suppose that the random variable X  has a Hyper-Poisson distribution with 

parameters   and  , and  k
  is the kth inverse ascending factorial moment of X . Then 

the relation 
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k k k
k k k k

    
             

 

       
 

 
2

, 2 2

1
1,1; 1, 1;

!
C F k

k
 

  
      holds for 1k    

 

Proof: 
 

 We know that (see equation (1)), 
 

     ,
2 2 1,1; , 2;

!k

C
F k

k

 


       

 

 Then 
  

     
 ,

2 21
1,1; , 2;

1 !k

C
F k

k

 

 
    


    

 

 Using the identity (see Rainville 1960) 
 

  
     

   
1 1 2 2 1 2 1 2 1 2 2 1 2 1 2

1 2 2 1 2 1 2

1 , ; , ; 1, ; 1, ;

1 , ; 1, ;

F x F x

F x

              

       
    (7) 

 

 If 1 2 1 21, 1, 2, , ,k x             we have 
 

            2 2 2 2 2 21,1; , 2; 1,2, , 2; 1 1,1; , 1;k F k F k k F k               (8) 

 

 Using the identity (3) for 1 2 1 22, 1, , 1, ,k x            we get: 
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2 2 2 2 2 2

2 2

1
1,2; , 1; 1,1, , 1; 1,2, 1, 1;

1

2,1; , 2;
1 1

F k F k F k
k

k
F k

k k

 
            

 


    

    

  

 

 Hence 
 

  
  

     

 

 
 

2 2 2 2 2 2

2 2

1,2; , 2; 1,2; , 1; 1,1; , 1;
1 1

1
1,2; 1, 1;

1

k
F k F k F k

k k

F k
k


          

  

  
    
  

  

 

   
  

 2 2 2 2

1 1
1,2; , 2; 1,2; 1, 1;

k k
F k F k

k

  
       


  

 

    
  

 
  

 2 2 2 2

1 1 1 1
1,1; , 1; 1,2; 1, 1;

k k k
F k F k

k k

     
        

 
  

                        (9) 

 

 Substituting (9) in (8) we get: 
 

     
 

 2 2 2 2

1 1
1,1; , 2; 1,2; , 1;

k k
k F k F k

k

  
       


  

 

       
  

 2 2

1 1
1,1; , 1;

k k
F k

k

  
   


  

 

       
  

     2 2 2 2

1 1
1,2; 1, 1; 1 1,1; , 1;

k
F k k F k

k

  
         


  

 

 Thus 
  

   
  

 2 2 2 22

1 1
1,1; , 2; 1,1; , 1;

k k k
F k F k

k

    
      


 

 

      
  

 2 22

1 1
1,1; , 1;

k k
F k

k

  
   


  

 

      
  

 2 22

1 1
1,2; 1, 1;

k
F k

k

  
    


         (10) 

 

 Using the identity (7) for, we have: 1 2 1 21, 1, 1, , ,k x           
 
we have: 
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         2 2 2 2 2 21,2; , 2; 1,1; , ; 1 1,1; , 1;F k k F k k F k                (11) 

 

 Again using (7) for 1 2 1 21, 1, 1, 1, ,k x           
 
we have: 

 

  
         2 2 2 2 2 21,2; 1, 1; 1,1; 1, ; 1 1,1; 1, 1;F k F k F k               (12) 

 

 Substituting (11) and (12) in (10), we obtain: 
 

 

   
  

 2 2 2 22

1 1
1,1; , 2; 1,1; , 1;

k k k
F k F k

k

    
      


  

 

      
  

        2 2 2 22

1 1
1,1; , ; 1 1,1; , 1;

k k
k F k k F k

k

  
       


  

 

      
  

    2 22

1 1
1,1; , 1;

k
F k

k

  
    


  

 

         2 21 1,1; 1, 1;F k       
 

    
  

 
2

2 22

1
1,1; , 1;

k k k k k
F k

k

      
   


  

 

      
  

 2 2

1 1
1,1; , ;

k k
F k

k

  
  


  

 

      
   

 
2

2 22

1 1
1,1; 1, 1;

k
F k

k

  
    


  

 

 Hence 
 

   

 
   

2

1 12 2

1
k k k

k k k k k

k k
    

       
      

 
  

 

      
 

 
2

, 2 22

1
1,1; 1, 1;

!
C F k

k k
 

 
    


  

 

            
2

1 1
1 1

k k k
k k k k

    
             

 

      
 

 
2

, 2 2

1
1,1; 1, 1; , 1

!
C F k k

k
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Corollary: 
 

 When 1  , in equation (6), the recurrence relation for the inverse ascending 

factorial moment of Poisson distribution is: 
 

         1 1
, 1

k k k
k k k

    
        . 

 

 

4. ESTIMATION 
 

 Consider the hyper-Poisson distribution with   known and   unknown. 
 

   
 

 
  
 

2

2 2

3 32
1 11 1 1

1;2, ;1ˆ 1,1,1;2,2, ;
1; ;1; ;

F
Var F

 
     
   
  

     (13) 

             (See Roohi and Ahmad 2003) 
 

 for 1   in (13), we get the variance of the negative moment estimator ̂  of  , the 

parameter of a Poisson distribution. 
 

     
  

22

1 1

2 22

1;2;1ˆ 1,1;2,2;
Fe e e

Var F
n e
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ABSTRACT 
 

 In this paper sum of some hyper-geometric series functions have been derived, using 

properties of discrete probability functions. 

 

INTRODUCTION 
 

 Jones (1987), Lepage (1978) and Roohi (2002) have worked on the negative moments 

and inverse factorial moments of some discrete probability functions. In Statistics, some 

discrete probability functions have been expressed in terms of hyper geometric series 

functions (See Bardwell and Crow, 1964). Using properties of the discrete probability 

functions, simple solutions of sums of hyper geometric series functions have been found. 
 

Theorem 1: 
 

 Let  2 1 ,  ;  ;  F a b c   be defined as: 
 

   
 

 

2

2 1

  1   1
,  ;  ;  0  1  ..., #0 

1 2

( )a a b bab
F a b c c

c c c

  
   


     (1) 

 

then if a or b is negative, 2 1F  will be defined as terminating series, then 
 

       
1

2 1 2 1
1

1 , ; 1; 1 ; 1;
k s

s

k
F s n s F n k

s





 
        

 
        (2) 

              0, , 1,2,3,...n k     
 

Proof:  

 Suppose X  is a binomial random variable with parameters n  and  , 
 

   
 

, 0,1,2,....... , 0
1

x

n

n
f x x n

x

  
    
   

      (3) 

 

 It is known that 
 

  
 

   

1

11

11 1
, 0, 1,2,3,.....

! 1 !

s
k k

ss

x k
x s k s s x s






  

   
      (4) 

   (See Rainville 1960) 
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 By definition of      E g x g x f x     , we have 

 

  
 

   

1

11

11 1
.

! 1 !

s
k k

ss

E E
X s k s s X s





   
   

     
   

 

 Now  
 

  
 

 2 1
0

1 1 1
, ; 1;

1

x
x n x

n
x

n
E p q F s n s

xX s X s s





  
      

      
   

 

 Thus  
 

  
 

     
 

1

2 1
1

11 1
. , ; 1;

! 1 ! 1

s
k

n
s

E F s n s
X s k s s s





  
     

      
   

       
 

   
1

2 1
1

1
1 , ; 1;

1 !

k s

n
s

k
F s n s

sk





 
     

   
     (5) 

 

 Also 
 

  
 01 1

1 1
,

1

xk kn

n
xs s

n
E

xX s X s 

     
     

       
    

 

 Expanding the summation, we have 
 

  
 

 

      
211 1.2 !

1 ....
1 2! 1 2 1 ...1 !

n

n

n nn n

k k k k k nk

 
       

        

  

 

  
 

 
   

   
 

21 1.21 1
1

1 2!1 21 !
n

n nn

k k kk

   
    

      

         

     

   
 

1 .. 1 1.2...
....

1 ... !

nn n n

k k n n

   
   

  

 

 

  
 

 2 1

1
1, ; 1,

1 !
n

F n k
k

   
 

             (6) 

 

 Thus, we get the result from (4) and (6), 

 

Theorem 2: 
 

 Let  2 1 ,  ;  ;  F a b c    be defined as in (1), then 
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1

2 1 2 1
1

1 , ; 1; 1, ; 1;
k s

s

k
F r s s q F r k q

s





 
    

 
         (7) 

 

  
1,2,...,  1,2,...,  0 1and 1r k q p q       holds. 

 

Proof: 
 

 Suppose X has a negative binomial function 
 

   
1

,r xx r
f x p q

x

  
  
 

               (8) 

 

  1,2,  ...,   1,2,...,  0 1 and  1–r k q p q       

 

 If X  has the probability function (8), then 
 

  
0

11 1 r x

x

x r
E p q

xX s X s





   
   

    
   

 

   
   

  

21 1.
1 . ...

1 1 2 2!

r r r s sp s r q
q

s s s s

  
    

    

  

 

    2 1 , ; 1;
rp

F r s s q
s

                 (9) 

 

 By definition of expected of a function, 
1

1k

s X s

 
 

 
 and defined as in (3), we have 

 

  
 

   

1

1

11 1

! 1 !

s
k k

s os

E E
X s k s s X s





   
   

     
           (10) 

 

 Substituting (9) in (10), we have 
 

  
 

   
 

1

2 1
1

1
, ; 1;

! 1 !

s rk

s

p
F r s s q

k s s s






 

 
   

 

     
1

2 1
1

1 , ; 1; ,
!

r k s

s

kp
F r s s q

sk





 
   

 
             (11) 

 

 Also by definition of expectation  
1

X s


  when  f x  is defined as (8), we have 
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01 1

11 1k k
r x

xs s

x r
E p q

xX s x s



 

       
      

      
    

 

   
 

  

21 1.2.1
1 ...

! 1 1 2 2!

r r rp r q
q

k k k k

 
    

    

  

 

    2 1 1, ; 1;
!

rp
F r k q

k
                 (12) 

 

 We get the result from (11) and (12) 

 

Corollary 1:  
 

 If 1r  , then 
 

       
1

2 1 2 1
1

1 1, ; 1; 1,1; 1;
k s

s

k
F s s q F k q

s





 
    

 
          (13) 

 

Proof: 
 

 This follows immediately from (6) by putting 1r  . 
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ABSTRACT 
 

 Characterization of the Poisson distribution has been obtained using a recurrence 

relation for the first order negative moment of the Poisson random variable. 

 

KEYWORDS 
 

 Negative moments, hyper-geometric series function. 

 

1. INTRODUCTION 
 

 Tiku (1964) discusses the case where sample size is a random variable and gives an 

approximate result for the first order negative moment of the positive Poisson 

distribution. Ahmad and Sheikh (1983) obtain the first order negative moment of the 

hyper-Poisson distribution and hence that of a Poisson distribution as a special case. 

Daboni (1959) gives a characterization of the Poisson distribution based on mixtures of 

binomial distributions. Rao and Rubin (1964) using conditional probabilities obtain a 

characterization of the Poisson distribution. Ahmad and Roohi (2004) obtain a 

characterization of the binomial distribution using a recurrence relation of the negative 

moments of the binomial random variable. 
 

 In this paper, first a recurrence relation is derived for the negative moment of a 

Poisson distribution using a property of the hyper-geometric series function, and then it is 

used to obtain a characterization of the distribution. 

 

2. RECURRENCE RELATION 
 

 Chao and Strawderman (1972) by integrating the probability generating function of 

the random variable  
1

1 0X A


   , obtained a recurrence relation for the first order 

negative moment of the Poisson distribution. The same recurrence relation was derived 

by Kumar and Consul (1979) as a special case of the Lagrangian Poisson distribution. 
 

 In this section, we use a property of the hyper-geometric series function and give an 

alternate method of deriving the recurrence relation for the negative moment of the 

Poisson distribution. 
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Theorem 1:  
 

 Suppose X has a Poisson probability distribution with parameter 0  , then for 

1A  , the relation  
 

     
1 11 1

1
A

E X A E X A
 

    
 

           (1) 

holds 

 

Proof:  
 

 Since X  is a Poisson random variable with parameter  , then Ahmad and Sheikh 

(1983) show: 
 

   - 1
1 1

1
; 1;E e A F A A

X A

  
   

 
.            (2) 

 

where   
2

1 1

( 1)
; ; 1 ....

( 1) 2 !

a a a x
F a b x x

b b b


   


 

 

 Replacing A by A-1 in (2), we get 
 

   - 1
1 1

1
( -1) -1; ;

-1
E e A F A A

X A

  
  

 
.          (3) 

 

 Using the identity (see Rainville 1960 page 124). 
 

       1 1 1 1 1 1F a; ; x F a-1; ; x F a; 1; xb b b b x b    
 

for ,  a A b A   and x   , we get: 
 

       1 1 1 1 1 1F A; ; F A-1; ; F A; 1;A A A A A                (4) 

 

 Now  
 

   1 1F A; ;A e  .                  (5) 
 

 Substituting (2), (3) and (5) in (4) we get the required result. 

 

3. CHARACTERIZATION 
 

 In this section the recurrence relation derived in theorem 1 is used for the 

characterization of the Poisson distribution. 

 

Theorem 2:  
 

 X  has a Poisson probability function , ( 0)xP   , if and only if, for 1A   and  

0,1,2 ;x    (1) holds. 
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Proof:  
 

 If ( )xP   is a Poisson probability function, the recurrence relation (1) holds  

(Theorem 1). 
 

 Now 
 

     
1 11 1

1
A

E X A E X A
 

    
 

, 

 

  
   0 0

1 1 1 1

1
x x

x x

A
P P

x A x A

 

 


 

    
   

 

   
 0

1

1 1 1 1

1
x

x

A
P P

x A





   
    
      

 , 

 

   0
1

0

1 1 1
.x

x

P A
P

x A






 
 

  
  

 

 Re-arranging, we have 
 

  
 0

1
x

x

P
x A








 1
0

1
x

x

x
P

x A










 , 

or   

  
  1

0

1
0

x x

x

P x P

x A






   
   

 . 

 

 Since   11x xP x P     is either   or 0 , then in each case, we get 

1

1x
x

P x
P

x A x A


 


 
. 

 

 Thus  
 

  1
1

x xP P
x







  

 

 Giving x  values 0,1,2,  we get 
 

  1 0P P  , 
2

2 1 0
2 2 !

P P P
 

  , 
3

3 2 0
3 3!

P P P
 

   …… 0
!

x

xP P
x


 . 

 

 Since  
 

  
0

1x
x

P




 , we get 0P e . Hence the result. 
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ABSTRACT 
 

 Ahmad and Roohi (2004) derive the sum of some hyper-geometric series function in 

terms of a simple hyper-geometric series. In this paper, sums of another set of hyper-

geometric series functions have been obtained using properties of discrete probability 

functions. 

 

1. INTRODUCTION 
 

 Jones (1987), Lepage (1978) and Roohi (2002) have worked on the negative moments 

and inverse factorial of some discrete probability functions. Using properties of the 

discrete probability functions, simple solutions of sums of hyper geometric series 

functions have been found by Ahmad and Roohi (2004). In this paper, sums of another 

set of hyper-geometric functions have been derived. 

 

2. SUM OF HYPER GEOMETRIC SERIES FUNCTIONS 
 

Theorem 1:  
 

 Let    ; ;h mF a b    be defined as: 

 

     ; ;h mF a b  
   
   

2
1 11 2

1 2 1 1

1 ... 1...
1 ...

... 1 ... 1 2!

h hh

m m m

a a a aa a a

b b b b b b b

  
   

 
   (2.1) 

 

 No term in (b) is zero. Then 
 

     
1

3 2
1

1
1 1,1, 1;2, 2;

1

k s

s

k
s F s s

s





 
    

 
   2 1 1, 1; 2,F k   , 

               0 <  < 1, k = 1, 2, …  (2.2) 
 

Proof:   
 

 Suppose a random variable X has logarithmic series function 
 

    ,
x

f x
x


   x = 1, 2, … 0 <  < 1.           (2.3) 

 

where  
1

ln 1( )a q


   . Now by definition of expectation of random variables, we have 
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1

1k

s

E
X s

 
 

 
  

1 1

1x k

x sx x s



 


 


   

     
    

21 1.2.1.2
1 ...

1 ! 2 2 3 2 !k k k k

   
    

     

 

     
 

 2 1 1, 1; 2;
1 !

F k
k

 
  


          (2.4) 

 

 Alternatively, if X has Logarithmic probability function (2.3), then 
 

  
1

E
X s

 
 

 
 

1

1 x

x x s x






 


  

  
  

  

21 2 1.21
1 .

2 2 3 1.2 2

s ss

s s s s

    
    

    

 

   3 2 1,1, 1;2, 2;F s s
s


              (2.5) 

 

 Now 
 

  
1

1k

s

E
X s

 
 

 


 

   

1

1

1 1

! 1 !

s
k

s

E
k s s X s





  
  

   
   (see Jones 1987) 

 

   

1

1

1

! 1 !

s
k

s

s

k s s






 

 
  3 2 1,1, 1; 2,2,F s s   . 

 

 We get the result (2.2). 

 

Theorem 2:  
  

 Support    ; ;n mF a b    be defined as in (2.1). Then for 0  . 
 

       
1

1 1 2 1
1

1 ; 1 ,  1,2,; 1, ; 1;
k s

s

k
F s s F k k

s
k





 
      

 
   (2.6) 

 

Proof:  
 

 Suppose X  is a Poisson random variable with parameter . 

    , 0, 1, 2, , 0
!

x

f x e x
x

 
      

 

 Now by definition of expectations of random variables, we have 
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1

1k

s

E
X s

 
 

 
  

    0

1

! 1 2

x

x

e
x x x x k









  
  

    

21.2 ( 1)
1

! 1 1 2 2

e k k k

k k k k

   
    

    

 

 2 1 1, ; 1;
!

e
F k k

k



              (2.7) 

 

 Alternatively,  
 

  
1

E
X s

 
 

  0

1

!

x

x

e

x s x









   

    
 

  

21
1

1 1 2 2!

s se s

s s s s

   
    

    

 

     1 1 ; 1;
e

F s s
s



                (2.8) 

 

 Thus  
 

  
1

1k

s

E
X s

 
 

 


 

   
 

1

1 1
1

1
; 1;

! 1 !

s
k

s

e
F s s

k s s s

 




  

 
 , 

 

 Hence the result. 

 

Theorem 3:  

 For 0, 0, 0 1, 0 1s p q       and 1p q  , the limit of 2 1 , ; 1;
p

F s n s
q

 
   

   
when , 0n p   such that np   is  1 1 ; 1;F s s   . 

 

Proof:  
 

 Expanding  2 1 , ; 1;F s n s p q  , we have 
 

  2 1 , ; 1;
p

F s n s
q

 
   

 

     

  

2
1 1

1
1 2! 1 2

s n s s n np p

s q s s q

       
        

     
 

       

    

1 1 1 1

1 2 !

n
s s s n n n p

s s s n n q
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1
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1
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1 1 1

1 2 ! 1

n

n

s s s n np

s s s n n p

  


   
 

 

 As n  and 0p   such that np  , we have  
 

   2 1 , ; 1;F s n s    
 

  

21
1

1 1 2 2!

s ss

s s s

 
   

  
  1 1 ; 1;F s s    

 

Theorem 4:  

 For 0, 0, 9 1, 0 1, 1s p q p q         , the limit of 2 1 1, ; 1;
p

F n s
q

 
   

 
 

when 
 

  ,n  0p   such that np   is  1 1 1; 1;F s   . 

 

Proof:  
 

 Following Theorem 3, we get the result. 

 

Corollary: 

   2 1 1 11, ; 2, 1; 2;
p

F n F
q

 
    

 
 as , 0n p   such that np  . 

 

Proof:  
 

 Put s = 1 in Theorem 4, we get the result. 
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ABSTRACT 
 

 Abdalla and Hassan (2004) proposed a new parametric Lorenz curve and found Gini 

coefficient associated with their Lorenz Curve. In this note we have represented Gini 

coefficient for Abdalla and Hassan Lorenz Curve in terms of confluent hyper-geometric 

series funtion. Using a property of the hyper geometric function, a recurrent relation of 

Gini coefficient and Hassan Lorenz Curve has been derived. 

 

1. INTRODUCTION 
 

 Abdalla and Hassan (2004) have proposed a new parametric Lorenz Curve in a 

functional form and computed Gini coefficient and fitted the function to UAE income 

data of Emiratisand Expatriates. Abdalla and Hassan propose the curve in a functional 

form defined as 
 

    1 1 , 0, 0 1p
NL p p e

           
  

,         (1) 

 

and Gini coefficient is 
 

 
   

   0

1 11
2

1 2 1

j

j

j
Gini

j j





     
 
     

 .          (2) 

 

2. GINI REPRESENTATION AND CONFLUENT  

HYPER-GEOMETRIC FUNCTION 
 

 We define confluent hyper-geometric series function as 
 

   
 

 
1 1

1
; ; 1 ....

1 2!

a a xax
F a b x

b b b


   


             (3) 

 

for all , 0, 1, 2,  a b     and 0x  . If 0a  ,  1 0; ; 1F b x  . If –a n  an integer, 

 1 1 ; ;F n b x  is a terminating series, otherwise it is called non-terminating series. If 

0x  ,  1 1 ; ; 0 1F a b  . Properties of confluent hyper geometric series functions can be 

found in Rainville (1960) and Erdyli et al. (1953). 
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 If we expand Gini Coefficient (2) as 
 

 

 
   

 

 

 

   

   

2

1 1 11
2 1

1 2 2

1 2
....

2!2 3

G

       
    

        

    
  

       

 

 

and represent the summation in terms of confluent hyper-geometric series functions, we 

have 
 

       1 1

1
, 2 1, 1 1; 2;

1
G F


         


,       (4) 

 

where  
   

 
,

a b
a b

a b

 
 

 
 is a beta function. 

 

 If    

       1 11, , 2 2, 1 2; 3;G i F          
 

and if   

     1 1

2
0, ( 0, 1 1; 2; .

1
G F      


 

 

 A recurrence relation for  ,G    can be derived for computation purposes by 

using a relationship of confluent hyper-geometric series function: 
 

           1 1 11; ; 1 ; 1; 1 ; ;l l la F a b b F a b a b F a b              (5) 

 

if ,  2a b     and    , then the equation (5) becomes 
 

    1 1; 2;l F   
 

 

   
       1 11 ; 1; 1 ; 2;l lF F          .      (6) 

 

 Using the relation (6) and after algebraic manipulation, we have 
 

 

     
1

, 1, 1, 1 , 1, 0 1
1

G G G  


              


.   (7) 

 

 The recurrence relation (7) seems very useful in computing  ,G    for different 

value of ,  and . 
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ABSTRACT 
 

 Shmueli et al. (2005) have generalized Conway and Maxwell (1962) one-parameter 

Poisson distribution to a two parameter distribution called Conway-Maxwell-Poisson 

(CMP) distribution, discussed some of its properties and have fitted the CMP distribution 

to non-Poisson count data. In this paper, we have found a natural extension of two-

parameter CMP to three-parameter distribution, which may be called Conway-Maxwell-

Hyper-Poisson distribution (CMHP). We have discussed some additional moment 

properties. Using the property of proportionality of probabilities, we characterize CMHP 

and other special distributions. 

 

KEY WORDS 
 

 Property of proportionately, Truncated Poisson, Truncated Hyper-Poisson. 

 

1. INTRODUCTION 
 

 Hyper-Poisson distribution has been in literature for some time. It is a natural 

extension of the Poisson distribution providing information on super-Poisson, and sub-

Poisson depending on one of its parameters [Staff (1964, 1967) and Bardwell and Crow 

(1964)]. It was further shown that truncated Poisson at an arbitrary point is a hyper 

Poisson and truncated hyper-Poisson is again a hyper-Poisson distribution. Now 

following Bardwell and Crow (1964), we find Conway-Maxwell Hyper-Poisson 

distribution by truncating CMP at the point ; 
 

   
   

1
. ,

, , 1 !

y

P Y y
Z y




 

       

 

 

  0,1,2,..., 0, 0 and 0y        ,          (1.1) 
 

where  , ,Z     

 0 1 !

i

i i






 
 

       

 .  , ,Z     converges for any 0   and  

0   except for 0   and 1  . If  0,   P Y y    is CMP distribution.  P Y y  is 

also true for any non-negative real values of  . Further, it may be noted that a displaced 

or truncated CMP is CMHP and a displaced or truncated CMHP is again CMHP. 
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2. MOMENTS OF CMHP 
 

 The positive moments of CMHP at (1) following Shmueli et al. (2005) procedures, 

are: 
 

   
 

   

     

1
1

1

1 , 0
, , !

, 0

r

r r

E Y A r
Z

E Y A

d
E Y A E Y A E Y A r

d







  
    
    

  

     



 

 

 The rth negative moment of ,  0Y A A   of CMHP is  
 

   
r

E Y A


  
     0

1 1

, , 1 !

y

r
yZ y A y









        

  

 

 Following Shmueli et al. (2005) procedure, we have the relation  
 

   
r

E Y A


       
11

, 1,2,....
r rd

E Y A E Y A E Y A r
d

  
          

. 

 

3. CHARACTERIZATION OF CMHP AND CMP 
 

 There has been a considerable work in literature regarding characterization of  

Poisson and hyper-Poisson distributions using conditional distribution, property of 

proportionately, etc. We also use a property of proportionately to characterize CMHP and 

CMP.  

 

Theorem:  
 

 Y  is a discrete CMHP random variable if and only if  
 

  
 

 
  , , 0 and 0

1

P Y y
y

P Y y


       

 
        (3.1) 

 

Proof:  
 

 Suppose Y  is a discrete non-negative integer-valued CMHP random variable. The 

relation (3.1) is trivial. Let  yP P Y y  . If the proportion (3.1) holds, then 

 
1y yP P

y





 
. For 1,  2,y   we have  

 

  

   
0

1 ...

y

yP P
y





    

. 
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 Since 1yP   then 

 

1

0
0 1 !

i

i

P
i








 
 

       

 . 

 

 On simplification, we get (1.1). 

 

 If 0  , Y  is a CMP random variable. The characterization theorem holds for CMP 

and under conditions stated by Shmueli et al. (2005), the characterization holds for 

ordinary Poisson, bernoulli and geometric distributions. 
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ABSTRACT 
 

 In this paper Bayes estimators and reliability function of one parameter of decapitated 

generalized Poisson distribution (DGPD) is derived by considering a non-informative 

prior when the other parameter is assumed to be known. Furthermore, recurrence 

relations for the estimator of the parameters are obtained. A comparison has also been 

made for the Bayes estimator and reliability function of DGPD with the corresponding 

maximum likelihood estimator (MLE) by using Monte Carlo simulation technique and R-

Software. 

 

KEYWORDS 
 

 Decapitated generalized Poisson distribution, reliability function, Bayes estimator, 

recurrence relation. Monte Carlo simulation, maximum likelihood estimation, R-Software. 

 

1. INTRODUCTION 
 

 Consul and Jain (1973) defined the generalized Poisson distribution (GPD) as  
 

  
1( )1

1
1 1

( )
,  0,1,2, , 0,( ) | | 1

!

xxx e
P x xX l

x

    
 


         (1.1) 

 

 The distribution (1.1) reduces to Poisson distribution at 1 0  . Consul and Shoukri 

(1985, 1986) studied GPD when the sample mean is larger than the sample variance and 

for negative integer moments. Tuenter (2000) also discussed the GPD. The model (1.1) 

has been found to be a member of the Consul and Shenton’s (1972, 1973) family of 

Lagrangian distributions and also of the Gupta’s (1974) modified power series 

distribution (MPSD). 
 

 The problem of estimation for GPD has been discussed by many authors. Whereas 

Famoye and Lee (1992), Consul and Famoye (1988, 1989) and Consul and Shoukri 

(1984) studied the maximum likelihood estimation. Kumar and Consul (1980) and Gupta 

(1977) discussed the minimum variance unbiased estimation. Shoukri and Consul (1989) 

and Hassan and Harman (2003) also studied the Bayes estimator for GPD under different 

priors.  
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1.1 Zero-Truncated Generalized Poisson Distribution (ZTGPD): 
 

 Shoukri and Consul (1989) redefined the distribution (1.1) as  
 

  
1 (1 )

2

(1 )
( )

!

x x xx e
P X x

x

   
  ,

1
0,1,2, ,  0,  0x      


  (1.2) 

where     and 1    as 
 

 The distribution (1.2) can be truncated at 0x   and is defined as 
  

   
 

 
1

1
(1 )

3

1
1

!

x

x xx
P X x e e

x




  
    , 1,2,x , 

1
0,0 


  (1.3) 

 

 It can be easily seen that at 0  , the distribution (1.2) and (1.3) reduce to Poisson 

distribution and to David and Johnson’s (1952) truncated Poisson distribution. Consul 

and Famoye (1989) defined the truncated generalized Poisson distribution (TGPD) and 

obtained its maximum likelihood estimation of the parameters. They also obtained 

estimate based upon the mean and ratio of the first two frequencies. Jani and Shah (1981) 

also studied the truncated generalized Poisson distribution. A brief list of authors and 

their works can be seen in Consul (1989) and Johnson, Kotz and Kemp (1992) and 

Consul and Famoye (2006).  
 

 In this paper we have made an attempt to obtain Bayes estimator and reliability function 

of dicapitated generalized Poisson distribution (DGPD) for one parameter   when other 

parameter   is assumed to be known. Further more, recurrence relations for the estimators 

of the parameter are also obtained. Monte Carlo simulation and R-Software were performed 

and a comparison has been made of the Bayes estimator and reliability function of (1.3) 

with the corresponding maximum likelihood estimator (MLE). 

 

2. BAYESIAN ANALYSIS OF DECAPITATED GENERALIZED  

POISSON DISTRIBUTION 
 

 Let 1 2,  ,..., nX X X  be a random sample from (1.3). The likelihood function is 

  11

1   

1

(1 )
   (1 )

!

nn

i ii
ii

x n xxn
ni

i i

x
L e e

x



 
     

  



 
   

  


( ) (1 )y n y nK e e      
 

                       
(2.1)  

where 

1 n

i
i 11

(1 )
   and    y  x

!

ixn
i

i i

x
K

x





 
  

  
   

 

when   is known, the part of the likelihood function which is relevant to Bayesian 

inference on the unknown parameter   is ( ) (1 )y n y ne e       we assume that before 

the observations were made, our knowledge about   was only vague. Consequently, the 

non-informative vague prior of  ,  g   proportional to 
1


 is applicable to a good 

approximation. Thus  
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1

( ) ,   0g    


                (2.2)  

 

 The posterior distribution  of from (2.1) and (2.2) is   
 

  ( | )y
1 ( )

1 ( )

0

(1 )

(1 ) .

y n y n

y n y n

e e

e e d

     


     

 


  

           (2.3)  

 

 Under square error loss function, the Bayes estimator of   is the posterior mean 

given as  

  *( , )p y n

( )

0

1 ( )

0

(1 )

(1 ) .

y n y n

y n y n

e e d

e e d


    


     

  



  





          (2.4) 

 

 Using identity   k

0

1
1 ,| | 1

     

n

k

n k

k





  
     

 
  and the relation 

1

0

,  , 0, 0at b

b

b
e t dt a b t

a


  

   , we obtain  

  
( )

0

(1 )y n y ne e d


        
1

k 0

1 (y 1)
 

     ( )y

n k

k n y k






    
  

  
     (2.5) 

 

   
1

k

1 1
( 1)  

n 1 ( )y
n

k
y

y k






 
    

   
            (2.6)  

and similarly,  
 

  
1 ( )

0

(1 )y n y ne e d


       
k n

1 1
( ) 

1 ( )y

k
y

n y k





 
   

   
       (2.7) 

 

substituting the value of (2.6) and (2.7) in (2.4), we obtain 
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1 1
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 Using the relation ( 1)  b ( ) b b     and  
 

  
1 1 1

1   1

k k k
k n n

n n n

       
      

      
             (2.9) 

 

 

 We obtain  
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  (2.10) 

 

   
( , )

 ;    y  n,   n 1 ,  n  1, 2
( , 1) ( ) ( , )

yZ y n

nZ y n n y Z y n
   

  
  (2.11)  

 

where   

  
1

1 1
( , )

1 ( )y
k n

k
Z y n

n y k






 
  

   
              (2.12) 

 

  
1

1

1 1
( , 1)

  ( )y
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k
Z y n

n y k




 

 
   

  
            (2.13) 

 

 After simplification (2.11) becomes  
 

  
 

*( , )
( ) ( , )

y
p y n

n y nS y n


 
; y = n, n +1  , n = 1, 2      (2.14) 

where    

  
( , 1)

( , )
( , )

Z y n
S y n

Z y n


                 (2.15) 

 

3. RECURRENCE RELATIONS 
 

 In order to obtain a recurrence relation for  * ,p y n , first we need recurrence 

relations for the numbers  ,Z y n  and  ,S y n , which are obtained by the following two 

lemmas: 
 

Lemma 1: The number  ,Z y n  satisfy the recurrence relations:  

  
1 ( )

( , 1) ( 1, ) ( ,  ,  1...,  1,2,) ..., y
n y

Z y n Z y n Z ny n
n n

n n


        (3.1)  

with initial condition  
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( )y
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           (3.2) 
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Proof: From the relation (2.12), we have  
 

  ( 1, )Z y n
1

1 ( )
  

1 ( )y
k n

k y k

n y k






   
  

   
            (3.3) 

 

using the relation (2.9), (3.3) becomes   

  
1

1

1 1
( 1, )   

  ( )y
k n

k
Z y n n

n y k




 

 
   

  


1

1 1
 (n y)   

  1 ( )y
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From (2.12) and (2.13) we have,   
 

  ( 1, ) ( , 1) ( ) ( , )Z y n nZ y n n y Z y n               (3.4) 
 

from which, we have (3.1). Also from (2.12) for n = 1, we can easily obtain the relation 

(3.2)  
 

Remark: Combining equations (2.11), (2.12) and (2.13) we get   

  

1 1
( 1, ) ( ) ( , )

( , )
( , )
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 (3.5) 

and  
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1 1

( ) ( , ) Z( 1, ) ( ) ( , )

y Z y n
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n y Z y n n y n n y Z y n
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( 1, )

y Z y n
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                       (3.6) 
 

Lemma 2: The number  ,S y n  satisfy the recurrence relation:  
 

  
   ( , ) ( ) ( 1, ) ( 1)

( , 1)
( 1) ( , ) ( 1)

nS y n n y S y n n y
S y n

n S y n n

    
  

 
     (3.7) 

 

where 1,2, ,  , 1n y n n     with initial condition  
 

  
( 1,1)
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( ,1)
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S y y
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                (3.8) 

 

Proof: From the relation (2.15) and the recurrence relation (3.1), we get  
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 We have 
( 1, 1)

( 1, )
( 1, )
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 From (3.4) we have   
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( 1, )
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S y n

nS y n n y

 
 

 
            (3.10) 

or 

    
( 1, 1)

( , ) ( ) ( 1, )
( , )

Z y n
nS y n n y S y n

Z y n

 
            (3.11) 

 

 Substituting (3.10) into (3.9) we obtain (3.7). Also from (3.5) for 1n  , we easily  

get (3.8). 

 

Theorem 1: The Bayes estimator of the parameter   satisfy the recurrence relation:  
 

  
 *

( ) ( , ) ( 1, )
( , 1)

( 1) ( ) ( 1, )

y n y P y n P y n
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y n y P y n

  
 

   
,        (3.12) 

with initial conditions  

  
* ( ,1)
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y Z y
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                (3.13) 

 

Proof: From the relation (2.14), we have   

  
*( , 1)

( 1 ) ( 1) ( , 1)

y
p y n

n y n S y n
 

    
         (3.14) 

 

substituting (3.7) into (3.14) and using (2.14) we get (3.1) after some algebraic 

manipulation. Also from the relation (3.6) for 1n  , we easily get (3.13). 

 

4. BAYES ESTIMATOR OF THE RELIABILITY FUNCTION OF 

DECAPITATED GENERALIZED POISSON DISTRIBUTION 
 

 The Bayes estimator  *R t , for    R t P X t   where variable X  has the 

distribution (1.4) in given by   

  
*

1( ) ( ) nR t E R t x x    

1 ( )
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1 ( )
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y n y n
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    (4.1) 

where   

  
1 (1 ) 1
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(1 ) (1 )
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!
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x e e
R t
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  ,         (4.2)  

 

and [ ]t  is the integer part of t . Making similar computations, as for  ,P y n  we obtain  

NCBA&E



Chapter-4: Discrete Distribution 245 

 

  

1
( 1 ) 1 ( 1)

[ ] 1* 0

1 ( )

0

(1 )
(1 )

!
( )

(1 )

x
n y x y x n

x t

y n y n

x
e e d

x
R t

e e d

 
         

 


     


  



  

 



    (4.3) 

 Using same identity, we obtain   
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 Using (4.4) and (4.5) in (4.3), we obtain 
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and using the relation (2.9) , (4.6) becomes  
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5. COMPUTER SIMULATION AND CONCLUSIONS 
 

 In order to compare the estimation, Monte Carlo Simulations and r-software were 
performed on 1000 samples for each simulation. The following steps summarize the 
simulation. 1. A value is generated from a non-informative prior. 2. Based on the 
realization from the non-informative prior a sample of size n=8 or 30 is generated from 
the decapitated generalized Poisson distribution. 3. The estimates of the parameters and 
reliability function are computed from the generated  sample, and the estimates and their 
squared error losses were stored 4. Steps 1-3 were repeated 1000 times. 5. Average 
values and root mean square errors (RMSE’s) of the estimates over the 1000 samples. 
 

 Tables 1-4 show some of the results. In comparing the estimators the root mean 
square error criterion will be used, namely the estimator with the smallest RMSE’s is the 
best estimator. The reliability function was evaluated arbitrarily at times 1, 2 and 3. Two 
sample size of n=8, 30 were utilized in the simulation.  
 

Table 1 

Average values and RMSE’s for the estimators of the Decapitated Generalized 

Poisson. Non-informative prior with sample size n = 8 and 0.3   

Parameter 

True value Bayes MLE RMSE Ratio 
Ave. RMSE Ave. RMSE MLE/Bayes 

1.8904 1.8912 1.6665 1.8792 1.6708 1.0026 

Reliability 

Time Exact 
value 

Bayes MLE RMSE Ratio 
Ave. RMSE Ave. RMSE MLE/Bayes 

1 
2 
3 

2.4034 
2.1588 
1.9387 

2.3915 
2.1526 
1.9435 

1.7026 
1.7305 
1.7244 

2.3771 
2.1403 
1.9321 

1.7142 
1.7396 
1.7324 

1.0068 
1.0052 
1.0046 

 

Table 2 

Average values and RMSE’s for the estimators of the Decapitated Generalized 

Poisson. Non-informative prior with sample size n=30 and 0.3   

Parameter 

True value 
Bayes MLE RMSE Ratio 

Ave. RMSE Ave. RMSE MLE/Bayes 

8.2200 8.1870 7.9306 8.1840 0.9311 1.0001 

Reliability 

Time 
Exact 
value 

Bayes MLE RMSE Ratio 
Ave. RMSE Ave. RMSE MLE/Bayes 

1 
2 
3 

8.7363 
8.5006 
8.2798 

8.6992 
8.4641 
8.2466 

7.9502 
7.9642 
7.9619 

8.6961 
8.4617 
8.2438 

7.9520 
7.9655 
7.9630 

1.0002 
1.0002 
1.0001 

 

  

NCBA&E



Chapter-4: Discrete Distribution 247 

Table 3 

Average values and RMSE’s for the estimators of the Decapitated Generalized 
Poisson. Non-informative prior with sample size n=8 and 0.5   

Parameter 

True value 
Bayes MLE RMSE Ratio 

Ave. RMSE Ave. RMSE MLE/Bayes 

2.8832 2.8776 2.6190 2.6785 2.8201 1.0767 

Reliability 

Time 
Exact 

value 

Bayes MLE RMSE Ratio 

Ave. RMSE Ave. RMSE MLE/Bayes 

1 
2 
3 

3.1816 
3.0879 
2.978 

3.1724 
3.0769 
2.9681 

2.9230 
2.3392 
2.3523 

3.0095 
3.0779 
2.9699 

3.1264 
2.3908 
2.3842 

1.0695 
1.0220 
1.0135 

 

Table 4 

Average values and RMSE’s for the estimators of the Decapitated Generalized 
Poisson. Non-informative prior sample size n=30 and 0.5   

Parameter 

True value 
Bayes MLE RMSE Ratio 

Ave. RMSE Ave. RMSE MLE/Bayes 

17.4660 17.4720 16.9077 17.4690 16.9080 1.0000 

Reliability 

Time 
Exact 

value 

Bayes MLE RMSE Ratio 

Ave. RMSE Ave. RMSE MLE/Bayes 

1 
2 
3 

17.8595 
17.8232 
17.7492 

17.8649 
17.8275 
17.7526 

16.8902 
16.9021 
16.9181 

17.8619 
17.824 

17.7500 

16.8905 
16.9024 
16.9186 

1.0000 
1.0000 
1.0000 

 
 In comparing the estimators, the Bayes ones have the smallest RMSE and are better. 
This is to be expected since the Bayes estimators take advantage of the known prior 

parameter  . By examining the RMSE ratios we can conclude that the estimates are 

sensitive to the choice of prior parameters and to sample size.  
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ABSTRACT 
 

 In this paper a Bayes estimator of generalized geometric series distribution (GGSD) 

under different priors and its characterization has been introduced. Comparisons are made 

of the Bayes estimate of  P X k  to the corresponding maximum likelihood (ML) 

estimate for any given sample for different values of k with the help of Monte Carlo 

simulation. 
 

KEY WORDS 
 

 Squared error loss function, Bayes estimator, Beta distribution, Monte Carlo 

simulation. 
 

1. INTRODUCTION 
 

 The probability function of generalized geometric series distribution (GGSD) was 

given by Mishra (1982) by using the results of the lattice path analysis as 
 

     
111

1 ; x 0,1,2,...
   1

x xxx
P X x

xx

  
     

  
0 1  and 1    (1.1) 

 

 It can be seen that at 1  , the model (1.1) reduces to simple geometric distribution 

and is a particular case of Jain and Consul’s (1971) generalized negative binomial 

distribution in the same way as the geometric distribution is a particular case of the 

negative binomial distribution. 
 

 The various interesting properties and estimation of (1.1) have been discussed by 

Mishra (1982), Singh (1989), Mishra and Singh (1992), Hassan (1995) and Hassan et al. 

(2002, 2003). They found this distribution to provide much closer fits to all those 

observed distributions where the geometric distribution and the various compound 

geometric distributions have been fitted earlier by many authors. 
 

 In this paper we have characterized the distribution (1.1) and discussed the Bayesian 

estimation of generalized geometric series distribution (GGSD) under different priors and 

a comparison is made of the Bayes estimate of P(X=k) to the corresponding maximum 

likelihood (ML) estimate for any given sample for different values of k with the help of 

Monte Carlo simulation. 

                                                 
*
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2. CHARACTERIZATION OF GGSD 
 

Theorem: Suppose X  has the prob. mass function (1.1) if and only if  
 

     1xP X x P X x    , where 
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1 3 1

! 1 2
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x x x

x x x x
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Proof: 
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            (2.2) 

 

 Putting 0P  in (2.1) and after some algebraic, we get (1.1). 

 

3. BAYESIAN ESTIMATION OF PARAMETER  OF GGSD  

UNDER DIFFERENT PRIORS 
 

 The Bayesian estimation of parameter of GGSD does not seem to appear in literature 

so far.  
 

 The likelihood function from (1.1) is obtained as 
 

   
1 i

11
/ , (1 )

   x1
i i i

n
i x n x x

i i

x
L x

x

  



   
      

   
 (1 )y n y yk      (3.1) 
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11
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n
i

i i

x
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  and 

1

n

i
i

y x


  . 
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 When   is known, the part of the likelihood function which is relevant to Bayesian 

inference on the unknown parameter   is   1-
n y yy  

  . 

 

3.1 Bayesian Estimation of Parameter  of GGSD under Non- Informative Prior 

 We assume prior  of as 
 

   
1

g  


, 0 <θ<1                  (3.2) 

 

 The posterior distribution of  from (3.1) and (3.2) is  
 

   
( / , ) ( )

( / , ) ( )

L x g
y

L x g d


  
 

   



=

 
 

 

n -11 1

,n 1

yy

B y y y

  

  
, 0 1, 0y  .    (3.3) 

 

 The Bayes estimator of parametric function     under squared error loss function is 

the posterior mean which is given as 
 

   
   

 

 

111

0

1
ˆ

, 1

n yy d

B y n y y

     
  

  
  

 

 If we take      , the Bayes estimate of   is given by 
 

  ̂ 
 

 

 

1
1

0

1

, 1

n yy d

B y n y y

 
  

  
 =

 

 

1,n 1

,n y-y 1

B y y y

B y

   

 

y

n y



       (3.4) 

 

This coincides with the moment and ML estimate of θ.  

 

3.2 Bayesian Estimation of Parameter  of GGSD under Beta Prior 

 The more general Bayes estimator of θ can be obtained by assuming the beta 

distribution as prior information of  . Thus 
 

  
1 1(1 )

( ; , )
( , )

a b

g a b
B a b

  
  , , 0,  0 1a b     .       (3.5) 

 

 The posterior distribution of   is defined as 
 

   y 
1 ( 1) 1

1
1 ( 1) 1

0

(1 )

(1 )

a y n y b

y a n y b d

     

     

 


  
 

1 ( 1) 1(1 )

,

a y n y b

B y a n y y b

      


   
    (3.6) 

 

 The Bayes estimator of parametric function () under squared error loss function is 

the posterior mean and is given as 
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1 ( 1) 11*

0

(1 )

,

a y n y b d

B y a n y y b

         
 

   
             (3.7) 

 

 If we take       then Bayes estimator of  is given as 
 

  
 

( 1) 11*

0

(1 )

,

a y n y b d

B y a n y y b

      
 

   


a y

n a b y




  
        (3.8) 

 

 If a = b = 0, (3.8) coincides with (3.4). 
 

 Similarly, the Bayes estimator based on beta prior of some parametric functions are 

listed in Table 3.1 

 

Table 3.1 

    Bayes Estimate 
*


 

 1 1
k

      , ,B y a l y y n b k B y a y y n b             

  1
1

k


      , ,B y k a y k y n b k B y a y y n b              

 P X k  

11

    1

k

kk

 
 

  
 

   , 1 ,B y k a y k y n b k B y a y y n b               

 l
       l l

y a y n a b      

  
1

k
       k k

y y n b y n a b         

 

where  m
x  denotes the ascending factorial    1 ..x x x m i     and k are non-

negative integers 

 

4. APPLICATIONS OF BAYES ESTIMATOR OF GGSD 
 

 To illustrate the practical application of the results of section 3, we consider a known 

GGSD population given by (1.1) with 0.3   and 2   and take a random sample of 

size n = 200. The data obtained are given in Table 4.1. 
 

 Assuming that the parameter θ is unknown and it has a beta distribution with 

parameters a and b, we have estimated the Bayes relative frequencies by using the Bayes 

estimator of  P X k . Since there is no information about the values of a and b except 

that they are both positive real numbers, a wide range of values from 1 to 100 were 

NCBA&E



Chapter-4: Discrete Distribution 253 

considered for a and b, and the values of  P X k  are computed for 0,1, ,20k    for 

the following five broad categories: 
 

I) a=1 and b=1,10,20,30,40,50,100 

II) b=1 and a=10,20,30,40,50,100 

III) increasing values of a and decreasing values of b 

IV) decreasing values of a and increasing values of b 

V) equal values of a and b but increasing from 1 to 50. 
 

 In each case the values of estimated Bayes frequencies are compared with the 

simulated values in Table 4.1. It discovered that the estimated Bayes frequencies were 

quite close to the simulated sample frequencies when a and b are equal and the variation 

in the Bayes frequencies are small. It is found that the 2 -values between the simulated 

sample frequencies and the estimated Bayes frequencies are least when a=b=2. 

 

Table 4.1 

Random sample of size n=200 from GGSD with θ=0.3 and β=2 

X  
Observed  

frequency 

Expected frequency 

Bayes estimate under 

Non-informative prior 

̂  

Bayes estimate 

under beta prior 
*

  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

≥10 

139 

25 

18 

07 

01 

01 

03 

02 

0 

0 

04 

140.00 

29.50 

12.40 

6.60 

4.01 

2.48 

1.65 

1.49 

0.83 

0.64 

0.40 

139.66 

29.56 

12.51 

6.66 

4.02 

2.58 

1.65 

1.50 

0.80 

0.65 

0.41 

Total 200 200 200 

 

 Mean = 0.755, Variance = 2.445 and *  = 0.301. The 2
3 3.2   with p = 0.362.  

The estimated frequencies obtained by the Bayes method based on non-informative and 

beta prior seem to be very close to each other. Accordingly, the 2 -values for the two 

methods are close to each other.  
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ABSTRACT 
 

 Negative moments of certain discrete probability distributions in terms of 

hypergeometric power series functions are obtained.  

 

KEY WORDS 
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1. INTRODUCTION 
 

 Recently negative moments have been studied by Roohi (2003) who obtained 

negative moments of some discrete distributions in terms of hypergeometric series 

functions. In this paper we have extended her work by considering further discrete 

probability distributions and expressed the moments in terms of newly defined 

generalized hypergeometric series function. 

  

2. NEGATIVE MOMENTS OF SOME DISCRETE DISTRIBUTIONS 
 

Theorem 2.1  
 

 Let X be a geometric-compound random variable, with parameters   and   having 

probability mass function (pmf)  
 

  
     

 

1 1
( )

x
P X x

x

      
 

   
, 0, 0, 1,2,....x   .  (2.1) 

 

 The negative moment of thk  order is given by 
 

   
   

     3 2 1, , ,1; 2, , 1 ;1
1

k

k
E X A H A k A k

A

 
       

 
,  (2.2) 

 

where 0A  . 

 

Proof: 
 

 Since X is a geometric-compound random variable with parameters   and   then  
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is a generalized hypergeometric series function with usual conditions (Ahmad, 2008). 
 

 If 1,k  then p q p qH F . 

 

 If 2,k  then p qH  is 2 2 1 1 2 2 1 1 2 2, , , ,..., , ; , , , ,..., , ;p q p p q qF a a a a a a b b b b b b z 
  , 

 

 In general .p q kp kqH F  

 

 If k s are different say ik , then 

1 1

.p q

i i
i i

p q
p k q k

H F

 


 

 

 If 1,k  then negative moment is  
 

   1
3 2( ) ( 1,1), ,1;( 2,1), ( 1);1

( 1)( )
E X A H A A

A

 
     

 
. 

 

Theorem 2.2 
 

 Let X be a beta-binomial random variable with parameters  , 0  ,  , 0   and 

pmf 
 

  
( ) ( ) ( )

( )
( )

n x n x
P X x

x n

        
   

    
, 0,1,2,...., ,x n    (2.3) 

 

Then the negative moment of  
thk order is given by 
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   0
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. 

 

Proof: 
 

 Suppose X is a beta-binomial random variable with parameters   and   then  
 

  
0

( ) ( ) ( )
( )

( ) ( )

n
k

k
x

n x n x
E X A

xn x A





      
   

   
 , 

   

( ) ( ) ( )
1

( ) ( 1) ( 1)

( 1) ( 1) ( )( 1) 1
... ,

2!( 1) ( 2) ( 1) ( 2)

k

k

k k

k k

n A n

A n A n

A A n n

A A n n

      
 

     

      
  

        

 

    0
3 2 ( , ), , ;( 1, ), 1;1

k

P
H A k n A k n

A
      . 

 

 If 1,k  then negative moment is  
 

   1 0
3 2( ) ( ,1), , ;( 1,1), 1;1

P
E X A H A n A n

A

       . 

  

Theorem 2.3 
 

 Let X be a hypergeometric random variable, with parameters a, 0a  , b, 0b   and 

pmf 
  

  ( )
a b a b

P X x
x n x n

    
      

    
, 0,1,2,....,min( , )x n a ,     (2.5) 

 

then the negative moment of  thk order is given by 
 

   0
3 2( ) ( , ), , ;( 1, ), 1;1k

k

P
E X A H A k a n A k b n

A

       , 0A     (2.6) 

 

where 0

!( )!
( 0)

( )!( )!

b a b n
P P X

b n a b

 
  

 
. 

 

Proof: 
 

 Suppose X is a hypergeometric random variable with parameters a and b then  
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0

1
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n
k

k
x

a b a b
E X A

x n x nx A
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( 1) ( )( 1) ( )( 1) 1
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2!( 1) ( 2) ( 1)( 2)

k

k k

k k
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b a b n A a n
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   0
3 2( ) ( , ), , ;( 1, ), 1;1k

k

P
E X A H A k a n A k b n

A

       . 

 

 If 1,k  then negative moment is  
 

   1 0
3 2( ) , , ; 1, 1;1

P
E X A H A a n A b n

A

       . 

 

Theorem 2.4 
 

 Let X be a Waring random variable, with parameters a, 2a  , ,c c a and pmf 
 

  
( )( 1)!( )!

( )
( 1)!( )!

c a a x c
P X x

c a c x

  
 

 
, 2, 0,1,2,....c a x        (2.7) 

 

then the negative moment of thk order is given by 
 

   0
3 2( ) ( , ), ,1;( 1, ), 1;1k

k

P
E X A H A k a A k c

A

    , 0A  ,     (2.8) 

 

where 0

( )
( 0)

c a
P P X

c


   . 

 

Proof: 
 

 Suppose X is a Waring random variable with parameters a and c then  
 

  
0

!( ) 1 ( 1)!
( )

( 1)! ( )!( )

k

k
x

c c a a x
E X A

c a c xx A






  
 

 
 , 

 

   
( ) ( ).1 ( 1) ( )( 1).1.2 1

1
2!( 1) ( 1) ( 1) ( 2) ( 1)( 2)

k k k

k k k k

c a A a A A a a

A c A c A A c c

   
     

       

, 

 

   0
3 2( ) ( , ), ,1;( 1, ), 1;1k

k

P
E X A H A k a A k c

A

    . 

 

 If 1,k  then negative moment is  
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   1 0
3 2( ) , ,1; 1, 1;1

P
E X A H A a A c

A

    . 

 

Corollary 2.1 
 

 If 1a  , the Waring function reduces to Yule probability function and Waring results 

holds for Yule function. 

 

Theorem 2.5 
 

 Let X be a random variable having Poisson-binomial distribution with parameters  

n and ,0 1p p  , , 0a a   and pmf  
 

  
0

( ) (1 )
!

m
a x nm x

m

nma
P X x e p p

xm


 



 
   

 
 , ( , )n m  , 0,1,2,....,x nm . (2.9) 

 

 The negative moment of thk order is given by 
 

  2 1
0

( ) (1 ) ( , ), ;( 1, );
! 1

a m
k nm

k
m

e a p
E X A p H A k nm A k

m pA

 




 
     

 
 , 0A   , 

                       (2.10) 
 

Proof: 
 

 Suppose X is a Poisson-binomial random variable and negative moment of first order 

is given by 
 

  
0 0

1
( ) (1 )

!( )

mnm
k a x nm x

k
x m

nma
E X A e p p

xmx A


  

 

 
   

  
  , 
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(1 ) 1

! 1( 1)
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,

1( 1) ( 2) 2!

a m k
nm

k k
m

k k

k k

e a A nm p
p

m pA A

A A nm nm p
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  2 1
0

( ) (1 ) ( , ), ;( 1, );
! 1

a m
k nm

k
m

e a p
E X A p H A k nm A k

m pA

 




 
     

 
 . 

 

If 1,k  then negative moment is  
 

  
1

2 1
0

( ) (1 ) ( ,1), ;( 1,1);
! 1

a m
nm

m

e a p
E X A p H A nm A

A m p

 




 
     

 
 . 
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Corollary 2.2 
 

 Let X be a random variable having Hermite distribution with parameters ,0 1p p   

and a, 0a  , having pmf 
  

  2

0

2
( ) (1 )

!

m
a x m x

m

ma
P X x e p p

xm


 



 
   

 
 , m  , 0,1,2,....,2x m .  (2.11) 

 

 The negative moment of thk order is given by (2.10) when 2n  .  
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ABSTRACT 
 

 Ahmad (2007b) has recently defined a generalized hypergeometric series function and 

referred to it as a hypergeometric power series function or r sH -function which is an 

alternative notation for the r sF -function, the r sH  notation has advantages when the 

arguments are large and parameters are repeated and discussed the some basic properties. 

In this paper further properties of the hypergeometric power series functions have been 

developed. 

 

KEY WORDS 
 

 Generalized hypergeometric series function; hypergeometric power series function; 

poission distribution; hyper poisson; negative moments.  

 

1. INTRODUCTION 
 

 Ahmad (2007a) has discussed the Conway-Maxwell Poisson distribution and 

Conway-Maxwell Hyper Poisson (CMHP) distribution. The structure of CMP and  

CMHP distributions shows that a more general definition of the hypergeometric series 

function is needed. When a large number of identical parameters are introduced in the 

generalized hypergeometric series function, its notation becomes cumbersome. Use of 

generalized hypergeometric series function is sometimes difficult and time consuming 

especially when we have a large number of parameters. We take powers on those 

parameters which are repeated and as such Ahmad (2007b) has introduced an alternative 

form of a hypergeometric series function called hypergeometric power series function or  

r sH -function. (See also Saboor, 2007). 

 

1.1 Definitions 
 

 The hypergeometric power series function or r sH -function is defined as  
 

              1 1 2 2 1 1 2 2, , , ,..., , ; , , , ,..., , ;r s r r s sH a m a m a m b n b n b n z           
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j
ij
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i
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,       
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where , 1, 0, 1, 2,...k ja R z b     , ,j kn m  are positive integers. 
 

1. If 
1 1

r s

j k
j k

m n
 

  , the r sH -function converges for all finite z ; 

 

2. If 
1 1

1
r s

j k
j k

m n
 

   , the r sH -function converges for 1z   and diverges for 

1z  ; 
 

3. If 
1 1

1
r s

j k
j k

m n
 

   , the r sH -function diverges for 0.z   

 

When all  and  r sm n  are equal to 1, then r sH  becomes  
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1 2 1 2
0

1

, ,...., ; , ,..., ;
!

r

ik i
k

r s r s s
i

j
i

j

a
z

F a a a b b b z
i

b








 
 

  
 
 







, 

 

where ka R ,  1 ,1k r j s     and 0, 1, 2,......., 1.jb z     

 

2. PROPERTIES OF r sH -FUNCTION 
 

 We have discussed some basic properties of the r sH -function and developed 

different types of recurrence relationships, which are as follows: 

 

Theorem 2.1: 
 

 Let    Re 0, Re 0m n   and 0, 1, 2,...b    . If 1z   and ( , )m n
 
is the beta 

function, then  
 

   
1

-1 -1

1 1

0

(1- ) ( , );( , ); )m nt t H a r b s t z dt  

 

    2 2( , ) ( , ),( ,1);( , );( ,1),m n H a r m b s m n z   .           (2.1) 

 

Proof: 
 

 Expanding  1 1 ( , );( , );H a r b s t z in (2.1), we have 
 

  
 

 

1
1 1

00

( )
(1 )

!( )

r k k
km n

s
k

k

a t z
t t dt

kb


 



  =
 

 0

( ) ( ) ( )

! ( )( )

r k
k

s
k

k

a z m k n

k m n kb





  


  
,   1z  .     (2.2)  

 

 After a simple algebra we obtain R.H.S of (2.1).  
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Theorem 2.2: 

 Let neither c  nor d  be zero or a negative integer. If 1   and 1, 1,
z

t z  


0  , 

then                  
 

   1

2 2 1 2 1 2

0

H (a,m ),(b,m );(c,n ), (d,n );te t z t dt 


  

   
 

 
3 2 1 2 1 2( , ),( , ),( ,1);( , ),( , ); /H a m b m c n d n z



 
   


  .        (2.3)      

 

Proof: 

  
     

   

1 2

1 2

1

00

. . .

!

m m i

i it

n n
i

i i

a b z t
L H S e t dt

c d i

 
 



   
   


   
   

 .           (2.4)             

 

 Let t v   and after taking integral, we get R.H.S of (2.6).  
 

 Similarly we obtain 
 

  
/ -1

1 1 1 1

0

[( , );( , ); ] ( ) [( , 1);( , ); ]t z a ae H a r b s t t dt z a H a r b s z


    ,            (2.5)  

 

when 0, 1, 2,....b    . If 1z  .       

 

Theorem 2.3: 
 

 i) Let 
1 1 3

,0, , ,....
2 2 2

a    . If 1z  , then 

 

      1 1 1 1( / 2,2); -1/ 2,1 ; ( / 2,2); 1/ 2,1 ;H a a z H a a z        
 

      1 2 ( ,3);(2 -1,1), 1/ 2,1 ;H a a a z                (2.6)                                          
 

Similarly we find 
 

 ii)     1 1

2

1 2( / 2,2);( 1/ 2,1); ( ,3);(2 ,1),( 1/ 2,1);H a a z H a a a z   ,      (2.7) 

 where 
1 3

0, , 1, , 2....
2 2

a      . If  1z  . (see Clausian, 1828). 

 

 iii) 1 0 1 0[( ,2);-; ] [( ,2);-;- ]H a z H a z   2

3 1
( , 2), ( ,1), (2 1) / 2,1 ;(2 ,1);4H a a a a z  
  ,    (2.8)  

 where 0, 1/ 2, 1, 3 / 2,.... a     . If 1z  . 
 

Proofs are trivial. 
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3. NEGATIVE MOMENTS OF SOME DISCRETE  

PROBABILITY FUNCTIONS 
 

 We now consider the negative moments of the form ( ) , 0kE X A k  , for some 

discrete distributions.  

 

Theorem 3.1:  
 

 Let X be a geometric-compound random variable, with parameters    and   having 

probability mass function (pmf)  
 

 
( ) ( 1) ( 1)

( )
( ) ( ) ( )

x
P X x

x

      
 

     
, 0, 0, 1,2,...x   .            (3.1) 

 

 Then the negative moment of thk  order is given by 
 

   
( 1) ( )

k

k
E X A

A

 
 

 
 3 2 ( 1, ),( ,1),(1,1);( 2, ),( 1,1); 1H A k A k    .  

                          (3.2) 

Proof: 

 The thk  negative moment of (3.1) is  
 

  
-

1

( ) ( 1) 1 ( -1)
( )

( ) ( ) ( )( )

k

k
x

x
E X A

xx A





     
  

     
      

 

 After some algebraic computations, we get (3.2).  

 

Theorem 3.2:  
 

 Let X be a beta-binomial random variable, with parameter 0  , 0   and 

probability mass function  
 

  
( ) ( ) ( - )

( )
( ) ( ) ( )

n x n x
P X x

x n

        
   

      
, 0,1,2,...., .x n                  (3.3) 

 

 Then the negative moment of thk  order is given by 
 

   0
3 2( ) ( , ), ( ,1), ( ,1);( 1,1), ( 1,1); 1 ,k

k

P
E X A H A k n A n

A

            (3.4)  

 

where 0

( ) ( )
( 0) .

( ) ( )

n
P P x

n

   
  

   
 

 

 Following the procedure of theorem 3.1, we obtain (3.4). 
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Theorem 3.3:  
 

 Let X be a Waring random variable, with parameters a, 2a  , ,c c a  and pmf  
 

  
( )( 1)!( )!

( )
( 1)!( )!

c a a x c
P X x

c a c x

  
 

 
, 2, 0,1,2,....c a x   .  

 

 Then the negative moment of thk  order is given by 
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3 2( ) ( , ), ( ,1), (1,1); ( 1, ), ( 1,1); 1 ,k

k

P
E X A H A k a A k c

A

           (3.5)       

 

where 0

( - )
( 0)

c a
P P X

c
   , 0A  . 

 

Proof is trivial.  

 

Theorem 3.4: 
 

 Let X be a truncated Poisson random variable, with parameter λ , λ > 0  and pmf 
 

  ( )
( -1) !

x

P X x
e x


  , 0, 1,2,....X   .            

 

 Then the negative moment of the th

k order is given by 
 

   
 

        1
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1

k
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P
E X A H A k A k
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,   (3.6)       

 

where 1 ( 1)
( -1)

P P X
e


   , 0A  . 

 

Theorem 3.5: 
 

 Let X be a truncated binomial random variable, with parameters n and , 0 1p p  , 

and pmf  
 

  
1

( )
(1 )

x n x

n

n
P X x p q

xq

 
   

  
, 1,2,....,nx  , 1q p  . 

 

 Then the negative moment of thk  order is given by 
 

  1
3 2( ) ( 1, ), (1,1), ( 1,1); ( 2, ), (2,1);

( 1)

k

k

P p
E X A H A k n A k

qA

  
      

  
.  (3.7)                

 

4. SUMMATION OF r sH -FUNCTIONS 
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 Ahmad and Roohi (2004, 2005) have derived the sum of some combinations of 

hyoergeometric series functions using the binomial and logarithm probability functions. 

In this section, we have derived another set of sum of some combinations of 

hypergeometric power series function using Dacey (1972) probability function. Ahmad 

and Roohi (2004, 2005) summations of series become its special cases. 

 

4.1 Lemma (Gould, 1972) 
 

 For , ia b , 0, 1, 2,...jc    and some k ,  

 

   
1

1 2 1 1 1
1

1 , , ,..., ; 1, ,...., ;
k s

r s r s
s

k
F a b b b a c c z

s



 


 
     

 
  

        1 2 1 1 1[1, , ,..., ; 1, ,...., ; ]r s r sF b b b k c c z   , 
 

where r sF  is a hypergeometric series function with usual conditions for convergence. 

 

Theorem 4.1: 
 

 Let 0, 1, 2,...b    or 0.a   If 1s  , 1k   and 0 1   . Then  
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2 2
1

1 ( ,1), ( , );( 1,1), ( , );
k s

s

k
H s a h s b m

s





 
   

 
  

        2 2 (1,1),( , );( 1,1),( , );H a h k b m                        (4.1)                                                                     

 

Proof: 
 

 We have (4.1) as a repeated case of Lemma (4.1). Alternatively suppose X is a 

discrete random variable with probability function (See Dacey, 1972). 
 

     ( , );( , ) ; 0,1,2,...
!

x

xP X x
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a h b m x
x


    ,           (4.2)                                 

 

where 
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It is known that  
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1 1

( 1) 11
, 0, 1,2,3,...
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s s

x k
X s k s s x s



 

 
    

    
 , (See Jones, 1987). 

 

 Using the definition of mathematical expectation    
0x

E X xf x




  , we get 
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.                (4.3)               
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Now  
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 It thus follows from (4.3) that 
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 Also,  
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                 (4.5)              
 

(4.4) and (4.5) imply (4.1). 
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ABSTRACT  
 

 In this paper, some size-biased probability distributions and their generalizations have 

been introduced. These distributions provide a unifying approach for the problems where 

the observations fall in the non-experimental, non- replicated, and nonrandom categories. 

These distributions take into account the method of ascertainment, by adjusting the 

probabilities of actual occurrence of events to arrive at a specification of the probabilities 

of those events as observed and recorded. Failure to make such adjustments can lead to 

incorrect conclusions. This paper surveys some of the possible uses of size- biased 

distribution theory to some real life data.  

 

KEY WORDS 
 

 Size-biased discrete distributions; generalized size-biased discrete distributions;  

Chi-square; Akaike Information Criterion; Bayesian Information Criterion; R-Software. 

 

1. INTRODUCTION 
 

 Size-biased distributions are a special case of the more general form known  

as weighted distributions. Fisher (1934) introduced these distributions to model 

ascertainment bias and were later formalized in a unifying theory by Rao (1965). These 

distributions arise in practice when observations from a sample are recorded with unequal 

probability and provide a unifying approach for the problems where the observations fall 

in the non-experimental, non- replicated, and non-random categories. If the random 

variable X has distribution  ;f x  , with unknown parameter  , then the corresponding 

size-biased distribution is of the form 
 

   
 * ;

;
x f x

f x






 


,               (1.1) 

where   

  
 =  ;x f x dx  .                (1.2) 

 

 When 1 and 2  , we get the simple size-biased and area-biased distributions 

respectively. Here in this paper, only size-biased distributions are considered as these are 

simple to calculate and moreover, the examples deal with size-biased sampling. 
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 Warren (1975) was the first to apply them in connection with sampling wood cells. 

Van Deusen (1986) arrived at size-biased distribution theory independently and applied it 

to fitting distributions of diameter at breast height (DBH) data arising from horizontal 

point sampling (HPS) (Grosenbaugh, 1958) inventories. Subsequently, Lappi and Bailey 

(1987) used weighted distributions to analyze HPS diameter increment data. More 

recently, these distributions were used by Magnussen et al. (1999) to recover the 

distribution of canopy heights from airborne laser scanner measurements. In ecology, 

Dennis and Patil (1984) used stochastic differential equations to arrive at a weighted 

gamma distribution as the stationary probability density function (PDF) for a stochastic 

population model with predation effects. In fisheries, Taillie et al (1995) modeled 

populations of fish stocks using weighted distributions. Most of the statistical 

applications of weighted distributions, especially to the analysis of data relating to human 

populations and ecology, can be found in Patil and Rao (1977, 1978). Gove (2003) 

reviewed some of the more recent results on size-biased distributions pertaining to 

parameter estimation in forestry, with special emphasis on the weibull family. Mir (2007) 

also discussed some of the discrete size-biased distributions.  
 

 In this paper, some of the results and estimation on size -biased discrete distributions 

and of their generalized form have been used to real life data and their comparisons have 

been made with the help of Pearson’s Chi-square, Akaike Information Criterion (AIC) 

and Bayesian Information Criterion (BIC) techniques. For computation purposes  

R- software has been used.  

 

2. SOME SIZE-BIASED DISTRIBUTIONS 
 

 In this section, we have obtained some basic size-biased discrete distributions by 

using equations (1.1) and (1.2). 

 

2.1 Size-biased Binomial Distribution (SBBD) 
 

 The probability mass function of binomial distribution (BD) is given as 
 

    [ ] ( )  n x n x
xP X x p x p q    ; x = 0,1,2,, n.        (2.1) 

 

       We know that  
0

 
x

x P X x np




  , which on solving gives a size-biased binomial 

distribution (SBBD) as 
 

  P   11
   ; x 1,2......

1

x n xn
x x p q

x

  
   

 
          (2.2) 

 

2.2 Size-Biased Poisson Distribution (SBPD)  
 

 The probability mass function of the Poisson distribution (PD) is given as  
 

  
1

1( )
[ ]

!

xe
P X x

x

 
  ; x = 0, 1, 2,  and 1 > 0.         (2.3) 
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 Here   1
0

 
x

x P X x




   , which on solving  gives size-biased Poisson distribution 

(SBPD) as 
 

   
 

11
1 ;  x 1,2......

1  !

x e
P X x

x


  


             (2.4) 

 

2.3 Size-biased Negative Binomial Distribution (SBNBD) 
 

 The probability mass function of the negative binomial distribution (NBD) is given by 
 

  
1

[ ]      ( )
    1   x

r x r xx r r
P X x p q p q

r

     
      

   
; x=0,1, 2….      (2.5) 

 

where parameters satisfy q = 1  p and 0 < p < 1 and x = 1, 2, 3 … 
 

 Here,  
0

. .
n

x

rq
x P X x

p

   This gives size-biased negative binomial distribution 

(SBNBD) as 
 

    r 1 x-11
 p  q  ;  x 1,2,.....

   1

x r
P X x

x

  
   

 
          (2.6) 

 

2.4 Size-Biased Logarithmic Series Distribution (SBLSD) 
 

 The probability mass function of logarithmic series distribution (LSD) is given by 
 

  
x1

[ ]    
[log (1 )]

P X x
x


  


 ; x = 1,2          (2.7) 

 

 Here,  
 1

1
. .

log(1 ) 1x

x P X x




 
 

 
  This gives the size-biased logarithmic series 

distribution (SBLSD) as 
 

     1 1  ; x 1,2......xP X x                  (2.8) 

 

3. SIZE-BIASED GENERALIZED DISCRETE DISTRIBUTION 
 

 In this section, we have obtained size-biased generalized discrete distributions by 

using equations (1.1) and (1.2). 

 

3.1 Size-biased Generalized Negative Binomial Distribution (SBGNBD) 
 

 Jain and Consul (1971) defined the probability function of generalized negative 

binomial distribution (GNBD) as 
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x( )

[ ]  (1 ) ;  0,1,2....
! ( 1)

m x xm m x
P X x x

x m x x

  
    

   
    (3.1) 

 

         0;   Otherwise  
 

where 0 1,  0a m    and 
-10 or 0       and t is the largest positive integer for 

which  1 1 0m t    .  
 

  
(1 )

E x
m




. On solving the equation
0

( )
(1 )x

m
x P X x






  


 , we obtain  

the probability function of size biased generalized negative binomial distribution 

(SBGNBD) as  
 

       11
1  1  ;  x 1,2....

   1

m x xxm x
P X x α

x

   
      

 
     (3.2)  

 

where 0 1, m 0, 0 1,       
 

 At 0 and 1    , we get size- biased binomial distribution (2.2) and size-biased 

negative binomial distributions (2.6) respectively.  

 

3.2 Size-Biased Generalized Poisson Distribution (SBGPD) 
 

 Consul and Jain (1973) defined the probability mass function of generalized Poisson 

distribution (GPD) as 
 

  
1

1 1 1(  )  Exp [ (  )]
[ ]    

x!

xx x
P X x

       
  ; x = 0, 1, 2,…    (3.3) 

 

 Here E(x) =
 

1

1




. On solving the equation  

 
1

0

.
1x

x P X x





 


 , the probability 

function of a size-biased generalized Poisson distribution (SBGPD) is given as 
 

   
    

 

1

1 11 ( )
;  1,2,.....

1  !

x
x EXP x

P X x x
x


       

  


     (3.4) 

                       1 1 11, 1        
 

 At 0  , we get size-biased Poisson distribution (2.4). 

 

3.3 Size-Biased Generalized Logarithmic Series Distribution (SBGLSD) 
 

 A generalized logarithmic series distribution (GLSD) was given by Jain and Gupta 

(1973) with probability function as 
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  x x x1 ( x)
[ ]     (1 )

log(1 ) x! ( x x 1)
P X x   

    
    

; x =1,2,3,   (3.5) 

     0 <  < 1, 1  .  Also 
log(1 )

1

α
μ

(1 αβ)


 

 
. 

 

 On solving the equation  
0

.
log(1 )x

α
x P X x

(1 αβ)






 

 
 , the probability function 

of size-biased generalized logarithmic series distribution (SBGLSD) is given as  
 

       11
1  1 ;  x 1,2.....

1

x xxx
P X x

x

   
      

 
      (3.6) 

 

 At 1  , we get size-biased logarithmic series distribution (2.8).  

 

4. ESTIMATION OF PARAMETERS 
 

 In this section, we estimate the parameters of the generalized distributions only and 

for classical ones we can get easily as their particular cases. 

 

4.1 Estimation of Parameters in Size-biased Generalized Negative Binomial 

Distribution  
 

 The likelihood function of SBGNBD (3.2) can be given as  
 

     1
1 1

1

1
1 1

   1

n
n n

i
i ii

i i

x nnn mn x xi

i i

m x
L

x


 


 



        
 

   

        1 1
n mn y yy nK

     ,           (4.1) 
 

where 
1

     K
n

i
i

y x and


   
1

1

   1

n
i

i i

m x

x

  
 

 
 . 

 

 Since 0 1   , therefore we assume that prior information about α come from beta 

distribution. Thus  
 

   
 

 

11 1
;  0 1

,

ba

f
B a b

 
     .            (4.2) 

 

 The posterior distribution from (4.1) and (4.2) can be written as 
 

   /  y 
   

   

11

1
11

0

1 1

1 1

n mn y y by a n

n mn y y by a n d

     

     

  

   

.       (4.3) 

 

 The Baye’s estimator of z  is the posterior mean and is given as 
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1

0

ˆ  /y  z z d    

   

   

1
11

0

1
11

0

1  1

1 1

n mn y y by a n z

n mn y y by a n

d

d

      

     

   



   





   (4.4) 

 

    
1

11

0

1  1
n mn y y by a n z d

              

     
 

2
1F , , ,

=
y a n z y mn b y n y a n z y mn a b n z

y mn a b n z

                   

      
(4.5) 

and  

    
1

11

0

1  1
n mn y y by a n d

          

  = 
     

 

2
1F , , ,y a n y mn b y n y a n y mn a b n

y mn a b n

                

     
,  (4.6) 

 

where 
2 2

1

( 1) ( 1)
F [ ; ; ; ] 1 .......

( 1)2!

ab a a b b
a b c x x x

c c c

 
  


 

 

 Putting these values in equation in (4.4), the Baye’s estimator of z  is obtained as 
 

  

   

 
   

 

2
1

2
1

  y mn a b-n  

F , , ,
ˆ

    

F , , ,

z

y a n z

n y a n z y mn a b n z

y a n y mn a b n z

n y a n y mn a b n

        

          
 

         

        

.      (4.7)  

 

 For z=1, we get the Baye’s estimator of   as 
 

  
   

   

2
1

2
1

  F , 1, 1,
ˆ

   F , , ,

y a n n y a n b mn y n a

y mn a b n n y a n b mn y n a

           
 

            
.    (4.8) 

 

 For 1 and 0  , we get the Baye’s estimate for the size-biased negative binomial 

(2.6) and size-biased binomial (2.2) models which are given by (4.9) and (4.10) 

respectively. 
 

  ̂ 
y a n

y mn a b

 

  
                 (4.9) 

and  

  ̂ 
y a n

mn a b n

 

  
.                (4.10) 
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4.2 Estimation of Parameters in Size-biased Generalized Poisson Distribution  
 

 The estimation becomes tedious in this distribution when taking Bayesian or MLE 

estimation method into consideration. Mishra and Singh (1993) obtained the moment 

estimators in case of size-biased generalized Poisson distribution (3.4) by letting 

1   . The mean and variance of SBGPD can be expressed as 
 

   
 1

1 2

1 
 


                  (4.11)  

  
  1

2 4

2 1     
 


.                (4.12) 

 

 This gives an equation in θ as 
 

  4 2
2 1 2 1 0       .               (4.13) 

 

 Replacing 1   and 2  by the corresponding sample values x  and 2S  respectively, 

we get 
 

  2 4 2 2 1 0S x      .                (4.14) 
 

 It is a polynomial of degree four and can be solved using the Newton-Raphson 

method and so an estimate of 1  can be obtained. An estimate of 1  is then obtained as  

  

 2

1

ˆ 1
ˆ

ˆ

x 
 


.                  (4.15)  

 

 The moment estimate for size-biased Poisson distribution can be obtained easily by 

putting 1   in (4.15). 

 

4.3 Estimation of Parameters in Size-biased Generalized Logarithmic Series 

 Distribution  
 

 In this sub-section, we have introduced the Bayesian estimation of size-biased GLSD.  

The likelihood function of SBGLSD (3.6) is given as  
 

       1
1 1

1

   1
; , 1   1

    1

n
n n

i
i ii

i i

x nnn x xi

i i

x
L x
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        1 1
n y yy nk

     ,           (4.16) 
 

where 
1

  and   k
n

i
i

y x


   
1

 1

  1

n
i

i i

x

x

  
 

 
 . 

 

 Since 0 1   , therefore we assume that prior information about α when   is known 

is from beta distribution. 
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 Thus  
 

   
 

 

11 1
;  0 1

,

ba

f
B a b

 
      , a>0, b>0.         (4.17) 

 

 The posterior distribution from (4.16) and (4.17) can be written as 
 

   /  y 
   

   

11

1
11

0

1 1

1 1

n y y by a n

n y y by a n d

     

     

  

   

.       (4.18) 

 

 The Bayes estimator of z  is given as 
 

    
1

0

ˆ  /y  z z d      

   

   

   

1
11

0

1
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0

1  1

1 1

n y y by a n z

n y y by a n
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,        (4.19) 

where 

     
1

11

0

1  1
n y y by a n z d

           

   
     

 

2
1F , , ,

=
y a n z y b y n y a n z y a b n z

y a b n z

                 

     
 (4.20)  

and  

     
1

11

0

1  1
n y y by a n d

          

   =
     

 

2
1   F , ,  ,y a n y b y n y a n y a b n

y a b n

              

    
.   (4.21) 

 

 Putting these values in equation in (4.19), the Baye’s estimator of 
z  is obtained as 

 

  
     

     

2
1

2
1

  y a b-n  F , , ,
ˆ

    F , , ,

z
y a n z n y a n z y a b n z

y a n y a b n z n y a n y a b n

                 
 

                
. 

                       (4.22) 
 

 For z=1, we get the Baye’s estimator of   as  
 

  
   

   

2
1

2
1

  F , 1, 1,
ˆ

   F , , ,

y a n n y a n y a b n

y a b n n y a n y a b n

           
 

           
.      (4.23) 
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 For 1,   we get the Baye’s estimate of the size-biased logarithmic series 

distribution (2.8) as  
 

  ˆ
y a n

y a b

 
 

 
.                  (4.24) 

 

5. APPLICATIONS OF SIZE-BIASED DISTRIBUTIONS 
 

 The following examples are used to illustrate a few situations generating size-biased 

distributions and their applications. R-software has been used to facilitate the use of size-

biased distributions to real life data. With the help of R, we can fit two- and three-

parameter probability distributions.  It computes the moment, Mle and Baye’s estimates. 

Results are presented in the tables 1-5. 

 

5.1. Data in Table 1 is regarding the defective teeth in 14 year old boys having at least 

one affected teeth. 

 

Table 1 

Number of 

Teeth affected 
1 2 3 4 5 6 7 8 9 10 11 12 Total 

Number of Boys 47 43 35 28 15 20 5 5 2 1 2 1 204 

 

 Since in the above data set no boys were found having zero teeth affected, therefore 

this indicates that the data can not be adequately described by a Poisson distribution and 

instead we should look for size-biased Poisson distribution (2.4).  Moreover, the index of 

dispersion 
 

2

ix x
I

x





 given by Selby (1965) comes out to be 302, giving a unit 

normal deviate of 4.95.  For simple Poisson distribution the index of dispersion would  

be larger because of the frequency of zero-class group, which substantiates the use of 

size-biased Poisson distribution to above data. 

 

5.2. We have fitted the models (2.8) and (3.6) to the data given in tables (2) and (3) by 

P.Garman (1923) and Student (1907) on counts of the number of European red mites on 

apple leaves and yeast cell counts observed per mm square respectively. For the choice of 

values of (a, b) in Baye’s estimator, since there was no information about their values 

except that they are real and positive numbers. Therefore 25 combinations of values of  

(a, b) were considered for a, b=1, 2,3,4,5 and those values of a, b were selected for which 

the Baye’s estimator   has minimum variance. It was found that for a=b=2 and  =2.0, 

the Baye’s estimator has minimum variance and 2 values between the simulated sample 

frequencies and the estimated Baye’s frequencies were the least.   
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Table 2 

No. of mites 

per leaf 

Leaves 

Observed 

Expected Frequency 

SBLSD SBGLSD 

1 

2 

3 

4 

5 

6 

7 

≥8 

38 

17 

10 

9 

3 

2 

1 

0 

32.36 

23.56 

10.25 

7.36 

2.95 

1.46 

1.65 

0.41 

31.92 

17.56 

10.53 

7.66 

4.83 

3.38 

2.40 

1.72 

Total 80 80.00 80.00 

2   2.91 2.44 

AIC  285 226 

BIC  294 246 

̂   0.2568 0.407 

 

Table 3 

No. of cells per 

mm square (mm
2
) 

Observed 

Frequency 

Expected Frequency 

SBLSD SBGLSD 

1 

2 

3 

4 

5 

> 6 

128 

37 

18 

3 

1 

0 

130.43 

36.09 

14.56 

3.54 

1.84 

0.54 

129.56 

37.12 

15.02 

3.02 

1.02 

1.26 

Total 187 187.00 187.00 

2   1.5035 0.929 

AIC  310 285 

BIC  321 301 

̂   0.422 0.455 

 

5.3. Data in table 4 shows the number of mothers (fx) in Srilanka having at least one 

neonatal death according to number of neonatal deaths (x) [Meegama (1980)]. The 

models (2.6) and (3.2) have been fitted to this data for a=b=2 and  =0.5 
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Table 4 

X fx 

Expected Frequency 

SBNBD SBGNBD 

1 

2 

3 

4 

5 

567 

135 

28 

11 

5 

548.38 

164.51 

28.79 

3.84 

0.48 

537.22 

165.03 

35.65 

6.69 

1.41 

Total 746 746 746 
2   37.52 16.45 

AIC  295 234 

BIC  308 255 

̂  

̂  
 

0.05 

 

0.04 

0.5 

 

5.4. Data set in table 5 showing the number of workers Ni having i accidents. The models 

(2.4) and (3.4) have been fitted to this data. 

 

Table 5 

i Ni 
Expected Frequency 

SBPD SBGPD 

1 

2 

3 

4 

5 

2039 

312 

35 

3 

1 

2034.27 

319.48 

33.45 

2.63 

0.17 

2039.83 

309.76 

36.38 

3.66 

0.37 

Total 2390 2390.00 2390.00 

2   0.772 0.069 

AIC  594 321 

BIC  704 365 

1̂  

̂  
 

0.3141 

 

0.2631 

0.0912 

 

6. DISCUSSION AND CONCLUSION 
 

 The discussion on estimation and applications of size-biased distributions to this point 

demonstrates that they both have a solid theoretical underpinning and practical use to real 

life data. From AIC and BIC fit measures the proposed size-biased models appear to offer 

substantial improvement in fit over simple classical and simple generalized models. Also 

the fitting in these tables reveal that the size-biased distributions provide us better fits in 

the situations where zero-class is missing and simultaneously it has been shown that the 

generalized form of these distributions give generalized results in comparison to   

classical ones. 
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ABSTRACT 
 

 The geometric Poisson (also called Pólya-Aeppli) distribution is a particular case of 

compound Poisson distribution. In this article we prove that geometric Poisson 

distribution (GPD) is infinitely divisible, not log-concave, unimodal and also obtain its 

survival function. Moreover, first order negative moment of GPD is given and finally its 

characterization is done via recursive relation of factorial moments. 

 

KEYWORDS 
 

 Infinite divisibility; log-concavity; unimodality; survival function; negative moment; 

recursive relation; characterization. 

 

1.INTRODUCTION 
 

 The geometric Poisson (or Pólya-Aeppli) distribution is a particular case of classical 

compound Poisson distribution where the contribution of each term is distributed 

according to the geometric distribution. In real life situations, it has many applications 

appear in the literature. Randolph and Sahinoglu (1995) presented the application of 

geometric Poisson distribution for control of defects in software, and Chen et al. (2005) 

developed the geometric Poisson CUSUM control scheme for the process control. Robin 

(2002) and Robin et al. (2007) modeled it for the distribution of overlapping word 

occurrences. Rosychuk et al. (2006) used it to model DNA substitution. This model 

assumed that substitution events were Poisson distributed in time and the number of 

substitutions associated with each event was geometric distributed. Özel and Ìnal (2010) 

presented its application to traffic accidents data. 
 

 Johnson et al. (1992) derived a linear formula to compute the probabilities of the 

compound Poisson distribution that can be simplified in the geometric Poisson case. Nuel 

(2008) obtained recurrence relation for the GPD using Kummer’s confluent geometric 

function. Since some terms could be out of the machine range and set to zero, an algorithm 

has been prepared for the logarithmic version of the cumulative distribution function for the 

GPD. However, a direct formula and an algorithm have not been obtained for the 

probability function of the GPD. Özel and Ìnal (2010) derived the explicit probability 

function of the GPD and obtained an algorithm for the computation of the probabilities. Ata 

and Özel (2012) derived the survival functions for the geometric-Poisson process and other 

class of compound Poisson process. Özel (2013) provided the moments, cumulants, 

                                                 
*
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skewness, kurtosis and covariance of the univariate compound Poisson process including 

Pólya-Aeppli process or geometric Poisson process as special case. 
 

 Although many studies have already been done using the GPD but the question of its 

infinite divisibility, log-concavity (strong unimodality), unimodality have not been 

addressed. The property of unimodality is very important for many decomposition 

problems of probabilistic and statistical nature as indicated in the well-known book by 

Medgyessy (1977) and by Steutel and Van Harn (1979). Many discrete distributions on 

the lattice of integers have a unimodal character for which comparable results may be of 

interest. Unimodality is also of interest in connection with optimization and mathematical 

programming. Arguments involving unimodality have been used quite often in statistical 

inference. When applying the method of maximum likelihood for the estimation of 

parameters, the unimodality of the likelihood function often facilitates the required 

computation. In general, most of the likelihood functions can be shown to be unimodal 

with respect to the parameters involved. Some inequalities depend on unimodality like, 

Gauss's inequality, Vysochanskiï–Petunin inequality. The recurrence of symmetric 

random walks involves the concepts of unimodality and peakedness comparisons. 
 

 Kielson and Gerber (1971) have proved a number of results on the strong unimodality 

of discrete distributions. A necessary and sufficient condition that the sequence xp  be 

strongly unimodal is that xp  be log-concave, i.e.  
2

1 1x x xp p p   for all values of x . 

But this does not seem to apply to the GPD. However, we use Theorem-1 in Hansen 

(1988) to prove that GPD is not log-concave (strongly unimodal) and prove that GPD is 

unimodal using lemma by Steutel and Van Harn (1977). Consul and Famoye (1986) use 

the same lemma for proving the unimodality of generalized Poisson distribution. 
 

 In this study, we provide a recursive formula for computation of probabilities of GPD 

and prove that GPD is infinitely divisible, not log-concave (strongly unimodal), unimodal 

and obtain its survival function. Moreover, first order negative moment of GPD is given 

and finally, characterize it via recursive relation of factorial moments. In Section 2, we 

present some basic definitions and lemmas that will be used in subsequent sections. 

Section 3 deals with infinite divisibility and in Section 4 we prove that GPD is not 

strongly unimodal. Section 5 addresses the unimodality of GPD. Survival function is 

obtained in Section 6 and first order negative moment of GPD is given in Section 7. In 

Section 8, a characterization theorem based on the recursive relation of factorial moments 

is given. The conclusion is given in Section 9. 

 

2. PRELIMINARIES 
 

 In this section, we present some basic definitions and lemmas that will be used in the 

subsequent sections. 

 

Definition 2.1 
 

 Let N  be a Poisson random variable with parameter 0   and let , 1,2,3,....iY i   be 

i.i.d random variables, independent of N . Then, X  has a compound Poisson distribution 

if it is defined as 
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1

N

i
i

X Y


  .                  (1) 

 

 If     2, , 1,2,3,....i iE Y V Y i     , the expected value and variance of X  are 

     2 2,E X V X      , respectively. 

 

Lemma 2.1 
 

 The probability function of X  is given by 
 

         1 2
0

, 0,1,2,...X n
n

p k P X k P Y Y Y k N n P N n k




          (2) 

 

 The GPD stated by Johnson et al. (1992) as in Lemma 2.2. 

 

Lemma 2.2 
 

 If N  has a Poisson random variable with parameter 0  and , 1,2,3,....iY i  , are 

geometric distribution with parameter   in Equation (2), the probability mass function 

(pmf) of X  is given by 
 

   
1

1
( ) (1 ) , 1,2,3,...

1!

n
n k n

X
n

k
p k P X k e k

nn


 



 
      

 
 ,   (3) 

 

  (0)Xp e , 
 

where 0,0 1      and recall that 2( ) and ( ) (2 )E X V X       . 

 

Lemma 2.3  
 

 If the random variables , 1,2,3,....iY i   are geometric distributed i.e.

  1(1 ) , 1,2,3,....j
i jP Y j p j       then the common probability generating 

function of , 1,2,3,....iY i  is given by 
 

   
1

( ) (1 )
1 1 (1 )

j

j
Y

s
s sg

s





  
   

   
 .         (4) 

 

Lemma 2.4 
 

 If X  has the GPD then the probability generating function (pgf) of X  is given by 
 

   
0

( 1)
( ) ( ) exp

! 1 (1 )

n
n

X Y
n

s
s e g s

n
g

s






   
   

  
 , 0,0 1     .   (5) 
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Lemma 2.5  
 

 If X  has the GPD, then the factorial moment generating function (fmgf) of X  is 

given by 
 

  (1 ) exp
1 (1 )(1 )

X

t

t
g t

 
   

   
, 0,0 1     .        (6) 

 

Lemma 2.6 (Steutel 1970)  
 

 Let  
0np


 
be a probability distribution on the non-negative integers with 0 0p 

  
is infinitely divisible if and only if it satisfies 
 

  1
0

( 1) , 0,1,2,....
n

n k n k
k

n p r p n 


   ,           (7) 

 

with non-negative kr  
and necessarily, 

0

( 1)k
k

r k




   . 

 

Lemma 2.7 (Hansen 1988)  
 

 Let  np
 
and  nr  be related by (7) with 0kr  , 0 0p 

 
and let  nr  

be log-

concave. Then  np
 
is log-concave if and only if 2

0 1 0r r  . 

 

Lemma 2.8 (Steutel and Van Harn 1979)  
 

 Let  
0xp


 
be a distribution on the non-negative integers with pgf ( )Xg s

 
satisfying 

 

  
0

ln ( ) ( ) k
X k

k

d
g s R s r s

ds





                (8) 

 

where kr  
are non-negative. Then  

0xp


 
is unimodal if  

0kr


 
is non-increasing, and

 
0xp


 
is non-increasing if and only if in addition 0 1r  . 

 

Lemma 2.9 (Park 1972)  
 

 Let X  be a discrete random variable with probability function xp , for 0 1s  , 
 

   
1

0

( )
k

kE X A g s ds


   ,              (9) 

 

where   0X A  , k  is non-negative integer and ( )kg s
 
is the pgf of   1

k
X A  . 
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3. INFINITELY DIVISIBLE 
 

 In this section, we examine the infinite divisibility property of GPD by making use of 

Lemma 2.6 by Stuetel (1970). 

 

Theorem 3.1 
 

 The GPDwith pmf (3) is infinitely divisible. 
 

Proof 
 

 To prove infinite divisibility of GPD, we need to show that (3) satisfies (7). 
 

 The pgf of GPDgiven by (5) is 
 

  ( ) exp ( )X s sg
 

  
 

, 0  , 0 1   ,          (10) 

 

where  
1

( ) ( 1) 1 ( 1)s s z s


     , (1 )z    . 

 

 If D  denotes the differential operator d ds , then after successive differentiation of 

(10) we get 
 

       1

0

1 ( ) ( ) ( )
n

k
X X

k

n n kn
s s D s

k
D g D g 



  
  
  
 , 0n  , 0  , 0 1   , (11) 

 

where 

     
( 2)1 ( ) ( 1)! 1 ( 1)
kk kD s k z z s

       , (1 )z    . 

 

 Setting 0s  , in (11) gives; 
 

      1

0

1 (0) (0) ( (0))
n

k
X X

k

n n kD g D g
n

D
k

  



 
  
  
 , 0,1,2,....n  ,   (12) 

 

where  1 2(0) ( 1)! (1 )k kD k      . 

 

 As 
 

   1

0
1( 1)( !)n

s
X nD g ns p




  
 

.            (13) 

 

 Substituting (13) in (12) we get; 
 

  1
0

( 1)! ( )! ( 1)!(1 )
n

k
n n k

k

n
n p n k p k

k
 



 
      

 
 , 

 

which on simplification gives 
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  1
0

( 1) , 0,1,2,....
n

n k n k
k

n p r p n 


   ,            (14) 

 

where ( 1)(1 )k
kr k   

 
are non-negative, necessarily 

 

  
0

( 1)k
k

r k




     . 

 

 Hence complete the proof. 

 

4. NOT STRONGLY UNIMODAL 
 

 We use Lemma 2.7 by Hansen (1988) to prove that GPD is not strongly unimodal. 

 

Theorem 4.1 
 

 The GPDwith pmf (3) is not log-concave for all values of   and  . 

 

Proof 

 In Theorem 3.1, it is shown that  np
 

and  nr  are related by (14) with  

0 0p e  , let  nr  
be log-concave. In order to prove the log-concavity of GPD, we 

have to show that 
2

0

1

1
r

r
 . Therefore 

  

 

2
0

1
1 2 1

r

r 




 
, 0 1   , 0  , 

 

which can be 1or 
 
depending upon the values of   and  , so the GPD is not log-

concave for all values of   and  . 

 

5. UNIMODALITY 
 

 In this section, we use Lemma 2.8 by Steutel and Van Harn (1979) for proving 

unimodality of GPD. 

 

Theorem 5.1 
 

 The GPD with pmf (3) is unimodal for all values of   and  . 

 

Proof 
 

 The pgf of GPD satisfy 
 

  

  
  

2
0

( ) 1 1
1

ln
1

( )
k

X

k kR s k s
s

d
g s

ds






    

 
  , 

where ( 1)(1 )k
kr k   

 
are non-negative. 
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Therefore 
 

   1

1

1 (1 ) 1k

k

r
k

r





    , 

 

as 0 1    and  1lim 1 1
k

k


  . 

 

 Hence  
0kr


 
is non-increasing, and so the GPD is unimodal for all values of   and  . 

 

 When 0 1,r     
0xP


 becomes non-increasing. 

 

 Accordingly, the mode will be at 0x  if 1   and at the dual points 0x   and

1x   if 1  . 

 

6. SURVIVAL FUNCTION 
 

 The survival function (sf) of a nonnegative discrete random variable X  is defined as 

the probability ( ) 1 ( )S x P X x   . 

 

 By definition 
 

     
0

( ) , 0,1,2,....
n

P X x P X x N n P N n x




      . 

 

 As  P X x N n   is a negative binomial distribution, we get; 
 

     
1 0

, 1
1

1
1!

n x x j nn

n j

x
P

j
e

nn
X x x

  

 

  
  


 


   , 

 

   0P X e  , where 0,0 1     . 

 

 It follows that 
 

   0 1 ,S e   
0 1

1
1 (1 )

1!

nx
n x j n

j n

x j
S x e

nn


  

 

  
    

 
  , 

                1x  , 0,0 1     . 

 

7. NEGATIVE MOMENTS 
 

 In this section, we give first order negative moment of GPD using Lemma 2.9 by Park 

(1972). 
 

Theorem 7.1 
 

 Let X  be a non-negative integer valued random variable with pmf (3). Then 
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1

0 0

1 , 1
! !

j
kk

j k

j
E X A B k A j

j k

 

 


      , 

 

where 0A  ,  
0

1j  ,      1 ..... 1
k

j j j j k    , for 1,2,.....k  . 

 

Proof 
 

 According to Lemma 2.9, 
 

   
1

0

( )
k

kE X A g s ds


   , where 0A   and  ( ) 1( )
kX A

kg s E s   , 0 1s  . 

 

 Taking 1k  , we have 
 

   
1 1

10
( )E X A g s ds


   , where  ( ) 1

1( ) X Ag s E s   , 0 1s  , 

 

   
1

1 1 1

0
exp 1

1

A s
E X A s ds

s


 

  
        

 , 

     

1

1 1

0
0

1
1

!

j

A

j

s

s
s ds

j








  
      

  , 

 

     
  1 1

0
0

1
! 1

j j
A

j

s
s ds

j s








  
  

 
  , 

 

     
 

 
 

  1 1

0
0 0

1 1
! !

j
kjA k

j k

j
s s s ds

j k

 


 


    , 

 

where 

   
0

1j  ,      1 ..... 1
k

j j j j k    , for 1,2,.....k   

 

     
   

   1 1

0
0 0

1 1
! !

j
k jk Ak

j k

j
s s ds

j k

 
 

 


     , 

 

     
   

   
0 0

1 , 1
! !

j
kk

j k

j
B k A j

j k

 

 


     , for 0A  . 

 

  

NCBA&E



Chapter-4: Discrete Distribution 289 

8. CHARACTERIZATION THEOREM 
 

 In this section GPD is characterized via the recursive relation of factorial moments. 

 

Theorem 8.1  

 Let 
0

( ) ( )k
X

k

g s s P X k




 
 

be the pgf of a distribution with support 0,1,2,....,  and 

parameters, , 0   , ,0 1    . Then 
 

     

1

1
0

1 1
( 1)!

j
r

r r j
j

r
j

j



 


   
       

   
 , for - 1r   with [0] 1  ,   (15) 

 

holds if and only if X  has GPD with pmf (3). 

 

Proof 
 

 Suppose that X  follows GPD then the fmgf of X  given by (6) is 
 

  (1 ) exp ( )X t tg
 

   
 

, 0  , 0 1   ,         (16) 

 

where 1( ) (1 )t t zt    , (1 )z    . 
 

 If D  denotes the differential operator d dt , then we can obtain a recursive 

relationship between factorial moments by successive differentiation of (16) as 
 

     
1

1

0

11
(1 ) (1 ) ( ( ))

r
jr

X
r j

X
j

r
tD g t

j
D tg D


  



 
    

  
  

              , 1r  , 0  , 0 1   ,   (17) 
 

where 
 

   1 ( 2)( ) ( 1)! (1 )j j jD t j z zt      , 

and  

   1 (0) ( 1)!j jD z j    . 
 

 As     0
(1 )X

r
r

t
D g t



  





 ,    00
(1 ) 1X t

tg


  . 

 

 Setting 0t   in (17) gives (15). 
  

 Suppose (15) holds and after putting 1,2,3,.....r  , we get; 
 

   1


 


, 0,0 1     , 
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   2

1
2!

    
    

    
 , 

 

   

2 2

3

1 1
(3)2! (3)3!

          
         

           

 , 

 

   

3 2 2 3

4

1 1 1
(6)2! (6)3! 4!

                
              

                 

, 

 

   

4 3 2 2

5

1 1
(10)2! (20)3!

              
            

              

 

         

3 4
1 1

(10)4! 5! ,........
      

      
       

. 

 

 Factorial moment generating function is given by 
 

   
0

(1 )
!

r

r
r

X

t
g

r
t





   .               (18) 

 

 On substituting            0 1 2 3 4 5
, , , , , ,.......            in (18) we get; 

 

   
2 3

2 22! (3)2! (3)3!
1! 2! 3!

(1 ) 1X

t t t
g zt z z       

 
    

      
4

3 2 2 3(6)2! (6)3! 4!
4!

t
z z z       

 
 

      
5

4 3 2 2 3 4(10)2! (20)3! (10)4! 5! ,
5!

t
z z z z          

 
 

 

where (1 )z    ,


 


. 

 

   2 31( ( ) ( ) ...1 ) 1Xg t zt zt ztt        

      
2

2 3) 2.3 2.3.4
1 2 ( ) ( ) ...

2! 2! 3!

( t
zt zt zt

 
    







 

      
3

2) 3.4
1 3 ( ) ... ...,

3! 2!

( t
zt zt
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2 3
1 1

1
(1 )

(1 )
(1 )

(1 ) .. ,
2! 3!

1 .X t
t zt t zt

g t zt

 


    
       









    

 

  
1(1(1 ) e ) ,xpXg t tt z  





  

 

which after simplification gives 
 

  (1 ) exp
1 (1 )(1 )

X

t

t
g t

 
   

   
, 0,0 1     . 

or 

  
( 1)

( ) exp
1 (1 )

X
s

g
s

s
  

  
  

, 0,0 1     . 

 

By calculating the kth derivative of ( )Xg s  at 0s   as 
 

  ( 0) (0) ,XP X g e  
 

0
( )

( ) , 1,2,3,...
!

k k
X

s
s g s

P X k k
k


 

    

 

gives (3). 

 

9. CONCLUSION 
 

 In the present article, some statistical properties of GPD including infinite divisibility, 

unimodality, log-concavity or strong unimodality, survival function, first order negative 

moment are addressed. Also, a characterization theorem is given based on the recursive 

relation of factorial moments. 
 

 The property of unimodality is very important for many decomposition problems of 

probabilistic and statistical nature. It is also of interest in connection with optimization 

and mathematical programming. Arguments involving unimodality have been used quite 

often in statistical inference. When applying the method of maximum likelihood for the 

estimation of parameters, the unimodality of the likelihood function often facilitates the 

required computation. Some inequalities depend on unimodality. The recurrence of 

symmetric random walks involves the concepts of unimodality and peakedness 

comparisons. A number of authors have discussed the fatigue, creep, fracture, shrinkage, 

cracking and deformation of concrete flange on the basis of negative moments. We 

expect these properties to be useful in dealing with the practical problems and to play a 

very important role in the probability theory. Further properties including shape of hazard 

rate function, order statistics, mean and median deviations, maximum likelihood 

estimation and asymptomatic confidence intervals for the parameters are under 

construction and may appear in the next communication. 
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ON A MULTI-STAGE 2n  FACTORIAL SURVEY DESIGN:  

A USEFUL SURVEY DESIGN FOR DEVELOPING AREAS
* 

 

Munir Ahmad, H. Khrarjian and T.A. Bader 

Department of Mathematical Sciences & Department of Civil Engineering, 

University of Petroleum and Minerals, Dhahran, Saudi Arabia 

 

ABSTRACT 
 

 In the selection of a proper sample survey design in developing areas where prior 

information on designs does not exist, it is sometimes feasible to conduct an experiment 

where all possible factors or stages (if a choice of a factor or stage is available) are tested. 

In this paper, a survey design is proposed to test 'n' factors (or stages) each at two levels  

(2-sub-stages). Some special cases are also discussed. Some estimators of population 

totals and means and their variances are developed. An application from the Civil 

Engineering regarding solid waste is given to illustrate the method. 

 

KEY WORDS 
 

 Completely randomized design, analysis of variance. 

 

1. INTRODUCTION 
 

 In developing areas where prior information on any aspect of the problem under study 

is not available, it is not possible to follow a particular pattern of standard sampling 

design technique. These situations may exist in many fields of investigation. In 

agriculture, it may be desired to estimate the effect of a particular treatment (say, 

fertilizer) on a piece of land randomly selected from a vast area of different soil 

heterogeneity. Before an experimental design is selected, it may be necessary to decide 

whether or not plots are selected as a final stage in a multistage sampling scheme. 

Suppose in biological sciences area, an investigation is made on the reliable estimates of 

the immunization status of a population. Ali and Heiner (1971) conducted a survey of 

vaccination status on past small-pox experience of an urban population of West Pakistan. 

Besides investigation of vaccination status, the intention was also to develop a sample 

survey design which would achieve an acceptable degree of reliability of the estimates 

while utilizing a minimum of personnel and resources, and would provide a model for 

similar surveys in other underdeveloped areas. They used a three-stage cluster sampling 

and have shown advantages of the design. 
 

 Similar conditions may exist in many branches of engineering or social sciences. In 

this paper, we propose a mixture of multistage random sampling with a factorial 

experiment in a standard design. In case of selection of an efficient design or a master 

design for use in other similar surveys, it is essential to conduct an experiment to 

determine sizes at every stage. Suppose, an area is divided into blocks, blocks are sub-

divided into structures, and structures into housing units. Housing units may be 

considered as clusters of populations or clusters of families or clusters of persons. 

                                                 
*
Published in Pak. J. Statist. (1986 B), 2(3). 
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Consider blocks, as structures and housing units as 3 factors each at equal or unequal 

number of levels. 

 

2. A THREE-STAGE 2 x 2 x 2 FACTORIAL SURVEY 

DESIGN WITH AN EQUAL NUMBER OF 

OBSERVATIONS PER CELL 
 

 Suppose blocks, structures and housing units are considered as three-stages. Two 

levels of blocks, structures and housing units are considered. The scheme is given in 

Table 1: 

 

Table 1 

Three-Stage 2 x 2 x 2 Factorial Experiment with one Replicate 

Stages Combinations 

 (l) (h) (s) (hs) (b) (bh) (bs) (bhs) 

First Stage         

  Blocks Second Stage 2 2 2 2 4 4 4 4 

   Structures Third Stage 2 2 4 4 2 2 4 4 

   Housing Units 2 4 2 4 2 4 2 4 

Total of Housing 

Units in one Replicate 
8 16 16 32 16 32 32 64 

 

In Table 1, the notations for factors, stages and levels are defined as follows: 
 

(l) denotes three factors at lower levels (2 blocks, 2 structures and 2 houses), 

(h) denotes upper level (4 houses) of housing units, and lower levels of blocks and 

structures, 

(s) denotes upper level of structures (4 structures) and lower levels of blocks or 

housing units, 

(hs) denotes upper levels of housing units and structures, and lower level of blocks, 

and so on. 
 

We further define some notations: 
 

N   = the number of blocks in the area. 

n   = the number of sample blocks (first-stage units) 

iM   = the number of structures in the ith block of the sample. 

im   = the number of structures in the sample from the ith block (second-stage units). 

ijQ  = the number of houses in the jth structure of the ith block. 

ijq   = the number of houses in the sample from jth structure and of the ith block. 

ijky   = the information from the kth house of the jth structure of the ith block. 

 

 The above notations relate to any one combination. ,N iM  and ijQ  are known and 

fixed numbers. 
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3. METHOD 
 

 Basically there are two ways of handling the data. Each cell will give rise to an 

estimate of total and its variance. A general rule given by Durbin (1953, 1967) and Raj 

(1956, 1966), Rao (1975), Brewer and Hanif (1970) can be used to obtain a linear 

unbiased multistage estimator of population total as follows: 
 

 Suppose y denotes the linear estimator of population total. Then 

 1

n

is i
i

y a y


     

 

where isa  is a real number determined for each sample ‘s’. Define  
 

  

if ith population unit is in thesample.

0 otherwise

is
is

a
a


  


  

 

 Then 
 

  1

,
N

is i
i

y a y


     is the UBE of y. 

 

if and only if  
1

1,
n

is is s
i

E a a P


    where p(s) is the probability of selecting the sample 

's'. The variance of 'y
 
is 

 

 

 
1

var var
N

is i
i

y a y


 
    

 
   

    
   2 2

1 2
1

N
i i

y iy
i i

M mN N n N
s M s

n n m


     

 

 Various modifications of  var 'y  can be made by assigning different values to isa

with different methods of selection. 

 

4. ESTIMATION OF TOTAL AND ITS VARIANCE 
 

 Let  ijk t
y  denote an observation from the kth housing unit in the jth structure of the 

ith block at given level, e.g., upper level or lower level of block, structure or housing unit 

under the treatment combination 't' where 1,2, ,8t   and 
 

(I) = 1:  (1) is designated by the number 1 and stand for lower levels of the 3 

factors. 

(h) = 2:  denotes lower level of block and structures and upper level of housing 

units. 
 

 Similarly, (s) =3, (hs) =4, (b) =5, (bh) =6, (bs) =7, (bhs) =8.  
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Observations as recorded under each treatment combination will be denoted by the 

following notations: 
 

(I)         1 1 1 1
, 1,2,..., , 1,2,.... , 1,2,....

ijk i ij
y i n j m k q    

(h)         2 2 2 2
, 1,2,..., , 1,2,.... , 1,2,....

ijk i ij
y i n j m k q    

(s)          3 3 3 3
, 1,2,..., , 1,2,.... , 1,2,....

ijk i ij
y i n j m k q    

(hs)         4 4 4 4
, 1,2,..., , 1,2,.... , 1,2,....

ijk i ij
y i n j m k q    

(b)          5 5 5 5
, 1,2,..., , 1,2,.... , 1,2,....

ijk i ij
y i n j m k q    

(hb)         6 6 6 6
, 1,2,..., , 1,2,.... , 1,2,....

ijk i ij
y i n j m k q    

(bs)         7 7 7 7
, 1,2,..., , 1,2,.... , 1,2,....

ijk i ij
y i n j m k q    

(bhs)         8 8 8 8
, 1,2,..., , 1,2,.... , 1,2,....

ijk i ij
y i n j m k q    

 

where a number in the parentheses stands for that particular combination. The number of 

observations in rows are schematically different from each other. The totals in rows are 

not comparable and as such averages may be computed and analysis made. However, 

analysis of variance can be performed as if a 2
3
 factorial experiment had been designed in 

a completely randomized design. 
 

 The following formulae are obtained for estimating totals and their variances for each 

combination (scheme of 3-stage sampling): 
 

 

 
     

 

 

 

1 1 1
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2
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1
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ijy t

it i t ij t

Q Q qMN
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where 

 
      

2
2
1

1

1

1

N

y t i t t
i

s Y Y
N 

 


  

 

  
      

2
2
2

1

1
,

1

iM

iy t ij t i t
ii

s Y Y
M 

 


  and 

 

  
      

2
2
2

1

1
,

1

ijQ

ijy t ijk t ij t
Kij

s Y Y
Q 

 


  

 ty  is an unbiased estimate of  tY . The unbiased variance estimator of   t
Var y  is 

given by 
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1
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1

1
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  2

2
2

1

1
,

1

ij t
q

ijy t ijk t ij t
Kij t

s Y Y
q 

 


  

 

 These formulae become simpler as all the units in a stage are equal. 
 

 If a proportion ( )tp
 
of solid waste is collected from each housing unit of the tth 

combination, the estimated totals and variances become          1 2and  
t t t t

p y p Var y    

respectively. 
 

 A comparison of the variances may lead to the selection of a particular 3-stage sample 

design. 
 

 A further analysis using the analysis of variance technique is made to test if there is 

any difference between using different levels of the three factors. Table 1 shows that the 

number of observations in different combinations are schematically different. There are 8 

observations in (1), 16 in (h), (s) and (b) etc. Here we shall assume that a random sample 

of size 8 is assigned to the combination (1), a random sample of size 16 is assigned to 

treatment (h) etc. The size of the random sample is not assumed to be constant for all 

treatments. The notations that will be used for computation of means and variances are 

outlined in Table 2. 
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Table 2 

Computation Scheme for Analysis of Various Combinations 

 1 2 3 4 5 6 7 8 Total 

Number of 

Observations  1
n   2

n   3
n   4

n   5
n   6

n   7
n   8

n  
8

( )
1

t
t

M n


   

Sum of 

Observations  1
T   2

T   3
T   4

T   5
T   6

T   7
T   8

T  
8

( )
1

i
t

G T


   

Mean of 

Observations  1
T   2

T   3
T   4

T  … … …  8
T  8

( )
1

t
t

G
G

n






 

Sum of 

Squares of 

Observations 
 
2
1

Y   
2
2

Y  … … … … …  
2
8

Y   
2
t

Y   

 

 

2
i

i

T

n
  

 

2
1

1

T

n
  

 

2
2

2

T

n
 … … … … …  

 

2
8

8

T

n
  

Within-class 

Variation    
 
1
12 2

1 1
8

T
SS Y   … … … … … 8SS   

Within-class 

Variance  
 

 
(1)2 2

1 2
1

,
1

SS
S S

n



 … … … … …  

 

(8)2
8

8
1

SS
S

n



  

 

 The estimates of variation due to error and combination effects are obtained by 

assuming an additive model, 
 

        .
ijk t t ijk t

y       

 

 Least-squares estimates of the parameters   and t  are obtained by minimizing 

 
2

t
i

  under the constraints    
ˆ 0

t t
i

n   . The computation of analysis of variance 

table is:  

 

ANOVA TABLE 

Due to df SS MSE F 

Combinations 1t   
 

 

2
2

t

t

T G

n M
   1SSC t   

 

 

1SSC t

SSC M t




 

Error n t   
 

 

2

2 t

t
t

T
Y

n
    SSE M t   

Total 1M   
 

2
2
i

G
Y

M
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 The  1t 
 
degrees of freedom can be split up into  1t 

 
single degrees of freedom 

for testing various contrasts (comparisons). 

 

5. DATA ANALYSIS 
 

 A detailed analysis has been made by Ahmad et al. (1981). 

 

6. RESULTS 
 

 The Table 3 shows the summary results of the experiments on blocks only. 

 

Table 3 

Means, standard deviations and estimated totals of solid waste weight, volume  

and density in Al-Khobar by Sample Sizes (Figure in kg.) 

Sample Sizes 
Means 

X  

Standard Deviations 
  

(of means) 

Estimated Totals 

 
5ˆ 10Y  

0.5% 

Weight 402.56 154.01 (97.40) 4.39 

Volume 8.24 2.46 (1.56) 0.90 

Density 400.54 36.68 ( - ) ---- 

1.0% 

Weight 315.64 89.77 (47.98) 3.45 

Volume 5.32 0.98 ( 0.52) 0.58 

Density 126.07 65.25 ( - ) ---- 

1.5% 

Weight 258.48 42.59 (17.76) 2.82 

Volume 3.96 0.66 ( 0.28) 0.43 

Density 122.90 57.04 ( - )  

2% 

Weight 224.84 60.06 (20.02) 2.45 

Volume 3.56 2.17 ( 0.72) 0.39 

Density 140.82 111.25 ( - )  

 

 The most efficient sample seems to have a 1.5% size which has the smallest standard 

deviation and standard error of means of weight and volume of solid waste. The 

estimated densities of solid waste are on the upper range of the values reported in the 

literature which is 60 -120kg/m
3
. Only 0.5% sample size design renders a density of 

400.54 kg/m
3
. Whereas the densities for other sample sizes lie outside the established 

range. The estimate of density from the sample design with 2% size is well above the 

upper limit. In order to study this marked variation in the densities, the following table 

(showing the post-stratification of the areas at 2% sample size) has been constructed. 

 

Table 4 

Mean and standard deviations of densities by areas 

Sample size North South West Agrabia Tughba Total 

2% 
x  60.8 83.4 128.5 299.8 119.9 140.82 

  34.6 63.1 21.9 113.4 79.5 111.25 
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 It is observed from the Table 4 that the density estimated at 2% in Agrabia area is 

299.8 kg/m
3
 with a standard deviation of 113.4. This value is quite high and when 

checking with the field-group notes, it was found that on the sample collection date, one 

block in this group contained two 5m
3
 containers full to the top with food waste (mostly 

cooked rice). This was an unusual event and one of the reasons for high density. 
 

 In Table 4, one also observes that as areas become more commercialized, the density 

decreases. An example is the comparison between North (commercial) and Agrabia 

(mostly residential) areas where the densities are 69.6 and 197.8 kg/m
3
, respectively. The 

other three areas follow the same pattern of higher densities for residential areas. The 

solid waste generation rate based 
1

1 %
2  

on sample design and an estimated population of 

Al-Khobar of 1.03 x 10
5
, is 2.489 kg/person/day. The values reported in the literature [5] 

are in the range of 0.91 —2.268 kg/m
3
 with 1.588kg/m3 most commonly mentioned. Our 

estimates are at one of the extremes of this range. It should be noted that this estimate is 

very crude because (i) there was no daily replicate of solid waste, (ii) population estimate 

is very crude (and could not be checked with the figures of Central Department of 

Statistics, Kingdom of Saudi Arabia). However, it shows that a sample design with 1.5% 

sample size does provide a well-balanced sample design. 
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ABSTRACT  
 

 In this paper we suggest three classes of regression-cum-ratio estimators for 

estimating population mean of variable of interest for two-phase sampling using  

multi-auxiliary variables for full information, partial information and no information 

cases. The expressions for mean square errors are derived. Theoretical comparison is 

given. Special cases of estimators are also identified.  

 

KEY WORDS 
 

  Regression-cum-ratio estimator; two-phase sampling; auxiliary variable. 

 

1. INTRODUCTION 
 

 The use of auxiliary information is a widely discussed topic in sampling theory to 

obtain improved designs and precise estimates of some population parameters like mean 

or variance. It is well known that when the auxiliary information is utilized at the 

estimation stage. The ratio, product and regression methods are employed in many such 

situations. 
 

 The estimation of the population mean is an unrelenting issue in sampling theory and 

several efforts have been made to improve the precision of the estimates in the presence 

of multi-auxiliary variables. A variety of estimators have been proposed following 

different ideas linking together ratio, product or regression estimators. 
 

 Olkin (1958) was the first author to deal with the problem of estimating the mean of a 

survey variable when auxiliary variables are made available. He suggested the use of 

information on more than one auxiliary variable, positively correlated with the study 

variable analogously to Olkin; Singh (1967a) gave a multivariate expression of Murthy’s 

(1964) product estimator, while Raj (1965) suggested a method for using multi-auxiliary 

variables through a linear combination of single difference estimators. Moreover, Singh 

(1967b) considered the extension of the ratio-cum-product estimators to multi-auxiliary 

variables Shukla (1965) suggested a multiple regression estimator while Rao and 

Mudholkar (1967) proposed a multivariate estimator based on a weighted sum of single 

ratio and product estimators. 
 

                                                 
*
Published in Pak. J. Statist. (2009), Vol. 25(2). 
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 John (1969) suggested two multivariate generalizations of ratio and product 

estimators which actually reduce to the Olkin’s (1958) and Singh’s (1967a) estimators. 

Srivastava (1971) proposed a general ratio-type estimator which generates a large class of 

estimators including most of the estimators up to that time proposed. 
 

 Robinson (1994) proposed a regression estimator ignoring some of the assumptions 

usually adopted in the literature (see, e.g., Srivastava (1971)), Tracy et al. (1996) and 

Perri (2004) proposing an alternative to Singh’s (1965, 1967b) ratio-cum-product 

estimators, when two auxiliary variables are available. Ceccon and Diana (1996) 

provided a multivariate extension of the Naik and Gupta (1991) univariate class of 

estimators. Agarwal et al. (1997), moving from Raj (1965), illustrated a new approach to 

form a multivariate difference estimator which does not require the knowledge of any 

population parameters. Abu-Dayyeh et al. (2003) introduced two estimators which are 

definitely members of the class proposed by Srivastava (1971), while Kadilar and Cingi 

(2004, 2005) analyzed combinations of regression type estimators in the case of two 

auxiliary variables. In the same situation, Perri (2005) proposed some new estimators 

obtained from Singh’s (1965, 1967b) estimators. Pradhan (2005) suggested a chain 

regression estimator for two-phase sampling using three auxiliary variables when the 

population mean of one auxiliary variable is unknown and other auxiliary population 

means are known.  
 

 In practical surveys, the problem is to estimate population means of variables of 

interest. For example, in a typical socio-economic survey conducted in rural areas in 

Indo-Pak subcontinent, the multiple variables of interests may be size of household, 

monthly income and expenditure of the household, number of unemployed persons, 

number of illiterates, number of persons engaged in agriculture, amount of land owned, 

leased and leased out, number of cattle owned etc. In some situations the auxiliary 

information may be available through the past census data or conveniently collected. For 

example in a village land survey, the information on the variables such as area of the 

village, cultivable area, grazing grounds etc. may be easily obtained through the past 

census data and may be used to estimate the means of variables of interest.  
 

 If we have information on multi-auxiliary variables practically sometimes either 

information for all these auxiliary is available from population or available for some 

variables or not available for all auxiliary variables. By considering these practical 

situations, we suggest general classes of regression-cum-ratio estimators for estimating 

the population mean of study variable for two-phase sampling using multi-auxiliary 

variables by considering the following three cases (see Samiuddin and Hanif (2007).  
 

1. Estimators when information on all auxiliary variables is known for population 

(Full Information Case). 

2. Estimators when information on some auxiliary variables is known for population 

(Partial Information Case). 

3. Estimators when information on all auxiliary variables is unknown for population 

(No Information Case). 
 

 Before suggesting the estimators we provide two-phase sampling scheme and some 

useful notations and results in the following section. 

 

NCBA&E



Chapter-5: Sampling 303 

2. TWO-PHASE SAMPLING USING MULTI-AUXILIARY VARIABLES 
 

 Consider a population of N units. Let Y  be the variable for which we want to 

estimate the population mean and 1 2, ,........ qX X X  are q  auxiliary variables. For two-

phase sampling design let 1n  and 2n  2 1n n  are sample sizes for first and second 

phase respectively. (1)ix  and (2)ix  denote the thi  auxiliary variables form first and second 

phase samples respectively and 2y  denote the variable of interest from second phase. iX  

and 
ixC  denote the population means and coefficient of variation of thi  auxiliary 

variables respectively and 
iyx  denotes the population correlation coefficient of Y  and 

iX . Further let 1
1

1 1

n N
   , 2

2

1 1

n N
   , 

 2
(2) yy Y e  ,    11 i

i xi
x X e   and 

   22 i
i xi

x X e  ;  1,2,...,i k  where 
 2

ye , 
 1 i

xe  and 
 2 i

xe  are sampling errors and are 

of very small quantities. We assume that 
        2 1 2

2 1 2 0
i i

y x xE e E e E e   . Then for 

simple random sampling without replacement for both first and second phases we write 

by using phase wise operation of expectations as: 
 

   
2

2
22

2 1y Y

n
E e S

N

 
  
 

,  
2

2
2

2 22
2 2

2

1 Y
y y

n S
E e Y C

N n

 
    
 

,  

 

  
  2 2

2
2 21

i i ii
y x YX i y x yx

n
E e e S YX C C

N

 
     
 

, 

 

  
  2 2

2
2 2

2

1 ,i

i ii

YX

y x i y x yx

Sn
E e e YX C C

N n

 
     
 

 

 

  
    2 1 2

1 21 i i
y x xE E e e e 

        2 21 2
1 221 i i

y x y xE E e e E e e     

   1 21 1
i iYX YX

n n
S S

N N

   
      
   

 2 1

1
iYXn n S

N
  , 

 

  
    2 1 2

1 21 i i
y x xE E e e e  

  

1 2

1 2

1 1i iYX YXS Sn n

N n N n

   
     

   
 1 2 i ii y x yxYX C C    . 

 

Similarly 

  
          
2 1 2

2 2 2
1 1 2 1 221 i ii i i

x x x x i xE E e e e X C        
  

,  

 

  
      1 1 2

1 21
0

i i i
x x xE E e e e  

  
,  
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1 2

2
2 2 2

1 2 1 2 1 2 1i ii i
x x x i xE E e e X C        ,  

  
           
1 2 1 2

1 2 121 i ji i j j
x x x x x xE E e e e e      

  
  

    2 1 i j i ji j x x x xX X C C    ;  i j , 

and  

  
         
2 1 2

1 1 221 i ji j j
x x x x xE E e e e     

  
 1 2 i j i ji j x x x xX X C C    ,  i j . 

 

 The following notations will be used in deriving the mean square errors of proposed 

estimators 
 

R
qyx

 Determinant of population correlation matrix of variables 1 2 1, , ,..., qy x x x   

and qx . 

i
q

yx
yx

R  Determinant of thi  minor of R
qyx

corresponding to the thi  element of
iyx . 

2
. sy x  Denotes the multiple coefficient of determination of y on 1 2 1, ,..., andr rx x x x . 

2
. qy x  Denotes the multiple coefficient of determination of y on 1 2 1, ,..., andq qx x x x . 

sx
R  Determinant of population correlation matrix of variables 1 2 1, ,..., andr rx x x x . 

qx
R  Determinant of population correlation matrix of variables 1 2 1, ,..., andq qx x x x . 

i sy x
R  Determinant of the correlation matrix of 1 2 1, , ,..., andi r ry x x x x .  

i qy x
R  Determinant of the correlation matrix of 1 2 1, , ,..., andi q qy x x x x .  

i j sy y x
R  Determinant of the minor corresponding to 

i jy y  of the correlation matrix of 

1 2 1, , , ,..., andi j r ry y x x x x , for  i j . 
 

i j qy y x
R  Determinant of the minor corresponding to 

i jy y  of the correlation matrix of 

1 2 1, , , ,..., andi j q qy y x x x x , for  i j . 

 

2.1 Result: 1  
 

 The following result will help us in deriving the mean square errors of suggested 

estimators  
 

   2
.1 .

R
q

q

q

yx

y x

x
R

      [Arora and Lal (1989)] 
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2.2 Regressions-Cum-Ratio Estimator (Full Information Case) 
 

 If we estimate a study variable when information on all auxiliary variables is 

available from population, it is utilized in the form of their means. By taking  

the advantage of Regression-cum-Ratio technique for two-phase sampling, a  

generalized estimator for estimating population mean of study variable Y  with the use of 

multi-auxiliary variables are suggested as:  
 

    
 

1 2 2
1 1 2

-

i
r s qr

i
i i i

i i r i

X
t y X x

x


 

  

            

   

     
 

 2

2 2

-

1 1

- 1

i

i

i

r s qr x

y i x
i i r i

e
Y e e

X


 

  

  
          

  . 

 

 Ignoring second and higher terms for each expansion of product and after 

simplification, we write 
   2 2 2

1
1 1

i i

r s qr

y i x i x
i i r i

Y
t Y e e e

X

 

  

 
      
 

  . 

 

 The mean square error is 

   
   2 2 2

2

1 2
1 1

i i

r s qr

y i x i x
i i r i

Y
MSE t E e e e

X

 

  

 
     

 
  .       (2.2.1) 

 

 The optimum values of andi i   for which the mean square error of estimator 1t  is 

minimum to term of o(1/n) are  
 

     
1 1

.1 1
i

q

i q

i q

yx
yxi iy

i yx x
xi x

R
CY

C RX

 
       1,2,....  and i r r s q    

and 

     
1 1

.1 1
i

q

i q

i q

yx
yxi iy i

i yx x
x x

R
C X

C R Y

 
        1, 2,....  and i r r r s r s q      . 

 

 The unknown constants are related to the partial regression coefficients of study 

variable and auxiliary variables. If these partial regression coefficients are not known, 

these will be estimated from second phase because the estimator 1t  utilizes the 

information on q auxiliary variables and study variable from second phase sample.  
 

 Using normal equations that are used to find the optimum values of andi i  , (2.2.1) 

can be written in simplified form as:  
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   2 2 2 2

1 2
1 1

i i

r s qr

y y i x i x
i i r i

Y
MSE t E e e e e

X

 

  

  
      

   
   

      
     2 2 22 2

2
2 2 2

1 1
i i

r s qr

y i y x i y x
i i r i

Y
E e E e e E e e

X

 

  

       

     2 2
2 2 2

1 1
i i i i

r s qr

y i i y x yx i i y x yx
i i r i

Y
Y C YX C C YX C C

X

 

  

           . 

 

 Using the values of andi i   and after simplification, we get: 
 

       
1 12 2

1 2 2 2
1 1

1 1
i i

q q

i i

q q

yx yxr s qr yx yxi i

y yx yx
i i r

x x

R R

MSE t Y C
R R

 
 

  

 
 

        
 
 

   

     2 2
2 2

1

1
i

q

i

q

yxq yxi

y yx
i

x

R

Y C
R

 
 

      
 
 

   

    
1 1 2 2

2 2
2

q q q

q

y

yx yx yx yxx yx yx
x

Y C
R R R

R

 
  


 

          
3 3

....... 1
q q

q q

q

yx yx yx yx
yx yx

R R


     


 

or     2 2
1 2

R
q

q

yx

y

x

MSE t Y C
R

  . 

 

 Using Result 1, we get:  
 

     2 2 2
1 2 .1

qy y xMSE t Y C   .   

 

2.3 Regressions-Cum-Ratio Estimator (Partial Information Case) 

 In this case suppose we have no information on all q auxiliary variables but only  

for r auxiliary variables from population. Considering Regression-Cum-Ratio technique  

of estimating technique, the population mean of study variable Y  can be estimated for 

two-phase sampling using multi-auxiliary variables as:  

        

   

'' ''

1''
2 2 1 2

1 1 12 2

i i
r s q r s qr i i

i i i
i i r i ri i

x X
t y x x

x x

 
   

    

                     

    

  
          

'' ''

1 2 2

2 1 2

''

1 1 1

1 1

i i

i i i

i i

r s q r s qr x x x

y i x x
i i r i ri i

e e e
Y e e e

X X

 
   

    

    
                   

   . 
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 Ignoring second and higher terms for each expansion of products and after 

simplification we write  
 

  
           2 1 2 1 2 2

'' '' ''
2

1 1 1
i i i i i

r r s r s

y i x x i x x i x
i i r i ri i

Y Y
t Y e e e e e e

X X

 

    

 
          
 

   . 

 

The mean square error of 2t  is written as 

   
    2 1 2

''
2 1 2 1

1
i i

r

y i x x
i

MSE t E E e e e



   


  

        
      1 2 2

2

'' ''

1 1
i i i

r s r s

i x x i x
i r i ri i

Y Y
e e e

X X

 

   


     


     (2.3.1) 

 

 The optimum values of 
'' '' '', and i i i    for which the mean square error of 2t  is 

minimum to term of o (1/n) are: 
 

     
1 1''

.1 1 ,
i

q

i q

i q

yx
yxi iy

i yx x
xi x

R
CY

C RX

 
       1,2,.... .i r  

   
1'' 1

i i
q s

i q s

yx yxyxi yxy

i
x x x

R RC

C R R



 
 

    
 
 

 

         
1

. .1 , 1, 2,....
i q i s

i i
yx x yx x

X
i r r r s

Y


         

and  

     
1 1''

.1 1 , 1, 2,....... .
i

s

i s

i s

yx
i yx iy

i yx x
x x

RC
i r r r s

C R

 
           

 

 The optimum values are related to the partial regression coefficients of variable of 

interest and auxiliary variables. Usually these partial regression coefficients are unknown 

then these can be estimated from sample data. The estimator 2t  utilizes the information 

on q auxiliary variables from both first and second phase. Keenly observing the 

estimators 2t  the optimum values of unknown constants 
' '
i  and 

''
i  will be estimated 

from first phase sample and 
''
i  from the second phase. Using normal equations that are 

used to fined the optimum values of 
'' '''', andi i i   , (2.3.1) can be written in a simplified 

form as: 
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    2 2 1 2

''
2 1 2/1

1
i i

r

y y i x x
i

MSE t E E e e e e


 
    


  

       
      1 2 2

'' ''

1 1
i i i

r s r s

i x x i x
i r i ri i

Y Y
e e e

X X

 

   


     


   

     
     2 2 1 2

2 ''
1 2/1 1 2/1

1
i i

r

y i y x x
i

E E e E E e e e


     

       
        2 21 2 2

'' ''
1 2/1 1 2/1

1 1
i i i

r s r s

i y x x i y x
i r i ri i

Y Y
E E e e e E E e e

X X

 

   

       

     2 2 ''
2 1 2

1
i i

r

y i i y x yx
i

Y C YX C C


        

         '' ''
1 2 2

1 1

.
i i i i

r s r s

i i y x yx i i y x yx
i r i ri i

Y Y
YX C C YX C C

X X

 

   

          

 

Using the values of 
'' '' '', andi i i    and after simplification we get:  

       2 2
2 2 1 2

1

1
i

q

i

q

yxr yxi

y yx
i

x

R

MSE t Y C
R




      



   

         1 2 2
1 1

1 1
i i i

q s s

i i

q s s

yx yx yxr s r syxi yx i yx

yx yx
i r i r

x x x

R R R

R R R

 

   

  
  

          
   

   

         2 2
2 1 2 1

1

1
i

q

i

q

yxr yxi

y yx
i

x

R

Y C
R




       



    

          2 1 1 1
1 1

1 1
i i

q s

i i

q s

yx yxr s r syxi i yx

yx yx
i r i r

x x

R R

R R

 

   




           



   

or 

     2 2
2 1 1

1 1

1 1 1 1 ,
i i

q s

i i

q s

yx yxq r syxi i yx

y yx yx
i i r

x x

R R

Y C
R R



  

    
    

             
    
  

   

or 

    2 2
2 2 1

R RR
q qs

q s q

yx yxyx

y

x x x

MSE t Y C
R R R

  
    
 
  

. 
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 Using Result 1 we get: 
 

       2 2 2 2 2
2 2 . 1 . .1

q q sy y x y x y xMSE t Y C       
  

. 

 

2.4 Regressions-Cum-Ratio Estimator (No Information Case) 
 

 We consider the following regression-cum-ratio estimator for two-phase sampling 

using multi-auxiliary variables for estimating the population mean Y  when information 

on all auxiliary variables is not available from a population as: 
 

        

 

'

1'
3 2 1 2

1 1 2

i
r s qr i

i i i
i i r i

x
t y x x

x


 

  

             

   

   
        

'

1 2

2 1 2

'

1 1

1 .

i

i i

i i

r s qr x x

y i x x
i i r i

e e
Y e e e

X


 

  

  
            

   

 

 Ignoring second and higher terms for each expansion of product and after 

simplification we can write 
 

  
         2 1 2 1 2

' '
3

1 1

.
i i i i

r s qr

y i x x i x x
i i r i

Y
t Y e e e e e

X

 

  

 
        
 

   

 

 The mean square error is 

   
         2 1 2 1 2

2

' '
3 2

1 1
i i i i

r s qr

y i x x i x x
i i r i

Y
MSE t E e e e e e

X

 

  

 
       

 
  . (2.4.1) 

 

 The optimum values of 
' 'andi i   for which the mean square error of 3t  is minimum 

to the order o(1/n) are: 

     
1 1'

.1 1
i

q

i q

i q

yx
yxi iy

i yx x
xi x

R
CY

C RX

 
       1,2,....i r  

and 

     
1 1'

.1 1
i

q

i q

i q

yx
yxi iy i

i yx x
x x

R
C X

C R Y

 
      ,  1, 2,....i r r r s    . 

 

 In this case the optimum values are also related to the partial regression coefficients 

of study variable and auxiliary variables. Mostly these partial regression coefficients are 

unknown but these can be estimated from sample data. The estimator 3t  utilizes the 

information on q auxiliary variables from both first and second phase. Analyzing the 

estimators 3t  the optimum values of unknown constants 
'
i  and 

'
i  will be estimated 

from first phase sample in the form of sample regression coefficients. 
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(2.4.1) is also written in a simplified form as: 
 

    
         2 2 21 2 1 2

2 ' '
3 2 2 2

1 1
i i i i

r s qr

y i y x x i y x x
i i r i

Y
MSE t E e E e e e E e e e

X

 

  

            
   

    

   2 2 ' '
2 1 2 1 2

1 1

.
i i i i

r s qr

y i i y x yx i i y x yx
i i r i

Y
Y C YX C C YX C C

X

 

  

              

 

Using the values of 
' 'andi i   and after simplification we get: 

 

       
12 2

3 2 1 2
1

1
i

q

i

q

yxr yxi

y yx
i

x

R

MSE t Y C
R








      



  

               
1

1 2
1

1
i

q

i

q

yxr s q yxi

yx
i r

x

R

R

 


 




     



  

      2 2
2 2 1

1

1
i

q

i

q

yxq yxi

y yx
i

x

R

Y C
R

 
 

       
 
 

  

    2 2
2 1 1 .

R
q

q

yx

y

x

Y C
R

 
     
 
 

 

 

 Using Result1, we get: 
 

      2 2 2
3 2 1 . 11

qy y xMSE t Y C      
    2 2 2 2

2 . 1 .1 .
q qy y x y xY C      

  
 

 

3. THEORETICAL COMPARISON OF NEW ESTIMATORS 
 

 The MSE criterion is most common for comparing various estimators [Lee and 

Peddada (1987) and Cox and Hinkley (1974)]. We suggest three estimators in this paper 

in which first one is for full information case, second one is for partial information case 

and last one is for no information case. The estimator for full information case is more 

efficient than the estimator for partial information case and the estimator for partial 

information case is more efficient than for the no information case. It can be checked by 

comparing their MSE’s as:  
 

       2 2 2 2
1 2 1 . . 0; as q>s

q sy y x y xMSE t MSE t Y C       

and   

      2 2 2
2 3 1 . 0.

sy y xMSE t MSE t Y C      
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4. SPECIAL CASES 
 

 We summarize the results for the three cases as follows: 
 

Proposed Estimators 
Unknown 

Constants 
Special Cases 

I. Full Information Case i  
i
   

  
 

1 2 2
1 1 2

i
r s qr

i
i i i

i i r i

X
t y X x

x


 

  

             

   0 i
  

A class of ratio 

estimators with s 

auxiliary variables for 

Full Information Case 

  
 

1 2 2
1 1 2

i
r s qr

i
i i i

i i r i

X
t y X x

x


 

  

             

   i  0 

A class of regression 

estimators with r 

auxiliary variables for 

Full Information Case 

II. Partial Information Case 
''
i  

''
i  

''
i   

    

 

   

'' ''

''
2 2 1 2

1

1

1 12 2

i i

r

i i i
i

r s q r s qi i

i r i ri i

t y x x

x X

x x



 
   

   

 
    
 

   
   
   
   



 

 0 ''
i  

''
i  

A class of ratio 

estimators with s 

auxiliary variables for 

Partial Information 

Case 

    

 

   

'' ''

''
2 2 1 2

1

1

1 12 2

i i

r

i i i
i

r s q r s qi i

i r i ri i

t y x x

x X

x x



 
   

   

 
    
 

   
   
   
   



 

 ''
i  0 ''

i  

A class of ratio-cum-

regression estimators 

with q auxiliary 

variables for Partial 

Information Case 

    

 

   

'' ''

''
2 2 1 2

1

1

1 12 2

i i

r

i i i
i

r s q r s qi i

i r i ri i

t y x x

x X

x x



 
   

   

 
    
 

   
   
   
   



 

 ''
i  

''
i  0 

A class of ratio-cum-

regression estimators 

with q auxiliary 

variables for No 

Information Case 

    

 

   

'' ''

''
2 2 1 2

1

1

1 12 2

i i

r

i i i
i

r s q r s qi i

i r i ri i

t y x x

x X

x x



 
   

   

 
    
 

   
   
   
   



 

 ''
i  0 0 

A class of regression 

estimators with r 

auxiliary variables for 

No Information Case 
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Proposed Estimators 
Unknown 

Constants 
Special Cases 

    

 

   

'' ''

''
2 2 1 2

1

1

1 12 2

i i

r

i i i
i

r s q r s qi i

i r i ri i

t y x x

x X

x x



 
   

   

 
    
 

   
   
   
   



 

 0 ''
i  0 

A class of ratio 

estimators with s 

auxiliary variables for 

No Information Case 

    

 

   

'' ''

''
2 2 1 2

1

1

1 12 2

i i

r

i i i
i

r s q r s qi i

i r i ri i

t y x x

x X

x x



 
   

   

 
    
 

   
   
   
   



 

 0 0 ''
i  

A class of ratio 

estimators with s 

auxiliary variables for 

Partial Information 

Case 

III. No Information Case 
'
i  

'
i   

      

 

1

3 2 1 2
1 1 2

i
r s qr i

i i i
i i r i

x
t y x x

x


 

  

             

   0 '
i  

A class of ratio 

estimators with s 

auxiliary variables for 

No Information Case 

      

 

1

3 2 1 2
1 1 2

i
r s qr i

i i i
i i r i

x
t y x x

x


 

  

             

   '
i  0 

A class of regression 

estimators with r 

auxiliary variables for 

No Information Case 
 

 Obviously the classes of special cases are not efficient than suggested classes of 

estimators. 
 

5. NUMERICAL ILLUSTRATION 
 

 Description of populations is given in Table 1 and mean square errors of suggested 

estimators are given in Table 2.  

 

Table 1 

Description of Population 

Source “Measurement of four characters of: Flucus Religiousament” by Pradhan (2000) 

y Length of petiole 

1x  Length of lamina (blade) of the leaf 

2x  Width of the leaf at its widest paint 

3x  Width of leaf half way along the blade 

 N 
1yx  

2yx  
3yx  

1 2x x  
1 3x x  

2 3x x  

 160 0.5423 0.6166 0.2704 0.8568 0.7424 0.8027 
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Table 2: 

Mean Square Errors of Estimators 

Estimator 

Auxiliary 

Variables for 

which Information 

is Known for the 

Population 

Auxiliary 

Variables for 

which Information 

is unknown for the 

Population 

Relative Efficiency when 

N = 160, 1n = 50, 2n = 20 

t3 (NIC) - 1x , 2x , 3x  100 

t2 t21 2x , 3x  1x  129.34 

PIC 

t22 1x , 3x  2x  123.46 

t23 1x , 2x  3x  156.65 

t24 1x , 2x , 3x  168.07 

t25 2x  1x , 3x  149.43 

t26 3x  1x , 2x  164.12 

t1(FIC) 1x , 2x , 3x  - 135.73 

 

 In Table 2 we provide MSE’s of eight estimators, first estimator is for full 

information case, last estimator is for no information case and other six estimators are for 

partial information case with all possible combinations of auxiliary variables with known 

and unknown information from population. In theoretical comparisons t1 is more efficient 

than t2 and t2 is more efficient than t3. But in empirical comparison, we see that a special 

case of partial information i.e. t24 performs better than all others. It means that population 

characteristics like mean, coefficient of variation, variances, sample sizes of both phases 

and especially correlation coefficients of study variable with auxiliary variables and 

correlation coefficients within auxiliary variables count a lot for suggesting an estimator 

for use in real life situations. This can be adequately judged by considering at least ten 

different types of natural populations and MSE’s should be calculated for study variable 

in the presence of at least five auxiliary variables.  
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ABSTRACT  
 

 In this paper we propose a number of generalized multivariate ratio estimators for 

two-phase and multi-phase sampling in the presence of multi-auxiliary variables for 

estimating population mean for a single variable and a vector of variables of interest(s). 

The expressions for mean square errors are also derived. The suggested estimators are 

theoretically compared and an empirical study has also been conducted.  
 

KEY WORDS 
 

 Multi-Phase Sampling; Multivariate Ratio Estimator; Multi-Auxiliary Variables. 
 

1. INTRODUCTION 
 

 The estimation of the population mean is an unrelenting issue in sampling theory and 

several efforts have been made to improve the precision of the estimators in the presence 

of multi-auxiliary variables. A variety of estimators have been proposed following 

different ideas of ratio, regression and product estimators. 
 

 Olkin (1958) was the first author to deal with the problem of estimating the mean of a 

survey variable when auxiliary variables are made available. John (1969) proposed two 

multivariate generalizations of ratio and product estimators which actually reduce to the 

Olkin’s (1958) and Singh’s (1967a) estimators. Srivastava (1971) proposed a general 

ratio-type estimator which generates a large class of estimators including most of the 

estimators up to that time proposed. Sen (1972) developed a multivariate ratio estimator 

under two-phase sampling using multi-auxiliary variables. Singh and Namjoshi (1988) 

discussed a class of multivariate regression estimators of population mean of study 

variable in two-phase sampling.   
 

 Ceccon and Diana (1996) provided a multivariate extension of the Naik and Gupta 

(1991) univariate class of estimators. Ahmed (2003) put forward chain based general 

estimators using multivariate auxiliary information under multiphase sampling. In the 

same situation, Perri (2005) recommended some new estimators obtained from Singh’s 

(1965, 1967b) estimators.  
 

 In multipurpose surveys, the problem is to estimate population means of several 

variables simultaneously [Swain (2000)]. Tripathi and Khattree (1989) estimated means 

                                                 
*
Published in Pak. J. Statist. (2009), Vol. 25(4). 
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of several variables of interest, using multi-auxiliary variables, under simple random 

sampling. Further Tripathi (1989) extended the results to the case of two phase sampling.  
 

 we suggest general classes of ratio estimators for estimating the population mean of 

study variable for two-phase and multi-phase sampling using multi-auxiliary variables 

when information on all multi-auxiliary variables (Full Information Case) or not on all 

auxiliary variables (No Information Case) is available for population (See Samiuddin and 

Hanif, 2007).  
 

 Before suggesting the estimators we provide Multi-phase sampling scheme and some 

useful notations and results in the following section.  

 

2.  MULTI-PHASE SAMPLING USING MULTI-AUXILIARY VARIABLES 
 

 Consider a population of N units. Let Y  be the variable of interest and 

1 2, ,........ qX X X  are q  auxiliary variables. For multi-phase sampling design let hn  and 

kn  h kn n  be sample sizes for thh  and thk phase respectively. ( )h ix  and ( )k ix  denote 

the thi  auxiliary variables from thh  and thk  phase samples respectively and ky  denote 

the variable of interest from the thk phase. Let, iX  , 
ixC  and 

iyx denote the population 

mean, coefficient of variation of thi  auxiliary variables respectively and the population 

correlation coefficient of Y  and iX . Further let
1 1

h
kn N

   , 
1 1

k
kn N

   . Also

 ( ) i k
i k yy Y e  ,    h i

i xh i
x X e   and    k i

i xk i
x X e  ;  1,2,...,i k  where 

 k
ye , 

 h i
xe  

and 
 k i

xe  are sampling errors. We assume that
         0
k h i k i

k y h x k xE e E e E e  

where hE  and kE  denote the expectations of errors of thh  and thk  phase sampling. 

Then for simple random sampling without replacement for both first and second phases, 

we write by using phase wise operation of expectations as: 
 

   
2

21
k

k
k y y

n
E e

N

 
   
 

,  
2

2
2 21 ,

k

yk
k y k y

k

n
E e Y C

N n

 
    
 

 

  
   1

k i i ik i

k
k y x yx k i y x yx

n
E e e YX C C

N

 
      
 

 

  
   1 ,i

k i ik i

yxk
k y x k i y x yx

k

n
E e e YX C C

N n

 
     
 

 

  
    k h i k i

h y x xk h
E E e e e 

        k kh i k i
h y x k y xk h

E E e e E e e   
1

,
ik h yxn n

N
    

  
    k h i k i

h y x xk h
E E e e e  

  
1 1i iyx yxh k

h k

n n

N n N n

    
     

   
 

i ih k i y x yxYX C C    . 

 

 Similarly 
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          2 2 2

i ik i h i k i
h x x x h k x h k i xk h

E E e e e X C        
  

,   

  
       0,
h i h i k i

h x x xk h
E E e e e  

  
 

   
        

2
2 2 2

i ih i k i
h k h x x k h x k h i xE E e e X C        ,  

  
           

i jh i k i h j k j
h x x x x k h x xk h

E E e e e e      
  

 

    
i j i jk h i j x x x xX X C C    ;  i j , 

and  

  
         

i jk i h j k j
h x x x h k x xk h

E E e e e     
  

 
i j i jh k i j x x x xX X C C    ,  i j . 

 

 The following notations will be used in deriving the mean square errors of proposed 

estimators 
 

R
q

yx
 Determinant of population correlation matrix of variables 

1 2 1, , ,..., q qy x x x and x . 

i
q

yx
yx

R  Determinant of thi  minor of R
qyx

 corresponding to the thi  element of
iyx . 

2
. sy x  Denotes the multiple coefficient of determination of y on 1 2 1, ,..., andr rx x x x . 

2
. qy x  Denotes the multiple coefficient of determination of y on 1 2 1, ,..., andq qx x x x . 

sx
R  Determinant of population correlation matrix of variables 1 2 1, ,..., andr rx x x x . 

qx
R  Determinant of population correlation matrix of variables 1 2 1, ,..., andq qx x x x . 

i sy x
R  Determinant of the correlation matrix of 1 2 1, , ,..., and .i r ry x x x x  

i qy x
R  Determinant of the correlation matrix of 1 2 1, , ,..., and .i q qy x x x x  

i j sy y x
R  Determinant of the minor corresponding to 

i jy y  of the correlation matrix of 

1 2 1, , , ,..., andi j r ry y x x x x , for  i j . 

i j qy y x
R  Determinant of the minor corresponding to 

i jy y  of the correlation matrix of 

1 2 1, , , ,..., andi j q qy y x x x x , for  i j . 

 

2.1 Result: 1  

 The following result will help in deriving the mean square errors of suggested 

estimators  
 

   2
.1 ,

R
q

q

q

yx

y x

x
R

 

 

[Arora and Lal (1989)]. 
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3. GENERALIZED MULTIVARIATE RATIO ESTIMATOR  

FOR MULTI-PHASE SAMPLING 
 

 We propose a more general multivariate ratio estimator when information on all 

auxiliary variables is not available for population (No Information Case) and we obtain 

information on variables of interests  1 2, ,..., py y y  and for auxiliary variables 

 1 2, ,..., qx x x  form thk  phase and also for auxiliary variables from thh  phase. The 

proposed estimator is 
 

   

1 2

( ) ( ) ( )

( )1 ( )2 ( )1
1 1 1( ) ( ) ( )

.

i i ip
q q q

h i h i h i

k k k phk p
i i ik i k i k i

x x x
T y y y

x x x

  


  

      
       

      
      

     (3.1) 

        ( )1 ( ) ( )

1
1

1

1
k h i k i

q
i

y x x
i i

Y e e e
X

  
     
  

     

         ( )2 ( ) ( )

2
2

1

1
k h i k i

q
i

y x x
i i

Y e e e
X

 
   

 
   

     ( ) ( ) ( )
1

1
k p h i k i

q
ip

p y x x
i i

Y e e e
X

 
     

 
     

          ( )1 ( )2 ( )1 2k k k py y p yY e Y e Y e    
  

  

        ( ) ( ) ( ) ( )

1 2
1 2

1 1
h i k i h i k i

q q

i x x i x x
i ii i

Y Y
e e e e

X X 


    

    

       

 ( ) ( )
1

h i k i

q
p

ip x x
i i

Y
e e

X


  


       

         ( )1 ( )2 ( )1 2k k k py y p yY e Y e Y e    
  

   

   

     
 

( )1 ( )1 ( )2 ( )2 ( ) ( )h k h k h q k q

j

x x x x x x ij

i
q p

Y
e e e e e e

X


 
           

 

     ( )1 ( )2 ( )1 k k k py y yhk p
T Y e e e


  
 

        

          ( )1 ( )1 ( )2 ( )2 ( ) ( )

*

h k h k h q k qx x x x x xe e e e e e A    
  

   

or 

   
*

1
.y xhk p

T Y D D A


            

 

where 

    ( )1 ( )2 ( )1 k k k phk p
T y y y


    , 1 2 pY Y Y Y    ,  
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( )1 ( )2 ( )k k k py y y yD e e e 

 
 ,  

       ( )1 ( )1 ( )2 ( )2 ( ) ( )h k h k h q k qx x x x x x xD e e e e e e    
  

 and  

  
 

 

 * * ; 1,2,..., , 1,2,...,
j

ij ij
q p

i
q p

Y
A i q j p

X


 
        

  

. 

 

 We use information related to auxiliary variables from thh  and thk phase both then 

the variance covariance matrix of  1 1m p
t


 is written as:  

         
'

1 1hk
h k hT p p hk p hk p

E E T Y T Y
  

      

        
'

* *
h k h y x y xE E D D A D D A

 
    

.  

 

 We can write 

  

   
2[ ] , for ,

i j i j ih k h y y k y k y y y y yp p
E E D D i j


          

 

  

       [ ]
i jh k h y x h k yx h k y x p q

E E D D


          

and 

         
2[ ] ,for ,

i j i j ih k h x x k h x k h x x x x xq q
E E D D i j


              

 

 Using above substitutions in expression of variance covariance matrix, we write: 
 

     
     

'*

p p q phk
k y h k yxT p p p q

A
  

       
   

     
  

           

'* * *

p q q q
h k yx k h xq p p q q p

A A A
   

        .  

 

 Given that  
1

x q q



 exist, the value 'A of that minimizes the variance covariance 

matrix of  1 p
t


 will be  

 

       

* 1

q q q p
x yxq p

A
 




   .                 (3.2) 

 

 The transpose of  
*
q p

A


 is    
1

yxΒ
yx p q x q q


 

   it is actually the matrix of regression 

coefficients for a multivariate regression model in which p  1 2, ,..., pY Y Y  dependent 

variables are regressed on q  1 2, ,..., qX X X dependent variables. These regression 

coefficients are usually unknown and they are estimated from second phase sample. Then 

the variance covariance matrix after simplification can be written as: 
 

             
1

hk
k k hT p p y p p yx p q x q q yx q p


    

          .       (3.3) 
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 The variance covariance matrix form of variance of iy , covariances and correlation 

coefficients of ix  and iy  is written as: 
 

      . .i j i j i j q i j qhk
y y k y y y y x h y y xT p p

p p




         
  

;  , 1,2,...,i j p , (3.4) 

for i j ,    2 2
. .1

i j i j i j q i i qy y y y y y x y y x       .  

  

 For 0
qx

R  , we see that  

     2
.1 ; 1,2,...,

i q

i q

q

y x

y x

x

R
i p

R
    and    . ; , 1,2,...,

i j q

i j i j q

q

y y x

y y y y x

x

R
i j p

R
    .  

 

 Now after simplification we write the variance covariance matrix as:  

   
i j q i j q

i j i jhk

q q

y y x y y x

y y k h y yT p p

x x
p p

R R

R R




     
             
     
       

;  , 1,2,...,i j p , 

                       (3.5) 

for i j , 2i j q i q

i j i

q q

y y x y x

y y y

x x

R R

R R
    .     

Remark-1:   

 To develop generalized multivariate ratio estimator for two-phase sampling using 

multi-auxiliary variables when information on all auxiliary variables is not available for 

population (No Information Case), replace h  by 1 and k  by 2 in (3.1), we get the 

following estimator 
 

   

1 2

(1) (1) (1)

(2)1 (2)2 (2)12 1
1 1 1(2) (2) (2)

i i ip
q q q

i i i

pp
i i ii i i

x x x
T y y y

x x x

  


  

      
       

      
      

    (3.6) 

 

 The expression of unknown matrix for which the mean square error will be minimum 

is same as given in (3.2) and the expression for variance covariance matrix can be 

directly written from (3.3) just replacing h  by 1 and k  by 2 as: 
 

             12

1
2 2 1T p p y p p yx p q x q q yx q p


    

         
      (3.7) 

 

 The variance covariance matrix in the form of variance of iy , covariances and 

correlation coefficients of ix  and iy  is written as: 

      
12

2 . 1 .i j i j i j q i j qy y y y y y x y y xT p p
p p




         
  

;  , 1,2,...,i j p , (3.8) 

for i j ,    2 2
. .1

i j i j i j q i i qy y y y y y x y y x       .  
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 In the form of determinates we can write 

   12
2 1

i j q i j q

i j i j

q q

y y x y y x

y y y yT p p

x x
p p

R R

R R




     
             
     
       

;  , 1,2,...,i j p , 

                       (3.9) 

for i j , 2i j q i q

i j i

q q

y y x y x

y y y

x x

R R

R R
    .  

Remark-2: 

 To develop a univariate generalized ratio estimator for multiphase sampling using 

multi auxiliary variable when information on all auxiliary variables is not known (No 

Information Case). This estimator can be made if we put 1p 
 
in (3.1) as: 

  

1

( )

( )1
1 ( )

.

i
q

h i

hk k
i k i

x
T y

x





 
  

 
 

                 (3.10) 

 

 The expression for vector of unknown constants for which the mean square error will 

be minimum can be written from (3.2) as 
 

        1

* 1
1

.
q q q

x yxq
A

 




  
                 (3.11) 

 

 It can be written in determinants form as: 

   
   

1 1*
.1 1

i
q

i q

i q

yx
yxi iy

i yx x
xi x

R
CY

C RX

 
      ,  1,2,....i q .  

 

 The expression for mean square error can be directly written from (3.3) as:  
 

  
        

1
2 2

1 1hk k y k h x yx q yx q
MSE T



 
        

        (3.12) 
 

 It can be written the form of multiple coefficient of determination as: 
 

  
   2 2 2 2

. .1
q qhk y k y x h y xMSE T Y C      

             (3.13) 
 

Remark-3: 

 To develop a generalized univariate ratio estimator for two sampling using multi-

auxiliary variables when information on all auxiliary variables is not known (No 

Information Case) we put 1h  and 2k  in (3.10). The required estimator becomes 

  

1

(1)

12 (2)1
1 (2)

.

i
q

i

i i

x
T y

x





 
  

 
 

                 (3.14) 

 

 The expression for vector of unknown constants for which the mean square error will 

be minimum is same as given in (3.10) and the expression for mean square error can be 

written from (3.12) just by replacing 1h  and 2k  as:  
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1
2 2

12 2 2 1 1 1y x yx q yx q
MSE T



 
                 (3.15) 

 

 It can be written in the form of multiple coefficient of determination from (3.13) as: 
 

     2 2 2 2
12 2 . 1 .1

q qy y x y xMSE T Y C      
  

         (3.16) 

 

Remark-4: 

 To develop generalized multivariate ratio estimator for multi-phase sampling using 

multi auxiliary variables when information on all auxiliary variables is known for 

population (Full Information Case), replace ( )h ix  by iX
 
in (3.1). For this replacement 

hn N
 
and 0h  . The estimator becomes  

 

   

1 2

( ) ( )2 ( )1
1 1 1( ) ( ) ( )

.

i i ip
q q q

i i i
k i k k pk p

i i ik i k i k i

X X X
T y y y

x x x

  


  

      
       

      
      

    (3.17) 

 

 The expression for the matrix of unknown constants is same as given in (3.2) and the 

expression for variance covariance matrix can be written from (3.3) as: 
 

 
 

          1

k
kT p p y p p yx p q x q q yx q p


    

      
          (3.18) 

 

 The variance covariance matrix in the form of variance of iy , covariances and 

correlation coefficients of ix  and iy  can be written as: 
 

  

   .i j i j i j qk
k y y y y y y xT p p

p p




       
  

;  , 1,2,...,i j p ,     (3.19) 

 

for i j ,    2 2
. .1

i j i j i j q i i qy y y y y y x y y x       .     

 

 The variance covariance matrix in the form of determinants can be written as: 
 

   
i j q

i jk

q

y y x

k y yT p p

x
p p

R

R




 
     
 
 

,  , 1,2,..., ,i j p       (3.20) 

for i j
,

2i j q i q

i j i

q q

y y x y x

y y y

x x

R R

R R
    . 

 

Remark-5: 

 To develop generalized multivariate ratio estimator for two-phase sampling using 

multi auxiliary variables when information on all auxiliary variables is known for 

population (Full Information Case), replace k  by 2 in (3.17). The estimator becomes  
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1 2

(2) ( )2 ( )2 1
1 1 1(2) (2) (2)

.

i i ip
q q q

i i i
i k k pp
i i ii i i

X X X
T y y y

x x x

  


  

      
       

      
      

    (3.21) 

 

 The expression for the matrix of unknown constants will be same as given in (3.2) 

and the expression for variance covariance matrix can be written from (3.18) as: 
 

            
2

1
2T p p y p p yx p q x q q yx q p


    

               (3.22) 

 

 The variance covariance matrix in the form of variance of iy , covariances and 

correlation coefficients of ix  and iy  and in the form of determinants can obtained from 

(3.19) and (3.20) respectively just by replacing k  by 2. 
 

Remark-6: 

 To develop a generalized univariate ratio estimator for multi-sampling using  

multi-auxiliary variables when information on all auxiliary variables is known for 

population (Full Information Case), put 1p   in (3.17). The estimator becomes  

  
1 ( )

i
q

i
k k

i k i

X
T y

x





 
  

 
 

                 (3.23) 

 

 The expression for unknown constant for which the mean square error will be 

minimum of above estimator is same as given in (3.11). The expression of mean square 

error can be written from (3.18) by putting 1p   as:  

         

1
2 2

1 1k k y x yx q yx q
MSE T



 

 
       

 
         (3.24) 

 

 It can also be written as: 
 

     2 2 2
.1

qk k y y xMSE T Y C                (3.25) 

 

Remarks-7: 

 To develop a generalized univariate ratio estimator for two-phase sampling using 

multi-auxiliary variables when information on all auxiliary variables is known for 

population (Full Information Case), replacing k  by 2 in (3.23). The estimator becomes  
 

  2 2
1 (2)

i
q

i

i i

X
T y

x





 
  

 
 

                 (3.26) 

 

 The expression for unknown constant for which the mean square error of above 

estimator will be minimum is same as given in (3.11). The expression of mean square 

error can be written from (3.24) just replacing k  by 2 as:  
 

         

1
2 2

2 2 1 1y x yx q yx q
MSE T



 

 
       

 
         (3.27) 
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 It can also be written as: 
 

     2 2 2
2 2 .1

qy y xMSE T Y C                (3.28) 

 

4. THEORETICAL COMPARISON OF NEWLY  

DEVELOPED ESTIMATORS 
 

 Obviously estimator for which the information on all auxiliary variables is available 

for population will be more efficient than that for which the information on all auxiliary 

variables is not available for population. It means in the case of two-phase sampling 

generalized ratio estimator developed for FIC 2T  is more efficient than or NIC 12T . It 

can be checked by considering the mean square errors of suggested estimators as: 
 

  
    2 2 2

2 12 1 . 0
qy y xMSE T MSE T Y C      

 

 For multiphase sampling generalized ratio estimator developed for FIC kT  is more 

efficient than generalized ratio estimator for NIC 2mt . It can be checked by considering 

the mean square errors of these estimators as: 
 

  
    2 2 2

. 0
qk hk h y y xMSE T MSE T Y C      

 

 Also the estimators developed for multi-phase sampling will be less efficient than 

those which are developed for two-phase sampling because if we increase the phases the 

efficiency will decrease but cost will reduced. It can be checked for FIC and NIC as: 
 

  
       2 2 2

2 2 .1 0; 2,
qk k y y xMSE T MSE T Y C k      

 
and 

           2 2 2 2
12 2 . 1 .1 0;

q qhk y k y x h y xMSE T MSE T Y C           
  

 

                   2 and 1k h k    
 

 Theoretical comparison on the basis of generalized MSE’s can be made for all 

multivariate estimators. These comparisons give same results as discussed above for 

univariate case. 

 

5. EMPIRICAL STUDY OF NEWLY DEVELOPED ESTIMATORS 
 

 For empirical comparison of newly developed multivariate and univariate estimators 

using multi-auxiliary variables for no and full information cases under two and multi-

phase sampling we consider five natural populations. The data is used from five districts 

census reports of province Punjab, Pakistan. The detail of populations and variables 

description is given in Table A-1.1 and Table A-1.2 respectively of Appendix A. We 

consider three variables of interests denoted by Y’s and five auxiliary variables denoted 

by X’s for computing the determinants of matrices of MSE’s of multivariate ratio 

estimators and for univariate we consider 2Y  as study variable and the same five 

auxiliary variables as considered in multivariate case. The necessary parameters of 
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population s for computing MSE’s are given in A-1.3. We calculate pair-wise 

(determinant of matrices of MSE’s)/MSE’s for no information case and for full 

information case we calculate (determinant of matrices of MSE’s)/MSE’s for each phase 

for first five phases. The determinant of matrices of mean square errors of multivariate 

ratio estimators for multiphase sampling using pair-wise phases for no information case 

are given in Table A-1.4.1 and for full information case using each phase for full 

information case are given in A-1.4.2. The mean square errors of univariate estimators for 

multiphase sampling using pair-wise phases for no information case are given in Table 

A-1.5.1 and for full information case using each phase are given in A-1.5.2.  
 

 From Table A-1.4.1 and Table A-1.4.2, we can say that the multivariate ratio 

estimators for full information case are more efficient than no information case for each 

phase e.g. T2 is more efficient than T12, T3 is more efficient than T13 & T23 etc. and the 

same is true for univariate ratio estimators (See Table A-1.5.1 and Table A-1.5.2). 

Furthermore we can say for no information case from Table A-1.4.1 that as we increase 

phase the efficiency decreases e.g. T12, is more efficient than all others, T13 is more 

efficient than all others except T12, T34 is more efficient than T35, T45 but less efficient 

than all others and so on, similarly the same argument can be made for univariate case 

given in Table A-1.5.1. Also for full information case the estimators become less efficient 

as we increase phases because the sample size decreases by increasing phases, it can be 

seen from Table A-1.4.2 and A-1.5.2 for multivariate and univariate estimators 

respectively. 
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APPENDIX A 

 

Table A-1.1: Detail of Populations 

S# Source of Populations 

1 Population census report of Jhang district (1998), Pakistan 

2 Population census report of Faisalabad district (1998), Pakistan. 

3 Population census report of Gujrat district (1998), Pakistan. 

4 Population census report of Kasur (1998) Pakistan 

5 Population census report of Sialkot district (1998), Pakistan. 

 

Table A-1.2: Description of variables (Each variables is taken from Rural Locality) 

Description of variables  

1Y  Literacy ratio  2X  Population of primary but below matric  

2Y  Population of currently married  3X  Population of matric and above  

3Y  Total household  4X  Population of 18 years old and above  

1X  Population of both sexes  5X  Population of women 15-49 years old  

 

Table A-1.3: Parameters of populations for calculating the Matrices of MSE’s  

of multivariate estimators and MSE’s of univariate estimators 

Districts N  1n  2n  3n  4n  5n  1Y
 2Y

 3Y  
1yC  

2yC  
3yC  

Jhang 368 184 92 46 23 12 29.705 860.11 897.71 0.270 0.595 0.512 

Faisalabad 283 142 71 35 18 9 51.394 1511.260 1540.530 3.210 0.522 0.478 

Gujrat 204 102 51 26 13 6 57.535 1101.280 1102.540 0.145 0.484 0.487 

Kasur 181 91 45 23 11 6 31.890 1393.200 1449.020 0.747 0.551 0.530 

Sailkot 269 135 67 34 17 8 52.061 1058.740 998.220 0.147 0.647 0.646 

Table A-1.3 (Contd…) 

Districts 
1y  

2y  
3y  

1x
  

2x  
3x  

4x  
5x  

1 2y y  

Jhang 8.022 511.908 459.842 5626.450 455.060 170.670 2455.170 1064.480 .182 
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Faisalabad 164.950 788.380 736.395 5426.030 1677.920 525.670 6289.710 1482.170 .070 

Gujrat 8.364 533.041 537.236 3507.160 940.480 381.690 8139.680 830.010 .055 

Kasur 23.823 767.636 767.796 5515.420 1095.690 357.890 2719.210 1355.640 .295 

Sailkot 7.641 685.019 644.886 4787.250 1172.710 603.220 2461.590 1151.320 .324 

 

Table A-1.3 (Contd…) 

Districts 
1 3y y  

2 3y y  
1 1y x  

1 2y x  
1 3y x  

1 4y x  
1 5y x  

2 1y x  
2 2y x  

2 3y x
 2 4y x

 2 5y x
 

Jhang .164 .733 .131 .460 .548 .185 .129 .428 .912 .659 .484 .425 

Faisalabad .084 .943 .072 .025 .033 .039 .042 .943 .927 .599 .731 .501 

Gujrat .056 .988 .092 .334 .543 .069 .103 .995 .941 .764 .490 .996 

Kasur .301 .989 .299 .255 .352 .301 .250 .998 .758 .879 .989 .799 

Sailkot .316 .997 .323 .426 .461 .338 .313 .999 .983 .931 .996 .939 

 

Table A-1.3 (Contd…) 

District 
3 1y x  

3 2y x  
3 3y x  

3 4y x  
3 5y x  

1 2x x  
1 3x x  

1 4x x  

Jhang .474 .732 .748 .559 .489 .416 .421 .317 

Faisalabad .967 .615 .747 .520 .822 .641 .782 .513 

Gujrat .984 .933 .749 .487 .986 .954 .796 .509 

Kasur .991 .752 .878 .988 .792 .764 .889 .993 

Sailkot .996 .980 .933 .994 .938 .983 .931 .997 

 

Table A-1.3 (Contd…) 

District 
1 5x x  

2 3x x  
2 4x x

 2 5x x
 3 4x x  

3 5x x
 4 5x x

 1 5

2
. ...y x x  

Jhang .275 .824 .475 .432 .590 .464 .325 0.885 

Faisalabad .819 .708 .359 .559 .543 .685 .436 0.869 

Gujrat .996 .892 .500 .958 .420 .797 .505 0.996 

Kasur .802 .798 .764 .614 .896 .719 .797 0.995 

Sailkot .939 .959 .985 .928 .939 .887 .938 0.997 

 

Table A-1.4.1 Determinants of matrices of MSE’s of multivariate ratio  

estimators for pair-wise phases (No Information Case) 

District 
T12 

(h=1,k=2) 

T13 

(h=1,k=3) 

T14 

(h=1,k=4) 

T15 

(h=1,k=5) 

T23 

(h=2,k=3) 

T24 

(h=2,k=4) 

Jhang 212279.97 1223241.603 7221747.657 46128460.86 3572866.63 16011134.82 

Faisalabad 212515.48 1190925.96 6725695.10 40958629.30 2777523.40 13258374.47 

Gujrat 95363.18 312081.54 1102996.85 4211396.91 1123210.67 3372979.29 

Kasur 203091.03 901801.71 3838230.04 16192403.14 2176260.22 8973735.68 

Sialkot 9555.27 41464.31 173806.26 723929.58 126175.45 482925.70 
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Table A-1.4.1 (Contd…) 

District 
T25 

(h=2,k=5) 

T34 

(h=3,k=4) 

T35 

(h=3,k=5) 

T45 

(h=4,k=5) 

Jhang 79961159.68 38868782.02 158093587.7 2.60491E+11 

Faisalabad 67439732.76 27555308.50 122925398.17 243999111.56 

Gujrat 11251537.17 10702183.50 30944428.16 93069748.63 

Kasur 36805031.49 19922737.86 79389873.19 170075469.89 

Sialkot 1897366.87 1256890.23 4554991.24 11150157.88 
 

Table A-1.4.2 Determinants of matrices of MSE’s of multivariate ratio  

estimators for each phase (Full Information Case) 

District 
T1  

(k=1) 

T2  

(k=2) 

T3  

(k=3) 

T4  

(k=4) 

T5  

(k=5) 

Jhang 1023.378901 27631.23032 351018.963 3453903.79 30487480.83 

Faisalabad 1535.620269 27767.37297 311260.3873 2908814.863 25077800.89 

Gujrat 27.15981853 367.7474988 3710.595857 33124.8694 279522.8025 

Kasur 103.7803005 1306.215104 12804.97189 112839.0944 946342.2579 

Sialkot 2.156156072 36.85754751 405.2293669 3755.836241 32256.39965 
 

Table A-1.5.1 MSE’s of univariate ratio estimators for pair-wise phases  

(No Information Case) 

District 
T12 

(h=1,k=2) 

T13 

(h=1,k=3) 

T14 

(h=1,k=4) 

T15 

(h=1,k=5) 

T23 

(h=2,k=3) 

T24 

(h=2,k=4) 

Jhang 212279.97 1223241.603 7221747.657 46128460.86 3572866.63 16011134.82 

Faisalabad 212515.48 1190925.96 6725695.10 40958629.30 2777523.40 13258374.47 

Gujrat 95363.18 312081.54 1102996.85 4211396.91 1123210.67 3372979.29 

Kasur 203091.03 901801.71 3838230.04 16192403.14 2176260.22 8973735.68 

Sialkot 9555.27 41464.31 173806.26 723929.58 126175.45 482925.70 
 

Table A-1.5.1 (Contd…) 

District 
T25 

(h=2,k=5) 

T34 

(h=3,k=4) 

T35 

(h=3,k=5) 

T45 

(h=4,k=5) 

Jhang 79961159.68 38868782.02 158093587.7 2.60491E+11 

Faisalabad 67439732.76 27555308.50 122925398.17 243999111.56 

Gujrat 11251537.17 10702183.50 30944428.16 93069748.63 

Kasur 36805031.49 19922737.86 79389873.19 170075469.89 

Sialkot 1897366.87 1256890.23 4554991.24 11150157.88 
 

Table A-1.5.2 MSE’s of univariate ratio estimators for each-wise phase  

(Full Information Case) 

District 
T1  

(k=1) 

T2  

(k=2) 

T3  

(k=3) 

T4  

(k=4) 

T5  

(k=5) 

Jhang 81.89064 245.6719 573.2344 1228.36 2538.61 

Faisalabad 131.0829 344.0564 770.0035 1621.898 3325.686 

Gujrat 213.5579 509.0065 1099.904 2281.698 4645.286 

Kasur 251.1011 584.0929 1250.076 2582.043 5245.977 

Sialkot 142.167 366.2247 814.34 1710.571 3503.032 
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ABSTRACT 
 

 Jhajj et al. (2006) proposed a general family of estimators and derived a general 

expression for mean square error of these estimators by using single auxiliary attribute. 

Hanif et al. (2009) proposed a more general form of Jhajj et al. (2006) family of 

estimators and derived expression for mean square error of particular estimators of 

proposed family by using “ k ” auxiliary attributes. In this paper we suggest some new 

estimators. We also derive the mean square error expression of Jhajj et al. (2006) 

estimator for the partial information case, using two auxiliary attributes. Mathematical 

comparisons of these estimators are made. An empirical study has also been conducted.  

 

KEY WORDS 
 

 Full information, partial information, no information, auxiliary attribute; efficiency, 

bi-serial correlation coefficient, dichotomy 

 

1. INTRODUCTION 
 

 The use of auxiliary information in estimation process is as old as history of survey 

sampling. The first use of auxiliary information in survey sampling can be traced to 

Neyman (1938). Generally the auxiliary variables are quantitative in nature but the use of 

qualitative auxiliary variables has been proposed in ratio, product and regression 

estimators by Naik and Gupta. (1996). Jhajj et al. (2006) proposed a family of estimators 

using single auxiliary attribute. 
 

 In this paper we develop a set of estimators which are an improved form of  

Jhajj et al. (2006) as well as Shabbir and Gupta (2007) estimators. Let  1 2, ,i i iy    be the 

ith sample point from a population of size N , where  1,2j j   is the value of jth 

auxiliary attribute. Suppose that the complete dichotomy is recorded for each attribute, so 

that 1ij   if ith unit of population possesses jth attribute and 0 otherwise. Let 
1

N

j ij
i

A


   

and 
1

n

j ij
i

a


   be the total number of units in the population and sample respectively 

possessing attribute .j  Let 1

j jP N A  and 1

j jp n a
  be the corresponding proportions. 

                                                 
*
Published in Pak. J. Statist. (2011), Vol. 27(1). 
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Using simple random sampling without replacement (SRSWOR) scheme, let us define 

ye y Y   and 
j j je p P    with following properties: 

 

   2 2

y yE e S  ,  2 2

j j
E e S   ,  y y pbj j j

E e e S S    ,   121 2 1 2
E e e S S Q     , 

 

where 1 1,n N      0y j
E e E e   and   

1

1

1

N

y i ij jj
j

S y Y P
N




   


. Let  Pbj y yj j
S S S    

be the point bi-serial correlation coefficient and 12Q  is coefficient of association. Also 

2

yS  is variance of main variable and 2

j
S  is variance of jth auxiliary attribute. Let 1n  and 

2n  be the size of first-phase and second-phase sample respectively, so that 2 1n n   

( 2n  is sub sample of 1n ) and  1j
p ,  2j

p  are the proportions of units possessing attribute 

j  in first-phase and second-phase sample, respectively. The mean of the main variable 

of interest at the second phase is denoted by 2y . Also  

 22ye y Y  ,    1 1j
jj

e p P


  ,    2 2j
jj

e p P


    1,2j  , 

   2
22y yE e S  ,

   2 2 1
3 jj j

y y pbjE e e e S S  
  

     
  

, 1 1
2 2n N   ,  

 
   1 2

2
2

3 jj j
E e e S  
 

   
 

,
        1 21 2 11 2 2 2 1

123E e e e e S S Q     
   

      
   

, 

 3 2 1    , 1 1
1 1n N      

22

1

1

1

N

y i
j

S y Y
N 

 


,  
2

2

1

1

1j

N

ij j
j

P
N

S


   


,  

 

for 2 2  contingency table 12

ad bc
Q

ad bc





, 1  and 2 are finite population correction 

factors(f.p.c) for first and second-phase scheme respectively. 

 

2. SOME PREVIOUS ESTIMATORS BASED ON  

AUXILIARY ATTRIBUTES 
 

 In this section we reproduce previous estimators available in literature.  

 

2.1 Single-Phase Sampling (Full Information Case) 
 

i) If information on a single auxiliary attribute 1  
is known then a family of estimators 

suggested by Jhajj et al. (2006) is given as,  
 

   1(1) 1,T g y v ,                  (2.1) 
 

where 1 1 1v p P  and  1,g y v  is a parametric function of y  and 1v  such that 

 ,1g Y Y


  and satisfying following regularity conditions.  
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(a) What ever be sample chosen, the point  1,y v
 
assumes value in a bounded closed 

convex subset 2R
 
of two-dimensional real space containing the point  ,1Y . 

(b) The function  1,g y v  
is continuous and bounded in 2R .  

(c) The first order and second order partial derivatives of  1,g y v  exist and are 

continuous as well as bounded in 2R . 
 

The mean square error of (2.1) up to the term of order 1n  is, 
 

     1 1
2 2

11 ypbT SMSE   .               (2.2) 

 

ii) An estimator suggested by Shabbir and Gupta (2007) for the full information case is, 
 

     1
1 2 1 12(1) 1

1

. 0
P

t y d d P p p
p

 
 

               (2.3)  

 

 The values of 1d
 
and 2d  that minimize  2(1)MSE t  are,  

 

  

 
1

2 2 2

1
1

1

1 Pb y

d
Y S




 

 and  
 

1
1

2
2 2

1

11

2
1

11
1 y

y PPb

PPb S

Y S P S
d

Y S









 
  




 

. 

 

  The mean square error of (2.3) up to the term of order 2n  is,  

    
 
 

2(1)

2 2
1

2 2 2
1

1

1 1

ypb

ypb

S
MSE t

Y S



 




 
.           (2.4) 

 

iii) If information on all auxiliary attributes ( 1,2,..., )j j k  is known then a family of 

estimators suggested by Hanif et al. (2009) is given as 
 

    , , ...1 23(1) , kT g y v v v                (2.5) 

 

where j j jv p P  and  , , ...1 2, kg y v v v  is a parametric function of y  and jv  such 

that  ,1,1,....1g Y Y   and satisfying following regularity conditions.  

(a) Whatever be sample chosen, the point  , , ...1 2, ky v v v assumes value in a bounded 

closed convex subset kR of k-dimensional real space containing the point

 ,1,1,....1Y . 

(b) The function  , , ...1 2, kg y v v v is continuous and bounded in kR .  

(c) All possible first order and second order partial derivatives of  , , ...1 2, kg y v v v  

exist and are continuous as well as bounded in kR . 
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The mean square error of (2.5) up to the term of order 1n  is:  
 

      
1 2

2 2
. ...3 1

1
ky yMSE T S     ,             (2.6)  

 

where 
1 2

2
. ... ky     is multiple bi-serial correlation coefficient. 

 

2.2 Two-Phase Sampling (No Information Case) 
 

i) A family of estimators for two phase sampling proposed by Jhajj et al. (2006) is,  
 

   4(2) 2 1, dT g y v ,                (2.7) 
 

where    1 1 2 1 1dv p p , such that  ,1g Y Y   

The mean square error of (2.7) up to the term of order 1n  is, 
 

     4 2

2 2
2 3 1pb yMSE T S    .              (2.8)  

 

ii) An estimator suggested by Shabbir and Gupta (2007) for no information is,  
 

    2

1(1)
5(2) 1 2 1(1) 1(2) 1(2)

1(2)
. 0

p
t y W W p p pp

  
 

           (2.9)  

 

The expressions for 
1W and 

2W  that minimizes  5(2)MSE t  are,  

 
 2 2 2

2 3 1

1
1

1 pb y

W
Y S


   

 and 
 
 

1 1

1

2 2

2 3 1

1 1
1

2 21 PPb

Pb y P

y

Y S P S
W

Y S S

 



 

     

 . 

 

Then the mean square error of (2.9) up to the term of order 2n  is,  
 

  
 
 

2 2
2 3 1

5(2) 2 2 2
2 3 11

ypb

ypb

S
MSE t

Y S

  


   
.            (2.10)  

 

iii) If information on all auxiliary attributes  1,2,...,j j K  is not known then a family 

of estimators suggested by Hanif et al. (2009) is,  
 

  
26(2) 1 2, , ,............,d d kdT g v v vy ,             (2.11) 

 

where (2) (1) ; 0jd jdj jp pv v   and  2 1 2, , ,....,d d kdg v v vy  is a parametric function of 

2y  and 
jdv  such that  ,1,1,....1g Y Y   and satisfying same regularity conditions 

stated in (2.5). The mean square error of (2.11) up to the term of order 1n  is, 
 

      1 2 1 2

2 2 2
2 . ... 1 . ...6 2

1
k ky y yMSE T S          .        (2.12)  

 

NCBA&E



Chapter-5: Sampling 333 

2.3 Two-Phase Sampling (Partial Information Case) 

 Suppose that population proportion jP  is known for  1,2j m  auxiliary attributes 

and not known for  1,  2j m m k     auxiliary attributes. Using such partial 

information Hanif et al. (2009) proposed following general family of estimators, 
 

   ,7(2) 2 1 2 ( 1) ( 2), , ,,..., ,...,m m d m d kdgT v v v v v vy   ,          (2.13) 

 

where 1( ) ; 0( 1,2,..., )jj jj j mp Pv v    and 2 1( ) ( ) ; 0( 1, 2,..., ).jd jdj j j m m kp pv v    
 

Also 

 ,

2 1 2 ( 1) ( 2)
, , ,,..., ,...,

m m d m d kd
g v v v v v vy
  

 is a parametric function of 
2y , jv  and jdv  such 

that  ,1,1,....1Y Yg   and satisfying certain regularity conditions. 

 

 The mean square error of (2.13) up to the term of order 1n  is: 
  

         1 2 1 2 1 2

2 2 2 2
2 . ... 1 . ... . ...7 2

1 .
m m k m m k my y y yMSE T S
                    (2.14)  

  

2.4 An Estimator Proposed by Shahbaz and Hanif (2009) 

  Shahbaz and Hanif (2009) proposed the following general shrinkage estimator,  
 

   
2

ˆ
ˆ

ˆ1 ( )
s

t
dt

T MSE t
t


 


 ,                (2.15) 

where t̂  is any available estimator of parameter T and 
2

1

ˆ1 ( )
d

T MSE t



 is shrinkage 

constant. The mean square error of st  is 
 

   
 

 2

ˆ

ˆ1
s

MSE t
MSE t

T MSE t



.               (2.16) 

 

3. A NEW ESTIMATORS FOR SINGLE AND TWO PHASES  

SAMPLING USING ONE ATTRIBUTE 
 

 An approximate estimator suggested by Shabbir and Gupta (2007) is not defined  

at 1 0p  . Therefore we are proposing a new estimator, which may be considered as an 

alternative to that of Shabbir and Gupta (2007). This new approach has an advantage over 

estimator suggested by Shabbir and Gupta (2007), as it is defined for any value of sample 

proportion 
1p  because it contained no ratio. 

 

 The estimator for full information case using a single attribute is  
 

    *

8(1)8(1) 0 1 1 1 0t d y d p P d t      ,             (3.1) 
 

where 

 8(1)

2 *0
1

1 Y MSE t
d


  and  *

8(1) 1 1 1y d p Pt      . 

 

NCBA&E



Chapter-5: Sampling 334 

 Using Shahbaz and Hanif (2009) approach given in (2.16) the mean square error  

of 8(1)t is  

   
 

 
8(1)

8(1)

8(1)

*

2 *
(

1

MSE t
MSE

Y MSE t
t






.              (3.2) 

 

 The mean square error of *
8(1)t  is  

 

    1 1 1

* 2 2 2
8(1) 1 12y y PbMSE t S d S d S S 

 
 

    .            (3.3)  

 Optimum value of 1d  which minimize   *
8 1

MSE t  is 1

1

1

y pbS
d

S


 .  

 

 Using the value of 1d in (3.3), the mean square error of *
8(1)t  is  

 

     * 2 2
8(1) 11 pb yMSE t S  .              (3.4)  

 

 Using (3.4) in (3.2), the mean square error of 8(1)t is  

  
 
 

2 2

1

8(1) 2 2 2

1

1
( )

1 1

pb y

pb y

S
MSE

Y S
t



 


  
.             (3.5) 

 

 It is not approximated like suggested that by Shabbir and Gupta (2007).  

 

 Another suggested estimator for the no information case is  
 

     *
2 19(2) 1(2) 1(1) 9(2)0 0t W y W p p W t  

  
   ,          (3.6) 

where 

 9(2)

2 *0

1

1
W

Y MSE t
  and  *

9(2) 2 1 1(2) 1(1)t y W p p 
 

  . 

 

 Using Shahbaz and Hanif (2009) approach given in (2.16) the mean square error of 

9(2)t  is  

   
 

 

*
9(2)

9(2) 2 *
9(2)1

MSE t
MSE

Y MSE t
t





.             (3.7) 

 

 The mean square error of 
*
9(2)t  is  

 

     1 11

* 2 2 2
9(2) 2 3 1 12y y PbMSE t S W S W S S     .          (3.8) 

 

 The optimum value of 
1W , which minimize  *

9(2)tMSE  is 1
1

1

pbyS
W

S


 .  
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 Using the value of 
1W  in (3.8), and upon simplification, 

 

     
1

2 2*
9(2) 2 3 Pb yt SMSE    .              (3.9)  

 

 Using (3.9) in (3.7) the mean square error of 
9(2)t is  

 

   
 
 

1

1

2 2
2 3

9(2) 2 2 2
2 31

Pb y

Pb y

S

Y S
MSE t



  

   
 .           (3.10) 

 

 It is not approximated like the one suggested by Shabbir and Gupta (2007) .This may 

be considered as an alternative to the one suggested in Shabbir and Gupta (2007). 

 

4. SINGLE PHASE SAMPLING USING TWO AUXILIARY  

ATTRIBUTES (FULL INFORMATION CASE) 
 

 In this section we produce a family of estimators for full information case by putting  

k = 2 in (2.5)  
 

   10(1) 1 2, ,T g y v v ,                (4.1) 
 

 Similarly putting k = 2 in (2.6) the mean square error of 10(1)T  up to the term of order 

1n  is  
 

      2
10(1) 1 2

2
.1 yyTMSE S   .               (4.2)  

 

 A regression type estimator for full information case using two auxiliary attributes is  
 

      *

11(1)11(1) 0 1 1 1 2 2 2 0t y p P p P t           ,         (4.3) 

 

where 

 11(1)

*
0 2

1

1 Y MSE t



  and    *

11(1) 1 1 1 2 2 2t y p P p P         . 

 

 Using Shahbaz and Hanif (2009) approach given in (2.16) the mean square error  

of 11(1)t
 
is 

   
 

 

*
11(1)

11(1) 2 *
11(1)1

MSE t
MSE

Y MSE t
t





.             (4.4) 

 

 The mean square error of 
*
11(1)t  is 

 

   
1 1

1 2

11(1)

2 2 2 2 2*
1 2 12

Pby yS S S S SMSE t
       




 

        
2 2 1 22 1 2 122 2y PbS S S S Q  


      

.      (4.5) 
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 Optimum values of 1  and 2  are,  
 

   
 

1 12

2

12 1

1 2

1

1

Pb Pb yP Q S

Q S

  
 



 and  
 

2 12

2

2 1

2 2

121

Pb Pb yP Q S

Q S

  
 



.  

 

 Using the values of 1  and 2  in (4.5) the mean square error of *
11(1)t  is  

 

     *

11(1) 1 2

2 2
.1 y yMSE t S   .                (4.6)  

 

 Using (4.6) in (4.4) the mean square error of 11(1)t  is  

 

   
 
 

1 2

1 2

11(1)

2 2
.

2 2 2
.

1

1 1

y y

y y

S
MSE t

Y S

 


 

 


  
.            (4.7) 

 

5. TWO-PHASE SAMPLING USING TWO AUXILIARY ATTRIBUTES 
 

 In this section two cases are to be discussed one for the partial information and other  

for the no information. 

 

5.1 Partial Information Case 

 We propose a family of estimators as 
 

   1 212(2) , , dT g y v v ,                (5.1) 

 

where 1(2) 2(2)

1 2 1 2

1 2(1)

, , 0, 0,d d

p p
v v v v

P p
     

1P  is known but 
2P  is not known,  1 2, , dg y v v

 

is parametric function such that  ,1,1g Y Y   and satisfying regularity conditions 

mentioned in (2.1). Consider the following estimator  
 

     12(2) 2 1 1 2 21 1dt y v v      ,             (5.2) 
 

where 
1
  and 

2
  are constants to be determined. It must be noted that (5.2) is not special 

case of (2.13) because in (2.13) (1)

1

j

j

p
v

P
  but in (5.2)  

(2)

1

for 1
j

j

p
v j

P
  . The mean 

square error of 12(2)t  is   

 

  
2

2 2
12(2) 1 1 1

1 1

2
11

2

2y y Pb

S S

PP
MSE t S S 

 
 

 
 
      
 
 

  

       
3 2 2 12

2

2 12

2

2 2 1 2

2
2 1 22

2 2 .y Pb

S S S S

P P PP
YS Q

   
 
           
 

    (5.3)  
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 The optimum values of 
1
  and 

2
  are 

 

   
 

1 12 3

1 2

2 3 121

2 1 2y Pb PbPS Q

S Q

 
     

 
 and  

 
12

2

2 3 12

2 2 2 1

2

2

Pb Pby Q

Q

P S

S

   


 
  .  

 

 Using the values of 1
  and 2

  in (5.3), the mean square error of 12(2)t  is   

 

  
 

1 2 1 2

2 2

2 3 3 12

12(2) 2 2

2 3 12

2
2

1
Pb Pb Pb Pb

y

Q
S

Q
MSE t 

       
 

 

 
 
 
 




.         (5.4)  

  

 A regression type estimator using two auxiliary attributes has also been suggested: 
 

      *

2 13(2)13(2) 0 1 1(2) 1 2 2(2) 2(1) 0t y p P p p t         
,        (5.5) 

 

where 
0 2 *

13(2)

1

1 ( )Y MSE t
   and    *

213(2) 1 1(2) 1 2 2(2) 2(1)t y p P p p      
. 

 

 Using Shahbaz and Hanif (2009) approach given in (2.16) the mean square error  

of 13(2)t
 
is 

   
 

 

*
13(2)

2 *
13(2)

13(2)
1

MSE t
MSE

Y MSE t
t





.           (5.6) 

 

 The mean square error of *
13(2)t  is 

 

   *

13(2)
1 11

2 2 2 2
2 1 12y y PbMSE t Y S S S S

  
       

 

 

      
2 2 1 22

2 2
2 2 1 2 123 2 2y PbS S S S S Q  

       
 
 

 

.     (5.7) 

 

 The optimum value of 
1  and 2  are, 

 

   
 

1

1

2 12 31 2

2
2 3 12

1

y Pb PbPS Q

S Q

    

 
   and  

 
2

2

2 122 1

2
2 3 12

2

y Pb PbP S Q

S Q

   

 
  .  

 

 Using the values of 1  and 2  in (5.7),  
 

   
 

1 2 1 2*

13(2)

2 2

2 3 3 12 2

2 2

2 3 12

2
1

Pb Pb Pb Pb

y

Q
S

Q
MSE t

        
 

  

 
 
 
 

 .       (5.8)  

 

 Using (5.8) in (5.6), the mean square error of 13(2)t  is 
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1 2 1 2

1 2 1 2

13(2)

2 2
2 3 3 12 2

2 2
2 3 12

2 2
2 3 3 12 2 2

2 2
2 3 12

2
1

.

2
1 1

Pb Pb Pb Pb

y

Pb Pb Pb Pb

y

Q
S

Q
MSE t

Q
Y S

Q



         
  
  
 


         
   
  
 

   (5.9) 

 

5.2 No Information Case 

 A family of estimators for the case of no information is  
 

   14(2) 2 1 2, ,d dT g y v v ,                (5.10)  
 

 Putting 2k   in (2.12) the mean square error of  14 2
T  yields 

 

      
1 2 1 2

2

14(2) 1

2 2
2 . .1 yy yTMSE S        .          (5.11) 

 

 A regression type estimator for no information case is  
 

      *

15(2)

* *

15(2) 0 2 1 1(2) 1(1) 2 2(2) 2(1) 0t y p p p p t          
,      (5.12) 

 

where 

 
*

0
2 *

15(2)

1

1 Y MSE t


  and    *

15(2) 2 1 1(2) 1(1) 2 2(2) 2(1)t y p p p p       
. 

 

 Using Shahbaz and Hanif (2009) approach given in (2.16) the mean square error  

of 15(2)t  is  

   
 

 
15(2)

2

*
15(2)

*
15(2)1

MSE
MSE

Y MSE

t

t
t





.            (5.13) 

 

 The mean square error of 
*

15(2)
t  is 

   
1 1

1 2

*

15(2)

2 2 2 2 2
2 3 1 2 12

Pby yMSE t S S S S S 
      
 
 


 

       
2 2 1 2

2 1 2 122 2y PbS S S S Q       




.       (5.14) 

 

 The optimum values 1  and 2  in (5.14) is same as given in the full information case.  
 

 Using the value of 1  and 2  in (5.14), the mean square error of 
*
15(2)t  is 

 

      
1 2 1 215(2)

* 2 2 2

2 . 1 .1 y y ySMSE t         .          (5.15) 

 

 Using (5.15) in (5.13) the mean square error of 15(2)t is  
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1 2 1 2

1 2 1 2

2

2 2

2 2
2 . 1 .

15(2)
2 2

2 . 1 .1

1

1

y

y

y y

y y

S

MSE

Y S

t


   

   





    

    
.        (5.16) 

 

 Some estimators of family proposed in (4.1) are, 

i)    1 1 1 21 1y v v     ii)  1 2
1 2yV V
 

 

iii)    1 1 2 21 1V V
y e

   
 iv)      1 21 11 2

1 2

V V
y V e V e

 
 

 

v)  12 21
1

V
yV e

 
 vi)     1 11 1 2 21 2

1 2
2

V Vy
V V e

    
 

 
 

vii)    3 4
1 1 2 21 1y V V

 
      viii)    3

1 1 2 21 1V Vy


       

ix) 
 

1
12 22

1 1 2

1 2

Vy
V

k k
k k e



 




 
 
  

 x) 
     1 11 1 2 21
V V

y k e k e
     

  
 

 

 The mean square error of all these estimators has been derived.  
 

 It can be easily verified that    11(1) 2(1)
MSE t MSE t . Similarly it can be shown that

   15(2) 5(2)
MSE t MSE t . 

 

6. EMPIRICAL STUDY 
 

 Twelve populations are taken from the Government of Pakistan (1998). It is shown 

empirically in table-2 that the proposed estimator 11(1)t  outperforms other competing 

estimators. Also,  15 2
t  performs best in almost all the populations. We conclude that 

11(1)t  and  15 2
t  are more efficient than the other estimators in single phase and two-

phase sampling. It is further observed full information case is always more efficient than 

the no information case. 
 

 The optimum values of 
/ /

1 2and   involve population parameters, which are 

assumed to be known for the efficient use of proposed family 12(2)T . Usually these 

parameters are unknown, but they can be estimated from the sample. Following approach 

of Srivastava and Jhajj (1983), the estimator of proposed family, 12(2)T  will have the same 

minimum mean square, if we replace the unknown value of parameters involved in 

optimum value of 
/ /

1 2and   with their estimators. Similar is the case for other 

proposed estimators and families of estimators.  

 

6.1 Conclusion  
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 The proposed estimator 11(1)t  is recommended for estimating the population mean in 

the full information case as 11(1)t
 
outperforms all the existing estimators for the full 

information. Similarly 15(2)t  is recommended for estimating the population mean for the 

no information case as 15(2)t
 

outperforms all the existing estimators for the no 

information. 
 

 It is also recommended that full information should always be preferred if possible, 

otherwise estimators with partial information is the best choice, the no information case is 

recommended when we have no other choice. 
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APPENDIX 

Table-1 

Description of Populations and Variables 

Pop 

# 
Description 

Main 

Variable 

Attribute-I is 

present  1 1  if 

Attribute-II is 

present  1 1   if 

1 District-wise area and 

production of Vegetables 

for year 1995-96 

Production 

of Vegetables 

(In tones) 

Districts of 

N.W.F.P (including 

Fata Areas ) 

Area of Districts 

less than 501 

hectors. 

2 District-wise area and 

production of Vegetables 

for year 1996-97 

Production 

of Vegetable 

(In tones) 

Districts of Punjab 

Area of Districts 

less than 401 

hectors. 

3 District-wise area and 

production of Vegetables 

for year 1997-98 

Production 

of Vegetables 

(In tones) 

Districts of Punjab 

Area of Districts 

greater than 1000 

hectors. 

4 District-wise area and 

production of all Fruits 

for year 1995-96 

Production 

of all Fruits 

(In tones) 

Area of Districts 

greater than 1000 

hectares 

Districts of Punjab 

5 District-wise area and 

production of all Fruits 

for year 1996-97 

Production 

of all Fruits 

(In tones) 

Districts of Sind 

Area of Districts 

less than 1001 

hectors. 

6 District-wise area and 

production of all Fruits 

for year 1997-98 

Production 

of all Fruits 

(In tones) 

Districts of 

N.W.F.P (including 

Fata Areas ) 

Area of Districts 

less than 501 

hectors. 

7 District-wise area and 

production of Wheat for 

year 1995-96 

Production 

of Wheat 

(In tones) 

Area of Districts 

greater than 30 

hectors. 

Districts of Punjab 

8 District-wise area and 

production of Wheat for 

year 1996-97 

Production 

of Wheat 

(In tones) 

Districts of Punjab 

Area of Districts 

greater than 35 

hectors. 

9 District-wise area and 

production of Wheat for 

year 1997-98 

Production 

of Wheat 

(In tones) 

Districts of 

N.W.F.P (including 

Fata Areas ) 

Area of Districts 

greater than 25 

hectors. 

10 District-wise area and 

production of Onion for 

year 1995-96 

Production 

of Onions 

(In tones) 

Area of Districts 

greater than 40 

hectors. 

Districts of 

N.W.F.P (including 

Fata Areas ) 

11 District-wise area and 

production of Onion for 

year 1996-97 

Production 

of Onions 

(In tones) 

Area of Districts 

greater than 50 

hectors. 

Districts of 

N.W.F.P (including 

Fata Areas ) 

12 District-wise area and 

production of Onion for 

year 1997-98 

Production 

of Onions 

(In tones) 

Districts of Punjab 

Area of Districts 

greater than 60 

hectors. 
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Table-2 

Relative Efficiency of Various Estimators 

Pop 

# 

Single-Phase Sampling 

(Full information case) 
Two-Phase Sampling 

y  1(1)T  2(1)t  10(1)T  11(1)t  4(2)T  5(2)t  14(2)T  15(2)t  

1 100 108.77 120.10 118.20 129.53 104.62 115.94 109.20 120.52 

2 100 142.25 153.36 149.52 160.63 119.40 130.50 122.12 133.23 

3 100 142.03 152.92 143.39 154.27 119.31 130.20 119.84 130.72 

4 100 122.30 134.59 124.56 136.84 111.08 123.37 112.09 124.375 

5 100 102.49 114.96 126.02 138.34 101.11 113.58 112.73 125.20 

6 100 111.41 123.65 114.58 126.82 105.93 118.17 107.48 119.72 

7 100 146.61 155.30 239.88 248.56 115.15 123.83 140.33 149.01 

8 100 225.50 233.66 268.09 276.28 147.90 156.08 157.466 165.65 

9 100 125.40 132.80 186.98 194.42 113.36 120.80 137.125 144.357 

10 100 105.90 137.40 107.13 136.63 103.40 134.90 104.10 135.60 

11 100 107.07 136.09 107.73 136.96 104.04 133.14 104.43 133.63 

12 100 101.80 129.20 109.90 137.30 101.05 128.45 105.60 133.00 

 

Table-3 

Various Population Parameters 

Pop  

# 1

1
1P S

  
2

1
2P S

  
1

yY S
 

1Pb  
2Pb  

12Q  

1 1.524 1.67 1.457 0.284 0.376 0.50 

2 1.461 1.84 1.443 0.545 0.389 -0.76 

3 1.4606 0.81 1.423 0.544 0.474 0.79 

4 0.6759 1.46 1.518 0.427 0.35 0.59 

5 2.3366 1.46 1.529 0.142 0.424 -0.05 

6 1.5245 1.94 1.515 0.32 0.479 0.69 

7 0.8203 1.42 1.154 0.631 0.742 0.96 

8 1.4413 0.87 1.194 0.746 0.651 0.96 

9 1.5045 0.745 1.139 0.45 0.645 -0.38 

10 0.4994 1.55 2.071 0.236 0.225 -0.60 

11 0.5243 1.53 6.298 0.257 0.249 -0.79 

12 1.3988 0.551 1.930 0.133 0.249 0.13 
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ABSTRACT 
 

 In this paper multivariate ratio and regression estimators for estimating the population 

mean vector have been proposed using multi-auxiliary variables for partial information 

case. The expression of variance covariance matrix has been derived. Empirical study has 

been carried out to see the performance of proposed estimator over estimator proposed by 

Butt, et al. (2011). 

 

KEY WORDS 
 

 Multivariate Ratio Estimator; Two Phase Sampling; Partial Information Case; 

Multiple Auxiliary Variables. 

 

1. INTRODUCTION 
 

 The estimation of the population mean is an unrelenting issue in sampling theory and 

several efforts have been made to improve the precision of the estimators in the presence 

of multi-auxiliary variables. A variety of estimators have been proposed following 

different ideas of ratio, regression and product estimators. 
 

 Olkin (1958) was the first author to deal with the problem of estimating the mean of a 

survey variable when information on several auxiliary variables is made available. Singh 

and Namjoshi (1988) discussed a class of multivariate regression estimators of population 

mean of study variable in two-phase sampling. Robinson (1994) proposed a regression 

estimator ignoring some of the assumptions usually adopted in the literature (see, e.g., 

Srivastava (1971)). Kadilar and Cingi (2004, 2005) analyzed combinations of regression 

type estimators in the case of two auxiliary variables. Pradhan (2005) suggested a chain 

regression estimator for two-phase sampling using three auxiliary variables when the 

population mean of one auxiliary variable is unknown and other is known. Hidiroglou  

et al. (2009) and Haziza et al. (2001) have overlooked the work of Singh (2004), thus 

their work is based on doubtful simulation. Their estimators can never attain the 

minimum variance of a linear regression estimator in two-phase sampling. For detail, see 

Steans and Singh (2008). They have not compared their work with that of Singh (2004) 

estimator either through simulation or theoretically.  

 
 

                                                 
*
Published in Pak. J. Statist. (2013), Vol. 29(1). 
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 In multipurpose surveys, the problem is to estimate population means of several 

variables simultaneously (see Swain (2000)). Tripathi and Khattree (1989) estimated 

means of several variables of interest, using multi-auxiliary variables for simple random 

sampling. Further Tripathi (1989) extended the results to the case of two-phase sampling. 
 

Following Roy (2003), Butt, et al. (2011) has proposed the following multivariate 

regression estimator for two-phase sampling using two-auxiliary variables X  and W  for 

Partial Information Case (see Samiuddin and Hanif (2007)) as: 
 

       2 1 2 1 2t = y K+ AK+ BKx x W w W w            (1.1) 
 

where K  is a vector of constants and &A B  are diagonal matrices with diagonal entries 

i  
& i  

respectively. The expression for variance covariance matrix is 
 

  
 

  2, , 1,2,..., ;
p p

t ij ij i
p p

S i j p S S
 

       for i j       (1.2) 

 

where 
 

     2 2 2 2 2
2 . 1 .1 1

i i i ii y y wx xy w wyS S       
 

         (1.3) 

and 

   
2 21

i j i j i j i j

i j i j

xy xy wy wy xy wy xw wy xy xw

ij y y y y

wx

S S S

                    
 

             

2 2
. . 1 1

i j i jxy w xy w wy wy
   


 (1.4) 

 

 This paper consists of four sections along with appendix. After providing some 

background in section one, two-phase sampling scheme, important notations and 

expectations using several study and auxiliary variables are given in section two. The 

new estimator is defined in section three along with expression of its mean square error. 

The detail of empirical results are given in appendix and discussed in section 4. 

 

2. TWO-PHASE SAMPLING USING MULTI-AUXILIARY VARIABLES 
 

 Consider a population of size N units. Let 
1 2, ,..., PY Y Y  are p

 
variables of interest and 

1 2, ,..., qX X X  are q  auxiliary variables. For two-phase sampling design let 1n  and 2n

 2 1n n  be sample sizes for first and second phase respectively, (1)ix  and (2)ix  denote 

the thi  auxiliary variables from first and second phase samples respectively and  2 i
y  

denote thi  study variable from second phase sample. Let iX , 
ixC , 

iyC , 
i iy x , 

i jy y
 
and 

i jx x denote the population mean, coefficient of variation of thi  auxiliary variable, 

coefficient of variation of 
thi  variable of interest, correlation coefficient of 

thi  variable of 

interest and 
thi  auxiliary variable, correlation coefficient of 

thi  and 
thj variable of 
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interest and correlation coefficient of thi  and 
thj  auxiliary variables respectively. Further 

let 1
1

1 1

n N
    and 2

2

1 1

n N
   are sampling fractions for first and second phase 

respectively. Also assume 
 2

(2)
i

i yy Y e  ,    11 i
i xi

x X e 
 

and    22 i
i xi

x X e 

 1,2,...,i k , where 
 2

ye , 
 1 i

xe  and 
 k i

xe  are sampling errors. Further it is assumed that

        2 1 2
2 1 2 0

i i i
y x xE e E e E e  

 
where 1E  and 2E denote the expectations over first 

and second phase respectively. Then for simple random sampling without replacement 

for both first and second phases, we write by using phase wise operation of expectations 

as: 
 

  
  2

2
22

2 1
ii

y y

n
E e

N

 
   
 

, 
  2

22
2 22

2 2
2

1 ,i

ii

y

y i y

n
E e Y C

N n

 
    
 

  

  
    2 2

2
2 21

i i i i i ii i
y x y x i i y x y x

n
E e e Y X C C

N

 
      
 

 

  
    2 2

2
2 2

2

1 ,i i

i i i ii i

y x

y x i i y x y x

n
E e e Y X C C

N n

 
     
 

 

  
      2 1 2

1 21 i i i
y x xE E e e e 

            2 1 2 2
1 221 i i i i

y x y xE E e e E e e   2 1

1
i iy xn n

N
  

 
and 

  
      2 1 2

1 21 i i i
y x xE E e e e  

  

1 2

1 2

1 1i i i iy x y xn n

N n N n

    
     

   
 

     1 2 i i i ii y x y xYX C C    . 

 Similarly 
 

  
          
2 1 2

2 2 2
1 1 2 1 221 i ii i i

x x x x i xE E e e e X C        
  

, 

  
      1 1 2

1 21
0,

i i i
x x xE E e e e  

           
1 2

2
2 2 2

1 2 1 2 1 2 1i ii i
x x x i xE E e e X C        ,  

  
           
1 2 1 2

1 2 121 i ji i j j
x x x x x xE E e e e e      

  
 2 1 i j i ji j x x x xX X C C    ;  i j , 

and 

  
         
2 1 2

1 1 221 i ji j j
x x x x xE E e e e     

  
 1 2 i j i ji j x x x xX X C C    ,  i j . 
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3. GENERALIZED MULTIVARIATE REGRESSION ESTIMATOR FOR  

TWO-PHASE SAMPLING (PARTIAL INFORMATION CASE) 
 

 Let iX  denote the known mean of thi  auxiliary variable, (1)ix  and (2)ix  denote the 

thi  auxiliary variables form first and second phase samples respectively and (2)iy  denote 

the thi  variable of interest for second phase sample. 
 

 We are now suggesting a generalized multivariate regression estimator for two-phase 

sampling in which q  auxiliary variables are used. The information on first r  variables is 

known and is not known for the remaining s q r 
 
variables. The proposed estimator is  

 

    (2)1 (2)2 (2)1 pm p
t y y y


     

          1 (1) (2) 1 (2) 1 (1) (2)
1 1 1

r s qr r

i i i i i i i i i
i i i r

x x X x x x
 

   


        

    

       2 (1) (2) 2 (2) 2 (1) (2)
1 1 1

r s qr r

i i i i i i i i i
i i i r

x x X x x x
 

   

            

        (1) (2) (2) (1) (2)
1 1 1

r s qr r

ip i i ip i i ip i i
i i i r

x x X x x x
 

   


        


   .  (3.1) 

 

 In matrix notation we can write 
 

                 1 1 21 1 1 1 1 1 2m p p x r r p x r r p x s s p
t y D A D B D A        

    .    (3.2) 

where 

         
1

(1)1 (1)2 (2)1 (2)2 ( )1 ( )21 r rx r
D x x x x x x 

    
 

 

         (1)1 (1)2 (2)1 (2)2 ( )1 ( )2
1

,
r rx x x x x x

r

e e e e e e


    
  

 

 

         
1

(1)2 (1) (2)2 (2) ( )2 ( )1 r rx r
D x X x X x X 

    
 

 

    
(1)2 (2)2 ( )2 1

,
rx x x

r
e e e



 
 

   

 

         
2

( 1)1 ( 1)2 ( 2)1 ( 2)2 ( )1 ( )21 r r r r r s r sx s
D x x x x x x     

    
 

 

         ( 1)1 ( 1)2 ( 2)1 ( 2)2 ( )1 ( )2
1

r r r r r s r sx x x x x x
s

e e e e e e
     



    
  

, 

 

     1
, 1,2,..., ; 1,2,...,ijr p r p

A i r j p
 

      ,    , 1,2,..., ; 1,2,...,ijr p r p
B i r j p

 
      , 

and 

     2
, 1, 2,..., ; 1,2,...,ijs p s p

A i r r r s j p
 

         . 
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 Let,      1 1 1p p y p
y Y D

  
  , where   1 21 pp

Y Y Y Y


     
and 

  (1)2 (2)2 ( )21 py y yy p
D e e e


 
 

. 

 

 Then (3.2) can be written as:  
 

    1 1 21 21 y x x xm p
t Y D D A D B D A 

    
 
or   1 1 21 21 y x x xp

t Y D D A D B D A 
     . 

 

 As we use information related to auxiliary variables from first and second phases both 

then the mean square error of  54 1 p
t


 can be written as:  

       
'

1 2 1 54 54
mt p p

E E t Y t Y


        

       
1 1 2 1 1 2

'

1 2 1 1 2 1 2y x x x y x x xE E D D A D B D A D D A D B D A   
 

      
  

  

or 

     
1 1 21 2 1 1 2

m
y y x x xt p p

E E D D D A D B D A 
     
 

  

        
1 1 1 21 2 1 1 1 2x y x x xE E A D D D A D B D A  

     
 

   

        
1 1 1 21 2 1 1 2x y x x xE E B D D D A D B D A  

     
 

  

        
2 1 1 21 2 1 2 1 2x y x x xE E A D D D A D B D A 

     
 

.   (3.3)  

 

 We can write 
 

     11 2 1 2 2[ ]
i jy x y xyx p r p r

E E D D   
       , 

       21 2 1 2 1 [ ]
i jy x y xyx p s p s

E E D D
 

       , 

         1 1

2
1 2 1 2 1 2 1 [ ] , for ,

i j i j ix x x x x x xx r r r r
E E D D i j   

             , 

     1 1

2
1 2 1 2 2[ ] , for ,

i j i j ix x x x x x xx r r r r
E E D D i j   

           , 

         2 2

2
1 2 1 2 1 2 1 [ ] , for ,

i j i j ix x x x x x xx s s s s
E E D D i j

 
             , 

     
2

2 2[ ] , for ,
i j i j iy y y y y y yy p p p p

E D D i j
 

           , 

       1 2 1 [ ]
i jy x y xyx p r p r

E D D   
       , 

         1 1

2
1 2 1 1 2 1 2 [ ] , for ,

i j i j ix x x x x x xx r r r r
E E D D i j   

             , 

         1 2

2
1 2 1 2 1 2 1 [ ] , for ,

i j i j ix x x x x x xx r s r s
E E D D i j  

             , 

and 

         
 1 2

2
1 2 1 1 2 1 2 , for ,

i j i j ix x x x x x xx r s
r s

E E D D i j 


             
 

. 

                       (3.4) 

NCBA&E



Chapter-5: Sampling 348 

 

 Using (3.4) in (3.3), we get: 
 

     
   ( ) ( ) ( )2 1 2 1 2p p p r p rr pm

y yx yxt p p r p
A B

   
           

 
 

 
   ( )1 2 2 1 2 1p s s p p r r p

yx yxA A
   

        

 
     2 1 1 1

p r r r r p
xA A

  
     

     1 2 1
p r r r

x r p
A B

  
     

 
         2 1 1 2 2

p r r s s p r p
x yxp r

A A B
   

       

             1 2 1 2
r r r p r r

x xp r p r r p
B A B B

    
        

       1 2 2
r s s p

xp r
B A

 
     

   1 2 2
p s s p

yxA
 

    

 
     2 1 2 1

p s s r r p
xA A

  
      

     1 2 2
p s s r

x r p
A B

  
    

 
     2 1 2 2

p s s s s p
xA A

  
    .         (3.5) 

 

 For optimum values of unknown matrices, differentiating (3.5) w.r.t. 
 1
r p

A


, 
 r p

B


and 

 2
s p

A


, equating all equations to zero, we get: 

 

      ( )

1

r pr r
x yxr p

B





   ,               (3.6)  

 

  
        ( ) ( )

1 1
2 s p r ps p s s s r r r

x yx x x yxA W
    

                (3.7) 

and 

  
            ( ) ( )

1 1 1
1 s p r pr p r r r s s s s r r r

x x x yx x x yxA W
      

          .      (3.8)  

 

 After simplification of (3.3), we get  
 

     
1 1 21 2 1 1 2

m
y y x x xt p p

E E D D D A D B D A 
     
 

    

or 

       
11 2 1 1 2 1 1

m
y y y xt p p

E E D D E E D D A
     

          
1 21 2 1 1 2 1 2y x y xE E D D B E E D D A   .      (3.9) 

 

 Using results written after eq. (3.3) in (3.9), we get: 
 

     
 ( ) ( )2 1 2 1p p p r r pm

y yxt p p
A

  
         

 

       ( )2 p ryx r p
B

 
    

 ( )1 2 2p s s p
yx A

 
          (3.10) 

 

 Now by putting the values of      2 1, and
s p r pr p

B A A
 

 
from (3.6), (3.7) and (3.8) 

respectively in (3.10), we get:  
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      ( ) ( ) ( )

1
2 p p p r r pr rm

y yx x yxt p p   




        
     ( ) ( )

1
2 1 p s p r r r r s

yx yx x x   

        

 

  
      ( ) ( )

1 1

s p r ps s s r r r
x yx x x yxW

   

      , where 
          

1
1 1

s s s s s r r r r s
x x x x xW

    


      .  

                       (3.11) 

 

4. EMPIRICAL STUDY 
 

  We have used the data from Population Census Report of Sialkot District (1998), 

Pakistan for empirical study from which three study variables denoted by ’Y s  and two 

auxiliary variables denoted by ’X s  have been considered for computing the Eigen values 

of variance covariance matrices of suggested estimator and Butt, et al. (2011). The 

variables description is given in Table A-1 of Appendix A. We have used two auxiliary 

variables in empirical study because Butt, et al. (2011) constructer the estimators for two-

auxiliary variables. The necessary parameters of populations for computing the Eigen 

values for variance covariance matrices are given in Table A-2. Table A-3 and A-4 

contains the Eigen values of variances covariance matrices for different values of 1  and 

2  
of proposed and Butt, et al. (2011) estimators respectively. The ratios of sum of Eigen 

values of proposed estimator to Butt, et al. (2011) estimator are given in Table A-5. This 

table clearly shows that our proposed estimator for partial information case is efficient for 

all considered combinations of 1  and 2 then Butt, et al. (2011) and it has an additional 

advantage of making use of multi-auxiliary information. 
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APPENDIX A 

 

Table A-1: Description of variables  
(Each variable is taken from Rural Locality) 

Description of variables 

1Y  Literacy ratio 1X  Population of both sexes 

2Y  Population of currently married 2X  Population of primary but below metric 

3Y  Total Households   

 

Table A-2: Covariance and Correlation Matrices 

Covariance Matrix 

 
Y1 Y2 Y3 X1 X2 

Y1 58.379 1694.029 1555.41 11831.968 3818.858 

Y2 1694.029 469251.1 440381 3274827.083 789524.592 

Y3 1555.411 440380.8 415878 3076130.189 741371.717 

X1 11831.96 3274827 3076130 22917781.56 5519188.648 

X2 3818.858 789524.6 741372 5519188.648 1375257.472 

Correlation Matrix 

Y1 1 0.324 0.316 0.323 0.426 

Y2 0.324 1 0.997 0.999 0.983 

Y3 0.316 0.997 1 0.996 0.98 

X1 0.323 0.999 0.996 1 0.983 

X2 0.426 0.983 0.98 0.983 1 
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Table A-3: Eigen values of variance covariance matrices of proposed estimator 

2  
1  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.2 

8.3091 10.351 12.365 14.352 16.312 18.245 20.15 22.028 

661.89 663.4 193.77 194.58 195.41 196.25 197.1 197.96 

192.18 192.97 664.92 666.45 668 669.56 671.14 672.73 

Total 862.379 866.721 871.055 875.382 879.722 884.055 888.39 892.718 

0.3 

11.434 13.489 15.526 17.545 19.546 21.529 23.493 25.439 

992.09 993.59 995.1 996.62 291.06 291.88 292.7 293.53 

287.88 288.67 289.46 290.25 998.14 999.68 1001.2 1002.8 

Total 1291.4 1295.75 1300.09 1304.42 1308.75 1313.09 1317.39 1321.77 

0.4 

14.557 16.618 18.666 20.701 22.722 24.73 26.724 28.705 

1322.3 1323.8 1325.3 1326.8 1328.3 387.54 388.35 389.17 

383.59 384.36 385.15 385.94 386.74 1329.8 1331.4 1332.9 

Total 1720.45 1724.78 1729.12 1733.44 1737.76 1742.07 1746.47 1750.78 

0.5 

17.678 19.744 21.799 23.843 25.877 27.899 29.911 31.912 

1652.5 1654 1655.5 1657 1658.5 1660 1661.5 484.83 

479.29 480.06 480.85 481.63 482.43 483.22 484.02 1663.1 

Total 2149.47 2153.8 2158.15 2162.47 2166.81 2171.12 2175.43 2179.84 

0.6 

20.799 22.868 24.927 26.978 29.019 31.052 33.075 35.09 

1982.7 1984.2 1985.7 1987.2 1988.7 1990.2 1991.7 1993.2 

574.99 575.77 576.55 577.33 578.12 578.91 579.71 580.51 

Total 2578.49 2582.84 2587.18 2591.51 2595.84 2600.16 2604.49 2608.8 

0.7 

23.92 25.991 28.053 30.108 32.156 34.195 36.227 38.251 

2312.9 2314.4 2315.9 2317.4 2318.9 2320.4 2321.9 2323.4 

670.69 671.47 672.25 673.03 673.81 674.6 675.4 676.19 

Total 3007.51 3011.86 3016.2 3020.54 3024.87 3029.2 3033.53 3037.84 

0.8 

27.041 29.113 31.178 33.236 35.288 37.333 39.371 41.402 

2643.1 2644.6 2646.1 2647.6 2649.1 2650.6 2652.1 2653.6 

766.4 767.17 767.95 768.73 769.51 770.3 771.09 771.88 

Total 3436.54 3440.88 3445.23 3449.57 3453.9 3458.23 3462.56 3466.88 

0.9 

30.162 32.235 34.302 36.363 38.418 40.467 42.51 44.547 

2973.3 2974.8 2976.3 2977.8 2979.3 2980.8 2982.3 2983.8 

862.1 862.87 863.65 864.43 865.21 866 866.78 867.57 

Total 3865.562 3869.905 3874.252 3878.593 3882.928 3887.267 3891.59 3895.917 
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Table A-4: Eigen values of variance covariance matrices of Butt, et al. (2011) 

2  
1  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.2 

-4102300 -8049600 -12002000 -15958000 -19920000 -23886000 -27857000 -31833000 

6.3849 6.3888 6.3927 6.3965 6.4004 6.4043 6.4082 6.4121 

4105900 8056000 12011000 15971000 19935000 23904000 27878000 31857000 

Total 3606.3849 6406.3888 9006.3927 13006.3965 15006.4004 18006.4043 21006.4082 24006.4121 

0.3 

-9198200 -18045000 -26899000 -35760000 -44628000 -53504000 -62386000 -71276000 

9.5721 9.576 9.5799 9.5838 9.5877 9.5916 9.5954 9.5993 

9202300 18052000 26909000 35773000 44644000 53522000 62407000 71299000 

Total 4109.5721 7009.576 10009.5799 13009.5838 16009.5877 18009.5916 21009.5954 23009.5993 

0.4 

-16323000 -32020000 -47726000 -63441000 -79166000 -94901000 -110640000 -126400000 

12.759 12.763 12.767 12.771 12.775 12.779 12.783 12.787 

16328000 32027000 47736000 63454000 79182000 94919000 110670000 126420000 

Total 5012.759 7012.763 10012.767 13012.771 16012.775 18012.779 30012.783 20012.787 

0.5 

-25478000 -49974000 -74482000 -99002000 -123530000 -148080000 -172630000 -197200000 

15.947 15.95 15.954 15.958 15.962 15.966 15.97 15.974 

25483000 49982000 74493000 99016000 123550000 148100000 172660000 197230000 

Total 5015.947 8015.95 11015.954 14015.958 20015.962 20015.966 30015.97 30015.974 

0.6 

-36662000 -71908000 -107170000 -142440000 -177730000 -213040000 -248350000 -283680000 

19.134 19.138 19.142 19.145 19.149 19.153 19.157 19.161 

36667000 71916000 107180000 142460000 177750000 213050000 248370000 283710000 

Total 5019.134 8019.138 10019.142 20019.145 20019.149 10019.153 20019.157 30019.161 

0.7 

-49875000 -97821000 -145780000 -193760000 -241760000 -289770000 -337800000 -385850000 

22.321 22.325 22.329 22.333 22.337 22.34 22.344 22.348 

49881000 97830000 145800000 193780000 241780000 289790000 337820000 385870000 

Total 6022.321 9022.325 20022.329 20022.333 20022.337 20022.34 20022.344 20022.348 

0.8 

-65118000 -127710000 -190330000 -252960000 -315620000 -378290000 -440980000 -503690000 

25.508 25.512 25.516 25.52 25.524 25.528 25.532 25.535 

65124000 127720000 190340000 252980000 315630000 378310000 441000000 503720000 

Total 6025.508 10025.512 10025.516 20025.52 10025.524 20025.528 20025.532 30025.535 

0.9 

-82390000 -161590000 -240800000 -320040000 -399300000 -478590000 -557890000 -637210000 

28.696 28.699 28.703 28.707 28.711 28.715 28.719 28.723 

82397000 161600000 240820000 320060000 399320000 478610000 557910000 637240000 

Total 6692.5 9492.16 12291.8 14991.44 17891.08 20690.73 23490.38 26290.05 
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Table-A5: Relative Efficiency of proposed estimator over estimator  

proposed by Butt, et al. (2011) 

2  
1  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.2 0.23913 0.13529 0.09672 0.06730 0.05862 0.04910 0.04229 0.03719 

0.3 0.31424 0.18485 0.12988 0.10027 0.08175 0.07291 0.06270 0.05744 

0.4 0.34321 0.24595 0.17269 0.13321 0.10852 0.09671 0.05819 0.08748 

0.5 0.42853 0.26869 0.19591 0.15429 0.10825 0.10847 0.07248 0.07262 

0.6 0.51373 0.32208 0.25822 0.12945 0.12967 0.25952 0.13010 0.08690 

0.7 0.49939 0.33382 0.15064 0.15086 0.15107 0.15129 0.15151 0.15172 

0.8 0.57033 0.34321 0.34365 0.17226 0.34451 0.17269 0.17291 0.11546 

0.9 0.54997 0.38588 0.19343 0.19365 0.19387 0.19408 0.19430 0.12974 
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ABSTRACT 
 

 The object of the manufacturers is to produce products which arc robust with respect 

to likely variations. Thus, at the design stage, quality index becomes necessary which 

measures the degree of robustness of the product design. This paper outlines the concept 

of Signal to Noise ratio which is effectively used to evaluate a product design for its non-

dynamic characteristics. 

 

KEY WORDS 
 

 Noise Factors, Quality Characteristics, Signal-Noise ratio (SN Ratio). 

 

1. INTRODUCTION 
 

 Efforts have been devoted to customer orientation of the product and as consequence 

the emphasis has been most extensive on the parameter "Quality of product design" 

Chaudhuri and Chaudhuri (1981), Chaudhuri and Rao (1980). Chaudhuri and Hanif 

(1989). Recently applications have been given to various areas of engineering sciences 

(Ahmad et al. 1989). 
 

 One of the objectives of the manufacturers is to produce products which are robust, 

with respect all noise factors. A product designer can take care of quality product by 

determining the optimum level of individual design variants. The nominal values of the 

design variants are chosen in such a way that the effect of noises on the performance 

characteristics is kept minimum. Thus, at the design stage, a quality index becomes 

necessary which measures the degree of robustness of the product. 

 

2. SIGNAL TO NOISE. RATIO AS A QUALITY MEASURE 
 

 A product design will be called robust, if its performance characteristic is close to the 

desired mean value and is least sensistive to variations in noise factors. This phenomenon 

can be explored mathematically in the following manner. 
 

 Let X  be a random variable, representing a particular performance characteristic of a 

product and X  has a finite mean m  and variance 
2  then the condition that the 

observed value of X  is with high probability, within a pre-assigned deviation from its 

desired mean value may be obtained from Chebyshev's inequality for any 0   . 
 

  
2 21P X m       .               (2. 1) 

 

                                                 
*
Published in Pak. J. Statist. (1990 A), Vol. 6(1). 
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 Chebyshev's inequality accordingly may be reformulated in terms of the relative 

deviation for any 0  . 
 

  
2

2 2

1
1

X m
P

m m

  
    

 
              (2.2)  

 

 If X is normally distributed one can obtain the following conclusions 
 

  95% 1.96
X m

P If m
m

 
      

 
           (2.3) 

and     

  

99% 2.58
X m

P If m
m

 
      

 
           (2.4) 

 

 For non-zero mean (m) and finite variance 2  the percentage deviation of X  from 

its desired mean `m' may, with high probability, be small, it is sufficient that the ratio 

/m   or 2 2/m   be large. The quantity 2 2/m   is called the signal to Noise ratio (S/N 

ratio). The terminology S/N ratio originated in communication theory. The mean 'm’ of a 

random variable X  is regarded as a signal. The difference between the desired mean `m' 

and the received value X  is called Noise. [Freeman (1958)]. As a measure of signal 

strength to noise strength one takes the S/N ratio. Higher the S/N ratio, closer the 

observed value X will be to the desired mean value `m'. The S/N ratio, denoted by   is 

expressed here in decibels, by adopting the transformation, 
 

  2 210log m   
 

                  (2.5) 

 

 This transformation makes   meanable for various statistical treatment like 

analysis of variance and other parametric tests (see 3,7). 

 

3. MEASURES FOR DIFFERENT NON-DYNAMIC CHARACTERISTICS 
 

 The following classification had been made of the non-dynamic quality 

characteristics, depending on the nature and requirement of the end use. [Parsad (1983) 

and Kackar (1985)]. 
 

N-Type: Nominal (or the target) the better e.g. shut-off head of a pump, output 

voltage of a circuit, count of yarn etc. 
 

S-Type: Smaller the better e.g. positive suction head required for a pump to pump 

the fluid; tangent of loss angle for insulation system in H.V. coil, etc. 
 

L-Type: Larger the better, e.g. break down voltage of an electrical system; breaking 

strength of concrete blocks, etc. 
 

3.1 N-Type Characteristics 

 In this case, the objective is to make the characteristic value as close as possible to the 

desired mean value 'm'. Let 1,...., nX X  be the actual observations on the characteristic 

under consideration. The Quality measure    
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  0

0

10log mS V

nV

 
   

 
                (3.1) 

 

is a good measure of quality product as 
 

  
2

0

2
0

mS V m
E S N Ratio

nV

 
  
 

              (3.2) 

 

where 

  
 

2

21
0

1

1
.

1

m

i n
i

m i
i

x

S and V x x
n n





 
 
 

  




 . 

 

3.2 S-Type Characteristics 

For smaller, the better type of characteristics, the ideal target is zero. The closer X to 

zero, (from the right side) better is the achievement of the object. The S/N ratio cannot be 

used here, as 0n  . A different measure is used instead of 2 2/m   for comparing 

different design prepositions. and the proportion with smallest of this measure can be 

selected as the optimum. Thus if 2 2/m  is minimised, both variation and the absolute 

value get minimised concurrently. Thus, this measure is also termed as concurrent 

measure and is expressed in decibels, by logarithmic transformation, and for maintaining 

the same objective as of S/N ratio, The quality measure, s   
 

  
2

0

1
10log

n

s i
i

X
n 

 
    

 
   

 

is a good measure of a quality product as 
 

  

2
2

2

n

i

m
E X n
 

 
 

   

 
 

3.3 L-Type Characteristics 

 In this case, the objective is to have the characteristics values as large as possible. 

Thus, if X represents the performance characteristic, X should be as large as possible or 

in other words 1/ X  should be as small as possible. 
 

 The concurrent measure is defined as 
 

  10 2
1 1

1 1
10log

n

L
in X

 
   

  
                (3.3) 

 

 Let 
2( ) 1f x X  and expanding it in the neighborhood of 'm' in Taylor's series 

expansion, one gets, 
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2

.....
1! 2!

X m X m

f X f X
f X f m X m X m

 

    
        

      

   (3.4) 

 

   
2

2 4

1 3
0E f X

m m


                     (3.5) 

 

 Neglecting the higher order terms, 
 

 Thus 

  
2 2

2 2 4 2 2

1 1 1 3 1 3
0 1

n

E
n X m m m m

   
      

    
           (3.6) 

 

 Thus, as L  is maximized, variance gets minimized and concurrently the absolute 

value gets maximized. 
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ABSTRACT 
 

 In this paper, Taguchi parameter design methodology is illustrated with an example of 

induction motor design. 

 

KEY WORDS 
 

 Taguchi method, orthogonal array, parameter design, design variants, signal and noise 

ratio. 

 

1. INTRODUCTION 
 

 The quality of a product is quantified in terms of total loss of a product from the time 

the product is manufactured to the time it is shipped to the customer. The loss may be due 

to undesirable side effects or deviation of the functional quality from the targeted 

performance. The variation in the product parameters also varies from unit to unit which 

are inevitable in a manufacturing process. The objective of a design engineer is to 

maximise the performance of a product and reduce the variability in performance from 

product to product. A product design will be called robust if its performance 

characteristics are close to the intended value and are least sensitive to noise factors.  

{See Chaudhuri et al. (1990), Kacker (1985), Taguchi (1981), Taguchi et al. (1989), 

Burgam (1985) and Leon et al. (1987)}. 
 

 In this paper, thirteen factors each at three levels for SPDP Induction Motor and four 

noise factors also at three levels are investigated on the basis of 36 orthogonal 

performance treatment combinations at each of 18 orthogonal noise treatment conditions. 

The optimal design is arrived at using Taguchi approach. 

 

2. THE PARAMETER DESIGN 
 

 For better competition, improvement in performance of motor is necessary with no 

extra cost. A 30 kw, 4 pole SPDP motor is selected for application of this method. 
 

 Based on technological considerations 13 design factors each at 3 levels that influence 

motor performance are selected as design variants. Table 1 gives the list of design 

variants taken up for the study. In order to consider the effect of manufacturing and 

material variations on motor performance, four factors each at three levels are selected as 

noise factors. Table 2 gives the list of noise factors and their levels. 
 

                                                 
*
Published in Pak. J. Statist. (1990 A), Vo1. 6(2). 
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 A design variants listed in Table 1 arc allocated in orthogonal Array (O.A.) Table 

 13
36 , 3L  called inner O.A. (Appendix-1). Thus there are 36 combinations of design 

variants. 

 

Table 1 

Design variants (All at 3 levels) 

Factor Code Description 

A Start or stamping - outside diameter 

B Start or stamping - inside dia/outside dia 

C Start or stamping- tooth width 

D Start or stamping - yoke height 

E Rotor stamping - tooth width 

F Rotor slot area/start or slot area 

G Top cage area/bottwn cage area 

H Middle cage width 

I Middle cage height 

J S.C. Ring area 

K Conductors per slot 

L Core length 

M Air gap 

 

Table 2 

Noise Factor 

Factor  

Code 
Description 

Level 

1 2 3 

L Core length + 3% Nominal value - 3% 

M Air gap + 10% -do- - 10% 

O Stamping grade (Watts/kg) + 20% -do- - 20% 

P Conductivity of Al + 10% -do- - 10% 

 

 Noise factors were allocated in O.A. Table  4
18 , 3L  called outer OA. (Appendix-II). 

For each combination of inner O.A. there are 18 combinations of auter O.A. The 

numbers, 1, 2, 3 in the tables of Appendices 1 and II indicate levels of respective factors. 
 

 Responses selected are efficiency, power factor, slip starting Torque, starting current 

and cost of stampings. 
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3. COMPUTATION OF SIGNAL-NOISE RATIO 
 

 A well debugged computer programme for indication motor design is used to obtain 

responses. Using the simulated software model, for each of 36 combinations of the design 

variants the above responses are calculated with noise factor level combinations indicated 

in 18L
 
O.A. The Table 3 gives a typical response table for experiment No. 15 of inner 

O.A. given in Appendix-I. 
 

 As our aim is to optimise various performance characteristics and simultaneously 

minimise their variation, we have to account for the variation in the performance 

characteristics for each combination of design variants of inner O.A.  36L over the range 

of noise factors considered in outer O.A.  18L . This is achieved by expressing these 

varying data in a single measure, S/N Ratio. For efficiency S/N ratio is given by (see 

Taguchi et al. 1989) 
 

  
18

2
10 1

1

10 18 ,
i

Log X


 
    

 
   

 

where 1= 1X Loss   efficiency for the ith combination of any outer O.A.  18L . While 

minimising iX , we maximise efficiency. Maximising n will maximise efficiency as well 

as minimise its variation in noise factor space. Thus we have second set of derived 

responses viz. S/N Ratios. These measures remained same for Power factor (1-power 

factor), slip, starting Tarque, as well as starting current as everywhere the intended target 

value is as low as possible. To calculate S/N ratio of any characteristic, we have 18 data 

from outer O.A., for each combination of inner O.A. 36( )L . The S/N ratios are worked 

out for efficiency, power factor, slip, starting Torque, and starting current at Table 3. The 

Table 4 shows S/N ratios for each of 36 combinations of the inner O.A. A typical 

calculation of S/N ratio for efficiency of experimental combination No. 15 of inner O.A. 

is shown in Appendix-3. This amounts to 21.359 dB. This value cart also be seen from 

Table 4. 

 

4. ANALYSIS OF VARIANCE  
 

 ANOVA is performed on the primary responses (for cost data) and on S/N ratio to 

obtain the contribution of each design variant. The total response for S/N ratio of the 

efficiency is shown in Table 5 and the ANOVA for the same is shown in Table 6. 
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Table 3 

Typical Response Table 

Expt. 

No. 
Efficiency 

Power 

factor 
Slip 

Starting 

torque 

Starting 

current 

Cost  

index 

1. 0.91187 0.88233 0.01971 1.65006 4.98885 4.4567 

2. 0.91389 0.88717 0.02174 1.47844 4.71127 4.4596 

3. 0.91637 0.89678 0.02398 1.29799 4.39461 4.4625 

4, 0.9(1965 0.87348 0.02128 1.67813 4.97783 4.3518 

5. 0.91313 0.89027 0.02320 1.49056 4.73854 4.3545 

6. 0.92127 0.90006 0.01926 1.33569 4.67053 4.3573 

7. 0.91659 0.87486 0.01870 1.72530 5,23323 4.2468 

8. 0.91932 0.88441 0.02071) 1.54264 4.93714 4.2495 

9. 0.90913 0.89430 0.02269 1.36317 4.59622 4.2522 

10. 0.91618 0.88059 0.02379 1.61603 4.83715 4.4567 

11. 0.91161 0.88818 0.01977 1.49187 4.77221 4.4596 

12. 0.91417 0.89765 0.02128 1.30647 4.4625 4.4625 

13. 0.91195 0.87246 0.02323 1.66167 4.91591 4.3517 

14. 0.92088 0.88909 0.01922 1.51629 4.92507 4.3545 

15. 0.91116 0.90195 0.02129 1.32659 4.55214 4.3573 

16. 0.91895 0.87411 0.02068 1.70743 5.13778 4.2468 

17. 0.90926 0.88647 0.02260 1.52993 4.83583 4.2495 

18. 0.91687 0.89317 0.01879 1.38094 4.76882 4.2522 
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Table 4 

SN Ratios 

Expt. 

No. 
SN (Eff.) SN (Pf.) SN (Slip) SN (Tst. SN (Ist.) 

1. 16.588 19.068 24.442 -0.346 -9.043 

2. 18.953 19.107 28.585 2.827 -12.597 

3. 17.400 8.023 30.884 6.623 -13.192 

4. 19.008 11.463 31.551 6.560 -15.137 

5. 15.644 16.988 22.254 -0.262 -7.479 

6. 19.375 19.625 29.573 2.967 -13.423 

7. 20.391 12.458 33.103 6.328 -13.321 

8. 18.264 20.264 26.396 4.930 -13.977 

9. 14.932 21.057 23.167 0.060 -9.983 

10. 20.869 15.001 32.711 6.495 -14.790 

11. 18.505 17.543 29.486 0.996 -12.300 

12. 12.120 20.974 18.433 1,584 -8.533 

13. 16.510 20.859 24.260 0.068 -9.951 

14. 17.242 19.223 26.178 3.238 -12.923 

15. 21.359 18.916 33.436 3.438 -13.640 

16. 19.410 21.289 28.368 -0.106 -11.1% 

17. 19.977 17.494 31.194 5.272 -14.119 

18. 17.095 19.587 25.265 1.509 -11.694 

19. 19.825 14.469 31.172 3.606 -13.547 

20. 16.153 22.706 24.592 2.415 -11.959 

21. 18.421 19,762 26.722 0.057 -10.242 

22. 21.031 15.472 33.538 4.999 -14.831 

23. 13.825 20.906 21.943 0.090 -9.576 

24. 16 .207 18.912 22.872 -1.170 -8.298 

25. 15.109 22.835 22.369 -0.403 -10.022 

26. 19.299 8.792 34.638 6.012 -13.742 

27. 16.239 16.640 23.252 -2.637 -6.683 

28. 17.448 20.757 26.277 0.123 -10 147 

29. 18.481 17.764 26.388 -5.225 -7.214 

30. 17.565 21.981 26.041 2.229 -12.419 

31. 16.575 17.117 23.316 -3.425 -6.743 

32. 18.474 20.776 27.470 0.575 -10.946 

33. 19.550 13.814 32.210 3.968 -15.125 

34. 18.824 23.170 27.762 -0.127 -12.123 

35. 19.140 20.718 27.317 -1.855 -9.815 

36. 18.030 19.117 28.255 2.573 -12.235 
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Table 5 

Total Response Table for S/N Ratio of Efficiency 

Factor 
Levels 

1 2 3 

A 221.59 213.96 208.29 

B 225.33 219.53 198.98 

C 213.39 213.99 216.46 

D 198.74 216.80 228.30 

E 216.35 217.86 209.30 

F 220.60 212.30 210.94 

G 214.30 214.61 214.93 

H 218.49 212.01 213.34 

I 212.88 220.55 210.41 

J 214.19 215.45 214.20 

K 200.92 213.62 229.30 

L 205.86 220.36 217.62 

M 212.05 217.06 214.73 

 

Table 6 

ANOVA for S/N ratio of Efficiency 

Sources of 

variation 
D.P. 

Sum of 

squares 

Mean sum  

of squares 

% 

contribution 

A 2 7.42 3.17 3.94 

B 2 31.95 15.98 20.97. 

C (2) (0.44) (0.22) (Pooled) 

D 2 37.00 18.50 23.99 

E 2 3.19 1.60 1.08 

F 2 4.56 2.28 2.01 

G (2) (0.01) (0.00) (Pooled) 

H (2) (1.95) (0.97) (Pooled) 

1 2 4.66 2.33 2.07 

J (2) (0.09) (.04) (Pooled) 

K 2 33.67 18.84 21.74 

L 2 9.88 4.94 5.61 

M (2) (1.04) (0.52) ' (Pooled) 

Error 9 11.69 1.30  

Pooled error (19) (15.22) (0.80) (19.00) 

Total 35 147.55   

 

 Table 7 is summary of percentage contribution of design variants for different 

responses. The level indicated in the Table for each factor is the best level. Whenever, the 

contribution is less than 1% the same in omitted from the table. 
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Table 7 

Percentage contribution of design parameters for different responses  

(only the best levels are indicated) 

Responses 
SN 

(Eff) 

SN 

(Pf) 

SN 

(Slip) 

SN 

(T.st) 

SN 

(C.st) 

SN 

(Cost) 

Factor       

A Al - Al - - A3 

 (3.94)  (2.38)   - 

B B1 B3 B1 - B3 B3 

 (20.57) (5.95) (12.47)  (1.14) (7.48) 

C - - - - - DI 

      (3.85) 

D D3 D1 D3 - - D1 

 (23.99) (14.70) (19.96)   (3.85) 

E E2 - - - -  

 (1.08)      

F F2 - Fl - F2 - 

 (2.01)      

G - - - - - - 

       

H - - - - H3 - 

     (1.25)  

I 12 12 - I 1 13  

 (2.07) (1.61)  (3.78) 1.31)  

J - - - - - - 

       

K K3 K1 K3 K3 K1 - 

 (21.74) (9.61) (34.40) (46.11) (51.39)  

L L2 L2 L3 L3 Ll L3 

 (5.61) (24.72) (18.52) (23.96) (26.84) (68.5) 

M - M2 - M1 M3 - 

  (5.30)  (18.02 (5.71)  

 

5. CONCLUSION 
 

 Based on the contribution percent of the design variant, relative importance of the 

performance characteristics, manufacturing convenience and so on the trade off was 

done. The optimum design was arrived at as A1, B2, C2, D3, D2, F1, C1, H1, I2, J2, K2, 

L3, M2. 
 

 With the above factor level combinations, analysis programme was run and 

performance data were obtained. Table 8 shows the performance of the existing design 

and the optimised design. 
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Table 8 

Performance Comparison 

Characteristics Existing Optimized Design 

Efficiency 0.8181 0.9116 

Power Factor 0.9180 0.8670 

Slip (%) 2.7900 1.9600 

Starting Torque 1.5900 1.6500 

Starting Current 5.1300 5.5800 

Cost index 3.5620 3.5550 
 

 Analysis programme was run for the optimized design as per the noise factors 

allocated in outer O.A. The variability observed in the performance characteristics were 

well within allowable limits of national and international standards, which was not the 

case with the existing design. 
 

 As can be seen from Table 8, parameter design has helped in improving the 

performance (efficiency, slip, and starting Torque) as well as quality (with reduced 

variation across all the performance characteristics) with marginal reduction in cost. No 

doubt, there is reduction in Power factor but increase in efficiency is preferred to some 

sacrifice in Power factor: Moreover, as the care length in optimised design is less, output 

can be increased within the same frame size. Further as the losses are lower, the 

temperature rise will be lower. 
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Appendix-1 

Inner O.A. Table L36 

(Allocation of Design Factors) 

Factor 

Expt. No. 
A B C D E F G H I J K L M 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 2 2 2 1 

3 3 3 3 3 3 3 3 3 3 3 3 3 1 

4 1 1 1 1 2 2 2 2 3 3 3 3 1 

5 2 2 2 2 2 3 3 3 1 1 1 1 1 

6 3 3 3 3 1 1 1 1 2 2 2 2 1 

7 1 1 2 3 1 2 3 3 1 2 2 3 1 

8 2 2 3 1 2 3 1 1 2 3 3 1 1 

9 3 3 1 2 3 1 2 2 3 1 1 2 1 

10 1 1 3 2 1 3 2 3 2 1 3 2 1 

11 2 2 1 3 2 1 3 1 3 2 1 3 1 

12 3 3 2 1 3 2 1 2 1 3 2 1 1 

13 1 2 3 1 3 2 1 3 3 2 1 2 2 

14 2 3 1 2 1 3 2 1 1 3 2 3 2 

15 3 1 2 3 2 1 3 2 2 1 3 1 2 

16 1 2 3 2 1 1 3 2 3 3 2 1 1 

17 2 3 1 3 2 2 1 3 1 1 3 2 2 

18 3 1 2 1 3 3 2 1 2 2 1 3 2 

19 1 2 1 3 3 3 1 2 2 1 2 3 2 

20 2 3 2 1 1 1 2 3 3 2 3 1 2 

21 3 1 3 2 2 2 3 1 1 3 1 2 2 

22 1 2 2 3 3 1 2 1 1 3 3 2 2 

23 2 3 3 1 1 2 3 2 2 1 1 3 2 

24 3 1 1 2 2 3 1 3 3 2 2 1 2 

25 1 3 2 1 2 3 3 1 3 1 2 2 3 

26 2 1 3 2 3 1 1 2 1 2 3 3 3 

27 3 2 1 3 1 2 2 3 2 3 1 1 3 

28 1 3 2 2 2 1 1 3 2 3 1 3 3 

29 2 1 3 3 3 2 2 1 3 1 2 1 3 

30 3 2 1 1 1 3 3 2 1 2 3 2 3 

31 1 3 3 3 2 3 2 2 1 2 1 1 3 

32 2 1 1 1 3 1 3 3 2 3 2 2 3 

33 3 2 2 2 1 2 1 1 3 1 3 3 3 

34 1 3 1 2 3 2 3 1 2 2 3 1 3 
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Appendix-2 

Outer O.A. Table L18 

(Allocation of Error Factor) 

Factor 

Expt. No. 
L M N O 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 1 2 

5 2 2 2 3 

6 2 3 3 1 

7 3 1 2 1 

8 3 2 3 2 

9 3 3 1 3 

10 1 1 3 3 

11 1 2 1 1 

12 1 3 2 2 

13 2. 1 2 3 

14 2 2 3 1 

15 2 3 1 2 

16 3 1 3 2 

17 3 2 1 3 

18 3 3 2 1 
 

 

Appendix-3 

Typical Calculation of  

SN Ratio of Efficiency 

Expt. 

No. 
Efficiency X =1 -- Efficiency 

1. 0.91187 0.08813 

2. 0.91389 0.08611 

3. 0.91637 0.08363 

4. 0.90969 0.09031 

5. 0.91313 0.08687 

6. 0.92127 0.07873 

7. 0.91659 0.08341 

8. 0.91932 0.08068 

9. 0.90913 0.09087 

10. 0.91618 0.08382 

11. 0.91161 0.08839 

12. 0.91417 0.08583 

13. 0.91195 0.08805 

14. 0.92088 0.07912 

15. 0.91116 0.08884 

16. 0.91895 0.08105 

17. 0.90926 0.09074 

18. 0.91687 0.08313 
 

 

 2 2 2
10

1
10log .09913 .08611 , .08313

18

 
    

 
  

 3
1010log 7.3125 10    

= 21.359(dB)  

 

SN Ratio
18

2
10 1

1

1
10log

18 i

X
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A NOTE ON MALCOLM BALDRIGE NATIONAL QUALITY AWARD* 
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1. INTRODUCTION 
 

 The U.S. government instituted the Malcolm Baldrige national quality award that may 

cause American companies to improve quality and productivity. The award was created by 

Public Law 100-107 on August 20, 1987. In this paper, an overview of the award is given 

along with the name of companies which received the awards since 1988 and the key 

quality words they used. 

 

2. AWARD ELIGIBILITY 
 

 The National Institute of Standards and Technology (NIST), US Department of 

Commerce was made responsible to arrange the award in association with American 

Society for Quality Control. Awards are to be offered annually to U.S. companies that excel 

in quality management and quality achievement. The first award was given in 1988. 
 

 Manufacturing, service, and small business are the three eligible categories for award. 

Up to two awards may be given in each of the three categories. The business that is eligible 

for the award is to be located in the United States or its territories. The eligibility criteria for 

the award are: 
 

1. A company or its subsidiary with more than 50% employees in US. 

2. At least 50 percent of a subsidiary’s customer base is free of direct financial and line 

organization control by the parent company. 

3. Non-chain organizations. 

4. Business without support functions of the company. 
 

 Parent company and its subsidiary may not apply for the award in the same year. If a 

company receives an award, the company and all its subsidiaries are ineligible to apply for 

another award for a period of five years. 

 

3. AWARD CRITERIA 
 

 The award criteria depend on the core values: 
 

i) Customer-oriented quality. 

ii) Leadership of senior management. 

iii) Continuous improvement. 

iv) Full participation of employees. 

v) Fast response through reduction of cycle time. 

vi) Emphasis on corrective and preventive actions. 

vii) Preparation of plans. 

viii) Data based decisions. 

ix) Inter action between employees and management. 

                                                 
*
Published in Pak. J. Statist. (1997), Vol. 13(2). 
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There are seven essential elements to be documented for the core values. 
 

1. Leadership. 

2. Information and analysis. 

3. Quality planning. 

4. Human resource development. 

5. Control of process quality. 

6. Inspection and testing procedures. 

7. Customer's satisfaction. 

 

4. PROCESS CAPABILITY INDEX 
 

 Process Capability Index (PCI) is criterion of selection of sub-contractors. A company 

would like to enhance its subcontractor's potential for improved quality. Each subcontractor 

should indicate its PCI pkC  performance within acceptable value of PCI to be larger than 

one but should have programme to achieve a PCI of 2. The sub-contractor is evaluated on 

the basis of the quality of product delivered and the timeliness of those deliveries. Sub-

contractors with higher ratings earn more business; company may continue to compute pkC  

on monthly or quarterly basis and communicate the value of index to the sub-contractors. 

(See Kane 1986). 
 

 Awarding institutions compute pkC  and offer an award on six sigma base. The six 

sigma is one of the objective criteria for the award. 
 

 When first Malcolm Baldrige award was offered to Motorola in 1988, the summary 

contained the following six sigma description: 
 

 "To accomplish its quality and total customer satisfaction goals, Motorola concentrates 

on several key operational initiatives. At the top of the list is Six Sigma Quality, a statistical 

measure of variation from a desired result. In concrete terms Six Sigma translates into a 

target of no more than 3.4 defects per million products, customer services included. At the 

manufacturing end, this required designs that accommodate reasonable variation in 

component parts but production process that yield consistently uniform final products. 

Motorola employees record the defects found in every function of the business, and 

statistical technologies are increasingly made part of each and every employee's job." (See 

Mitra, 1993 and Pena, 1990) 
 

 For 1992 Malcolm Baidrige award, the following examination categories were 

considered: 
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Table 1 

Examination categories for the 1992 Malcolm Baldrige Award 

Examination Category/Items 

1.0 Leadership  90 

 1.1 Senior executive leadership 45  

 1.2 Management for quality 25  

 1.3 Public responsibility 20  

2.0 Information and analysis  80 

 
2.1 Scope and management of quality and performance data and 

information. 

15 
 

 2.2 Competitive comparisons and benchmarks 25  

 2.3 Analysis and uses of company-level data 40  

3.0 Strategic quality planning  60 

 3.1 Strategic quality and company performance planning process 35  

 3.2 Quality and performance plans 25  

4.0 Human resource development and management  150 

 4.1 Human resource management 20  

 4.2 Employee involvement 40  

 4.3 Employee education and training 40  

 4.4 Employee performance and recognition 25  

 4.5 Employee well-being and morale 25  

5.0 Management of process quality  140 

 5.1 Design and introduction of quality products and services 40  

 
5.2 Process management-product and service production and 

delivery processes 

35 
 

 5.3 Process management business processes and support services 30  

 5.4 Supplier quality 20  

 5.5 Quality assessment 15  

6.0 Quality and operational results  180 

 6.1 Product and service quality results 75  

 6.2 Company operational results 45  

 6.3 Business process and support service results 25  

 6.4 Supplier quality results 35  

7.0 Customer focus and satisfaction  300 

 7.1 Customer relationship management 65  

 7.2 Commitment to customers 15  

 7.3 Customer satisfaction determination 35  

 7.4 Customer satisfaction results 75  

 7.5 Customer satisfaction comparison 75  

 7.6 Future requirements and expectations of customers 35  

 Total Points  1000 

 

5. KEY QUALITY WORDS 
 

 Companies that received the Malcolm Baldrige Award had used some key quality 

statements. A list of companies in chronical order with key quality words is given below: 
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Table 2 

Malcolm Baldrige Awarded: Companies with Key Quality Words 

Year Name of the Company Key Quality Word 

1988 Globe Metallurgical Inc. Elements of Quality Efficiency and Cost 

1988 Motoral Inc. Key Quality Initiates 

1988 Westing House Electric Corporation 

Commercial Nuclear Fuel Division. 

Total Quality 

1988 Xerox Corporation Business Products & 

Systems 

Leadership Through Quality Bench-

Marking System 

1989 Milliken & Company Pursuit of Excellence customer 

responsiveness 

1990 Cadillac Motor Car Company Customer Satisfaction as the Master Plan 

1990 Federal Express Corporation People-Service-Profit 

1990 IBM, Rochester Rochester Excellence Customer 

Satisfaction 

1990 Wallace Co. Inc. Continuous Quality Improvement 

1991 Marlow Industries Total Systems 

1991 Solectron Corporation Customer Needs Drive Results 

1991 Zytec Corporation Total Quality Commitment. 

1992  AT & T Network Systems Groups  Quality Approach 

1992 AT & T Universal Card Services Delight Customer and Employees are Key 

1992 Granite Rock Company Total Quality 

1992 The Ritz-Carlton Hotel Company Gold Standards-Detailed Planning-Quality 

Data 

1992  We are the Best...and Getting Better 

Texas Instruments Defense Systems & 

Electronic Group 

Total Strategy 

1993 Ames Rubber Corporation Excellence Through Total Quality  

1993 Eastman Chemical Company Exceeding Customer's Expectations. 
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1. INTRODUCTION 
 

 The Institute of Education and Research (IER) is located at Quaid-e-Azam Campus, 

University of the Punjab, Lahore, Pakistan. The institute was set up in September 1960 in 

cooperation with the School of Education, Indiana University, USA. It is the pioneer 

Institute in Pakistan for advanced studies in the field of Education. It enjoys the status of the 

premier and prestigious Institute of Education in the country. The major aims and 

objectives of the Institute include; (a) to provide and promote facilities for advanced study 

and research in education. (b) to provide teaching, training and guidance in order to prepare 

candidates for the Master's M.Phil and Ph.D. in Education degree of the University, and 

such other diplomas in Education, (c) to provide opportunities for professional educators to 

improve their knowledge and ability through summer and evening classes, short courses, 

seminars and other means. (d) to conduct research in several branches of education, publish 

the results of such research, and act as an educational informational dissemination center 

and (e) to render other services to educational institutions at all levels as and when 

necessary (1ER 1996). 
 

2. BS-5750/ISO-9000 AND PRODUCT QUALITY 
 

 The 'product' of the IER, University of Punjab, Lahore is defined as student learning 

experiences, or as some form of added value to the student. It is likely that the same process 

and procedure will be included in the quality system and that the purpose of the quality 

system will be to improve the institution's effectiveness and consistency in delivering its 

products. Hingley and Sallis (1991) state that BS-5750 sets the standard for the system, not 

the standard which an institution should be achieving. The institution customer (parents or 

Government) is the judge of standards and that customers and potential customers will 

demand high standards. 
 

 There is no doubt that the process of installing BS-5750/1S0-9000 at the Institute of 

Education and Research would result in considerably improved internal services, but it, as 

yet, unproved that these administrative improvement have materially affected the quality of 

the student learning experience. (Storey, 1994). This would be because documented 

procedure is not yet adopted as required under ISO-9000. It involves financial resources 

and time at the institute. It will put extra work load on the academic staff. 
 

 ISO-9000 installs a quality system and monitors it through inspection. The process 

would result in an improved and cost - effective product. 
 

                                                 
*
Published in Pak. J. Statist. (1997), Vol. 13(2). 

NCBA&E



Chapter-6: Quality Control and Acceptance Sampling 374 

3. BS-57S0/1S0-91100 IN EDUCATION 
 

 The Institute of Education and Research, Punjab University Lahore claims to produce 

competent teachers who are back bone of schools. On installing BS-5750, it can achieve 

quality culture, technique improvements, facts based decision-making and a real staff 

commitment to parents satisfaction and belief that the Institute is parent-and research-

orientated. 
 

 To achieve the objectives through the currently used tool of TQM and 1S0-9000, it is 

necessary to understand some of its components/clauses. 
 

3.1 Responsibility and Authority (Clause 4.1) 

 The responsibility, authority and the interrelation of all personnel who manage, perform 

and verify work affecting quality arc to be defined. This is a key requirement for the 

Institute. It defines the responsibility and authority of staff. The most difficult is the area of 

‘interrelation’. The Institute has the following traditional, hierarchical management 

structure. 
 

3.1.1 Job Titles and Job Descriptions 

 Staff generally has a rough idea of what their job titles are but because, in many cases, 

their jobs had changed since their original appointment they had not usually had an updated 

job description. Accurate and precise job titles illustrate job description but in 1ER, a 

lecturer has to perform three fold duties of administration, teaching and research. 
 

3.2 Management Review (Clause 4.1.3) 

 The Management Review Team (MRT) which may consist of the Dean, the Director of 

the Institute, Head of Departments, the finance and personnel Services Managers and the 

Head of the Quality Assurance Unit, is formed to meet the requirement of clause 4.1.3 of 

the Standard. The MRT has two routine functions: it receives and considers the reports of 

quality system, normally reflected in the Quality Manual, a new generic procedures. The 

whole point of management review is that the individual or group has the power to make 

necessary changes to the quality system. 
 

3.3 Quality System (Clause 4.2) 

 The Institute with all its traditional and structural growth has not established a 

documented quality system. It is essential to set up a quality manual which provides 

directional intent of its work-force; prepare quality assurance procedural details; and 

describe job description for search of excellence in teaching and learning. 
 

3.4 Contract Review (Clause 4.3) 

 The Institute of Education and Research (IER) provides services to general schools and 

their students. It also provides services to Government of the Punjab for: 

i) teaching special courses to their nominees; 

ii) conducting research on behalf of Governments. 
 

 Contracts arc made between IER and Government Departments on individual projects. 

The contracts arc documented and maintained by IER Director. Contracts arc reviewed by 

Director and his concerned faculty who are involved in the specific project. Contracts can 

be changed if both IER and the Government agree to the changes. 
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3.5 Document and Data Control (Clause 4.5) 

 IER shall establish procedures for documents and data control. 

 

3.6 Identification and Traceability of Student Learning Experiences (Clause 4.8) 

 This is the most difficult clause of the system. First, it is necessary to identify student's 

level of learning at a particular point of time during his studies and second to trace subject 

matter of the course material. Suppose a teacher is covering course material which is to be 

completed at the end of 4 months period. It is not difficult to find the proportion of course 

material completed at the end of second month but it is difficult to assess how much 

students have grasped the material, though it is roughly assessed through mid-term 

examination. Some procedures need to be developed for identification and traceability of 

the teaching and research activities at a particular point of time during an academic year. 

 

3.7 Process Control (Clause 4.9) 

 In academic activities, control of teaching, learning and research process is not easy. An 

institution has to develop: 

a) Documented procedure defining the manner of teaching, learning and research, 

where absence of such procedures would adversely affect its quality. 

b) Aids, equipments and working environment. 

c) Methods of checking or measuring the compliance of documented procedures 

d) Criteria for holding positions in the three categories of teaching, learning and 

research. 

e) Methods of monitoring and control of teaching, learning and research parameters. 

 

3.8 Inspection and Testing (Clause 4.10)  

 The institute shall establish and maintain documented procedures for examinations, 

assignments, quizzes, projects etc. in order to verify that teachers and students have 

achieved the specified level. 
 

 Tests and interview can be held at the time of appointment of teachers and admission of 

students to specify a particular level at the time of entrance to IER. 
 

 Similarly, test, assignments, quizzes etc. can be administered during the academic year 

to judge the teacher’s and student’s achievements. 
 

 At the end of an academic session, an examination can be administered whether 

students have achieved a specified level. Students can be graded, either passed, passed with 

concession or failed. Some may be reprocessed or may go through a part of the process to 

achieve a specified level. 

 

3.9 Control of Examination, Test and Results Instruments (Clause 4.11) 

 Proper control and security of examination and test papers, result records have to be 

maintained. 

 

3.10 Corrective and Preventive Actions (Clause 4.14) 

 The Institute has to define parameters of a non-conformity and develop and maintain 

corrective and preventive measures. Details of the nonconformity parameters have to be 

worked out and for each parameter, corrective and/or preventive action defined. 
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3.11 Maintenance of Quality Records (Clause 4.16)  

 Records of all activities of students and teachers have to be maintained to verify its 

conformance to required level of excellence. 

 

3.12 Internal Quality Audit (Clause 4.17)  

 This audit is also not very easy in the sense that teachers are allergic to their checking 

by their colleagues. However, internal audit of students performance can be carried out. 
 

 The institute has to establish and maintain documented procedures for auditing. It 

demonstrates the effectiveness of the system that is being installed in the institution. 

 

3.13 Training (Clause 4.18)  

 From time to time, teachers are to attend refresher courses and participate in national 

and international seminars and conferences as a part of their training. 
 

 Institute shall have to keep the training records. 

 

4. FUTURE DIRECTION 
 

 A comprehensive study is essential to document the IER activities and follow the 

procedures adopted by its faculty and staff. Quality Manual and procedures may be written 

documenting ways and means of implementing and monitoring proposed quality system. 
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ABSTRACT 
 

 In practice, a multiple number of items as a group can be tested simultaneously in a 

tester. This study deals with a group acceptance sampling plan under the truncated life 

test assuming that the lifetime of an item is distributed as Gamma with known shape 

parameter. The plan parameters such as the number of groups and the acceptance number 

will be determined by satisfying the consumer’s and producer’s risks at the specified ratio 

of true average life to the specified life, termination time and the number of testers. The 

tables are constructed and results are explained with examples.      

 

KEY WORDS 
 

 Group acceptance sampling; Consumer’s risk; Operating characteristics; Producer’s 

risk; Truncated life test          

 

1. INTRODUCTION 
 

 In practice, testers accommodating multiple items are available, where more than one 

item can be tested simultaneously. Items in a tester can be regarded as a group and the 

number of items in a group is called as the group size. The acceptance sampling plan 

based on these groups of items will be called a group acceptance sampling plan (GASP). 

The GASP is used to test the items in a group simultaneously and therefore it can be used 

to save the time of experiment and cost as compared with the test in which a single item 

is put on test in a tester. If the GASP implemented on the truncated life test we may call it 

a GASP based on truncated life test when a lifetime of a product is assumed to follow a 

certain statistical distribution. In this type of tests, determining the sample size is 

equivalent to determining the number of groups. This type of testers is frequently used in 

sudden death testing. The sudden death tests are discussed by Pascual and Meeker (1998) 

and Vlcek et al. (2003). Recently, Jun et al. (2006) proposed the sudden death test under 

the assumption that the lifetime of items follows the Weibull distribution with known 

shape parameter. They developed the single and double group acceptance sampling plans 

in sudden death testing.  
 

 The acceptance sampling plans based on truncated life test having single-item group 

using the different statistical distributions have been developed by many authors. For 

                                                 
*
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example, one may refer to Epstein (1954), Goode and Kao (1961), Kantam and Rosaiah 

(1998), Kantam et al. (2001), Baklizi (2003), Rosaiah and Kantam (2005), Rosaiah et al. 

(2006), Tsai and Wu (2006), Rosaiah et al. (2007), Aslam (2007) and Balakrishnan et al. 

(2007). In these plans, the sample size is usually determined which satisfies the 

consumer’s risk only and used the single point on the OC curve, so it may not always 

satisfy the producer’s risk. More recently, Aslam and Jun (2009) proposed the group 

acceptance sampling plan based on truncated life test when the lifetime of an item 

follows the inverse Rayleigh or log-logistics distribution. Again in their paper, they used 

the single point approach on operating characteristics OC curve to find the design 

parameter (number of groups) which satisfies only the consumer’s risk.  
 

 Two risks will be attached with the current GASP. If a good lot is rejected on the 

basis of the information from the sample, it will be a wrong decision and the probability 

of committing this wrong decision is called the producer’s risk. If the bad lot is accepted, 

then this probability is termed as consumer’s risk. The purpose of a well design 

acceptance sampling plan is to minimize the both risks, which is called the two point 

approach. The two point approach on the OC curve for designing the variable acceptance 

sampling plans has been adopted by Fertig and Mann (1980), Balasooriya et al. (2000), 

and Balamurali and Jun (2006). 
 

 The purpose of this paper is to propose a GASP based on truncated life tests when the 

lifetime of a product follows the gamma distribution with known shape parameter. 

Further, we obtain the number of groups and the acceptance number simultaneously for 

given values of both risks using the two point approach. The rest of the paper is 

organized as follows:  The proposed GASP along with the operating characteristics is 

described in Section 2. The results and conclusion are given in Section 3. 

 

2. THE GROUP ACCEPTANCE SAMPLING PLAN (GASP) 
 

 Let   represent the true average life of a product and 0  denote the specified life. A 

product is considered as good and accepted for consumer’s use if the sample information 

supports the hypothesis 0 0:H    ; otherwise, the lot of the products is rejected. In 

acceptance sampling schemes, this hypothesis is tested based on the number of failures 

from a sample in a pre-fixed time. If the number of failures exceeds the action limit c  we 

reject the lot. We will accept the lot if there is enough evidence that 0    at certain 

levels of both risks. Let us propose the following GASP based on the truncated life test: 
 

1) Select the number of groups g  and allocate predefined r  items (r will be called 

as group size) to each group so that the sample size for a lot will be n gr . 

2) Select the acceptance number (or action limit) c  for a group and the experiment 

time 0t . 

3) Perform the experiment for the g groups simultaneously and record the number of 

failures for each group. 

4) Accept the lot if at most c  failures occur in each of all groups. Truncate the 

experiment if more than c failures occur in any group and reject the lot. 
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 It is important to note that the single sampling plan based on truncated life tests is a 

special case of our proposed GASP. The GASP reduces to the single sampling plan if  

r =1, when n g . The purpose is to find the actions limit c  and the number of groups g  

which satisfy both the consumer’s and producer’s risks at the same time, whereas the 

group size r and the termination time 0t  are pre-assigned.       
 

 Suppose that the lifetime of an item or a product follows a gamma distribution with 

known shape parameter. The cumulative distribution function (cdf) of gamma 

distribution for integer value of   (shape parameter) and scale parameter    is given by 
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 If the shape parameter is not known, an estimated value from failure data can be used. 

In practice, the shape parameter for a particular type of items is usually known from the 

past engineering knowledge. Note that 1   corresponds to an exponential distribution. 

Note also that the cdf depends on the scale parameter   only through /t  . The mean 

life of gamma distributed products is given by 
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 If the lot size is large enough and decision about the lot lies in two categories (accept 

or reject), we can use the binomial distribution to develop GASP. For more justification 

one may refer to Stephens (2001). According to GASP the lot of products is accepted 

only if the number of failures are less than or equal to c  in each of g groups. So, the lot 

acceptance probability will be 
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where p  is the probability that an item in any group fails before the termination time 0t . 

It would be convenient to determine the termination time 0t  as a multiple of the specified 

life 0 . That is, we will consider 0 0t a   for a constant a and p is given by 
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 The ratio  0   of the true average life   to the specified life 0  is called the 

quality level of a product. As mentioned earlier, two risks are associated with GASP. If a 

product is good and is accepted on the basis of sample information, it is a right decision 

to accept the product. If the information obtained from the sample supports the 

hypothesis 1 0:H     (that is, the product is bad), we will reject the lot, which is also a 

right decision. If a good lot is rejected, this will be a loss to a producer, while on the other 

hand if bad lot/product is accepted it will be a loss to the consumers. The probability of 

rejecting a good lot is called the producer’s risk   and the probability of accepting a bad 
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lot is termed as the consumer’s risk  . The consumer demands that the lot acceptance 

probability should be smaller than the given value of   at a lower quality level especially 

at the level when the true average life   is equal to the specified life 0 . On the other 

hand, a producer desires that the lot rejection probability should be smaller than the 

specified   at a higher quality level (the ratio 0 1   ). As in GASP, the sample taken 

from the lot is distributed into different groups therefore it provides the tight inspection of 

the items taken from the lot than the ordinary acceptance sampling plan approach. The 

GASP is helpful to reach a good decision about the product (to minimize the both risks).  

Therefore, the purpose of this study is to develop the GASP based on truncated life test 

which can be used to control the producer’s and consumer’s risks simultaneously. The 

proposed two-point approach is to determine the number of groups and the acceptance 

number that satisfy the following two inequalities simultaneously.    
 

  0 1( | / )L p r                     (2.5) 
 

  0 2( | / ) 1L p r     ,              (2.6) 
 

where 1r  and 2r  are the mean ratios that will be specified at the consumer’s and 

producer’s risks, respectively. Larger mean ratio represents a higher quality requirement. 

Usually, 1r =1 is adopted. Let 1p  and 2p  be the failure probabilities corresponding to 

consumer’s and producer’s risks, respectively. Then, the design parameters can be 

determined through the following inequalities. 
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 The design parameters in terms of integers can be found by using a search, which can 

be implemented easily on an Excel sheet. 

 

3. DESCRIPTION OF TABLES AND EXAMPLES 
 

 The number of groups and the acceptance number are found using (2.7) and (2.8) and 

presented in Tables 1-2. The design parameters of GASP are found at the various values 

of the consumer’s risk (β=0.25, 0.10, 0.05, 0.01) when 1 1r   and 5% of the producer’s 

risk when the true mean is 2r  (=2, 4, 6, 8, 10) times 0  . Two levels of group size  

(r=5, 10) and two levels of the test termination time multiplier (a=0.5, 1.0) are 

considered. We consider two values of the shape parameter of the gamma distribution: 

2   in Table 1 and 3   in Table 2. Other choices can be easily employed in a similar 

fashion. It should be noted that if one needs the sample size, it can be obtained by 

n r g  .       

Table 1 
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Minimum number of groups and acceptance number for GASP when 2   

  
0 2r    

r=5 r=10 

a=0.5 a=1.0 a=0.5 a=1.0 

g  c  2( )L p  g  c  2( )L p  g  c  2( )L p  g  c  2( )L p  

0.25 

2 72 3 0.9781 19 4 0.9758 5 3 0.9563 4 6 0.9804 

4 3 1 0.9802 2 2 0.9873 1 1 0.9726 1 3 0.9911 

6 3 1 0.9955 1 1 0.9818 1 1 0.9935 1 2 0.9916 

8 1 0 0.9646 1 1 0.9933 1 1 0.9978 1 1 0.9726 

10 1 0 0.9768 1 1 0.9970 1 0 0.9542 1 1 0.9874 

0.10 

2 119 3 0.9641 30 4 0.9621 23 4 0.9768 6 6 0.9708 

4 5 1 0.9672 3 2 0.9810 4 2 0.9923 1 3 0.9911 

6 5 1 0.9925 1 1 0.9818 2 1 0.9870 1 2 0.9916 

8 5 1 0.9975 1 1 0.9933 2 1 0.9955 1 1 0.9726 

10 2 0 0.9542 1 1 0.9970 1 0 0.9542 1 1 0.9874 

0.05 

2 155 3 0.9535 * * * 30 4 0.9698 7 6 0.9660 

4 6 1 0.9607 3 2 0.9810 5 2 0.9903 2 3 0.9823 

6 6 1 0.9910 2 1 0.9639 2 1 0.9870 1 2 0.9916 

8 6 1 0.9969 2 1 0.9867 2 1 0.9955 1 1 0.9726 

10 2 0 0.9542 2 1 0.9970 1 0 0.9542 1 1 0.9874 

0.01 

2 - - - * * * 46 4 0.9541 27 7 0.9832 

4 37 2 0.9934 5 2 0.9685 7 2 0.9865 2 3 0.9823 

6 10 1 0.9850 2 1 0.9639 3 1 0.9806 2 2 0.9832 

8 10 1 0.9949 2 1 0.9867 3 1 0.9933 1 1 0.9726 

10 10 1 0.9978 2 1 0.9941 3 1 0.9971 1 1 0.9874 

 

Note:  The cells with hyphens (-) indicate that g and c are found to be large. 

  The cells with hyphens (*) indicates that g and c can not satisfy the conditions.   
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Table 2 

Minimum number of groups and acceptance number for GASP when 3   

  0 2r    

r=5 r=10 

a=0.5 a=1.0 a=0.5 a=1.0 

g  c  2( )L p  g  c  2( )L p  g  c  2( )L p  g  c  2( )L p  

0.25 

2 27 2 0.9833 4 3 0.9776 4 2 0.9745 1 4 0.9727 

4 5 1 0.9978 1 1 0.9849 2 1 0.9962 1 2 0.9936 

6 2 0 0.9786 1 1 0.9980 1 0 0.9786 1 1 0.9914 

8 2 0 0.9905 1 0 0.9672 1 0 0.9905 1 1 0.9981 

10 2 0 0.9950 1 0 0.9821 1 0 0.9950 1 0 0.9646 

0.10 

2 44 2 0.9729 7 3 0.9611 7 2 0.9558 3 5 0.9850 

4 9 1 0.9961 2 1 0.9700 3 1 0.9942 1 2 0.9936 

6 3 0 0.9681 2 1 0.9960 2 0 0.9576 1 1 0.9914 

8 3 0 0.9858 1 0 0.9672 2 0 0.9811 1 1 0.9981 

10 3 0 0.9925 1 0 0.9821 2 0 0.9900 1 0 0.9646 

0.05 

2 57 2 0.9650 9 3 0.9502 27 3 0.9875 4 5 0.9800 

4 11 1 0.9952 2 1 0.9700 4 1 0.9923 1 2 0.9936 

6 3 0 0.9681 2 1 0.9960 2 0 0.9576 1 1 0.9914 

8 3 0 0.9858 1 0 0.9672 2 0 0.9811 1 1 0.9981 

10 3 0 0.9925 1 0 0.9821 2 0 0.9900 1 0 0.9646 

0.01 

2 - - - 70 4 0.9823 42 3 0.9807 6 5 0.9702 

4 17 1 0.9926 3 1 0.9553 6 1 0.9885 2 2 0.9872 

6 17 1 0.9992 3 1 0.9940 6 1 0.9988 1 1 0.9914 

8 5 0 0.9764 3 1 0.9987 3 0 0.9717 1 1 0.9981 

10 5 0 0.9975 2 0 0.9646 3 0 0.9850 1 0 0.9646 

 

Note: The cells with hyphens (-) indicate that g and c are found to be large. 
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 In these tables, note that, as the ratio 2r  increases, the number of groups and the 

acceptance numbers decrease at the same time. We need a smaller number of groups if 

the termination ratio increases at a fixed group size. For an example, from Table 1, if a  

changes from 0.5 to 1.0 for r=5, the number of groups has been changed from g =72 to 

g =19 when 2r =2. It is also noted that when 2r =2 we found high values of g and c at 

some conditions, and we cannot find them to satisfy the conditions given in equations 

(2.7) and (2.8) in some cases. It is observed that the number of groups tends to decrease 

as   increases, r increases or a increases. However, the trend is not monotonic since it 

depends on the acceptance number as well. The probability of acceptance for the lot at 

the mean ratio corresponding to the producer’s risk is also given in Table 1 and Table 2.  
 

 Suppose that the lifetime of a product follows the gamma distribution with shape 

parameter of 2. It is desired to design a GASP to test that the mean life is greater than 

1,000 hours and manufacturer wants to run an experiment for 500 hours using testers 

equipped with 5 products each. Let us assume that the producer’s risk is 5% when the 

true mean is 4,000 hours and the consumer’s risk is 25% when the true mean is 1,000 

hours. Since  =2,  =0.25, r=5, a=0.5 and 2 4r   for this example, the minimum 

number of groups and acceptance number can be found as g =3 and c =1 from Table 1. 

This indicates that a total of 15 products are needed and that 5 products are allocated to 

each of 3 testers. We will accept the lot if no more than 1 failure occurs before 500 hours 

in each of 3 groups. For this proposed sampling plan the probability of acceptance is 

0.9802 when the true mean is 4,000 hours.  

  

4. CONCLUSION 
 

 We proposed a group acceptance sampling plan based on a truncated life test under 

the assumption that the lifetime of a product follows the gamma distribution with known 

shape parameter. The two-point approach was adopted for determining the design 

parameters such as the number of groups and the acceptance number. This GASP can be 

utilized when a multi-item is adopted for a life test and it would be beneficial in terms of 

test time and cost because a group of items will be tested simultaneously.  
 

 Our proposed approach can be easily applied to some other underlying lifetime 

distributions and may be extended to develop a related sampling plan. 
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ABSTRACT 
 

 A new conditional variables sampling plan called multiple dependent state  

(or deferred state) sampling plan, is proposed for a failure-censored life testing when the 

lifetime follows a Weibull distribution with known shape parameter. In the proposed 

sampling plan, acceptance or rejection of a lot is based not only on the sample from that 

lot, but also on sample results from past lots or from future lots. The design parameters of 

the proposed sampling plan are determined by the two-point approach considering the 

consumer’s and the producer’s risks at the specified acceptable reliability level and the 

lot tolerance reliability level, respectively. It was found that the proposed plan reduces 

the sample size required when compared with a variables single sampling plan. 

 

INDEXED TERMS 
 

 Acceptable reliability level; Conditional sampling plan; Consumer’s risk; Lot 

tolerance reliability level; OC curve; Producer’s risk; Sampling by variables  

 

1. INTRODUCTION 
 

 A manufacturer of products performs a life testing whether the quality level of their 

products meets the customer’s requirements such as the minimum lifetime or reliability. 

In most life testing a common restriction is the duration of the total time spent on testing. 

In order to reduce the test time of the experiment, many types of censoring schemes such 

as type-I (or time-censored), type-II (or failure-censored), mixed of type-I and type-II, 

and progressive censoring are usually adopted.  
 

 Although various sampling plans including single, double and sequential plans are 

available for normally distributed quality characteristics (see Schilling, 1982), most of 

plans for a life testing are based on the single sampling plan. A single sampling plan 

based on a failure censored (type-II) or a time censored (type-I) scheme has been usually 

adopted for a life testing. Fertig and Mann (1980) and Schneider (1989) developed 

failure-censored sampling plans under a Weibull distribution having unknown shape 
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parameter. Their approach is to utilize the extreme value distribution and the maximum 

likelihood estimation. As a result, designing a sampling plan is quite complicated for 

being used in practice. Jun et al. (2006) proposed the single and double sampling plans 

for a Weibull distribution with known shape parameter under a sudden death testing.  
 

 In this study, we propose a new conditional variables sampling plan for a failure 

censoring scheme under a Weibull distribution having known shape parameter. Weibull 

distributions are popularly adopted as a life distribution since the real failure data are 

known to fit these distributions quite well. The assumption of known shape parameter in 

a Weibull distribution sometimes makes theoretical statisticians uncomfortable but it 

enables us to design various more efficient sampling plans. This assumption is not 

unrealistic because an estimate of the shape parameter can be readily available in practice 

from the past failure data and engineering experience.  
 

 The concept of multiple dependent (or deferred) state (MDS) sampling was 

introduced by Wortham and Baker (1976). The MDS plan is applicable to a continuous 

process where lots are submitted for inspection serially in the order of production. In this 

procedure, acceptance or rejection of a lot is based not only on the sample from that lot, 

but also on sample results from past lots (in the case of dependent state sampling) or from 

future lots (in the case of deferred state sampling). So, the MDS plan has an advantage 

over the ordinary sampling plan in terms of the minimum sample size. The operating 

procedure and characteristics of the attributes MDS sampling plan can be found in 

Wortham and Baker (1976), Vaerst (1982), Soundararajan and Vijayaraghavan (1990), 

and Balamurali and Kalyanasundaram (1999). More recently, Balamurali and Jun (2007) 

developed a variables MDS plan for normal distributions with known or unknown 

standard deviation. The basic advantage of a variables sampling plan is that the same 

operating characteristic curve can be obtained with a smaller sample size as compared to 

an attributes sampling plan. Therefore variables sampling plans are more economical than 

attributes sampling plans in terms of the cost and time. However, there are no studies on 

variables MDS plans for a reliability testing.  
 

 In this paper, a variables MDS sampling plan will be proposed for a failure-censored 

life testing under a Weibull distribution. The sampling plan will be described in Section 2 

and the method of determining the design parameters will be explained in Section 3. 

Some comparisons are made in Section 4 and Section 5 concludes with remarks.  

 

2. VARIABLES MDS SAMPLING PLAN 
 

 Suppose that the quality characteristic of interest is the time to a failure and that it 

follows a Weibull distribution with known shape parameter m and scale parameter  such 

that the cumulative distribution function is given by 
 

      1 exp , 0
m

F x x x                  (2.1) 

 

 Also, it is assumed that there is a lower specification L so that an item having the  

life smaller than L is regarded as non-conforming. The fraction non-conforming  

(or unreliability at time L) is obtained by 
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    1 exp
m

p L                    (2.2) 

 

 As mentioned in Balamurali and Jun (2007), the following assumptions are valid for 

the proposed MDS plan: 
 

i) Lots are submitted for inspection serially in the order of production from a process 

having a constant proportion non-conforming. 

ii) The consumer has confidence in the supplier and there should be no reason to 

believe that a particular lot is poorer than the preceding lots. 
 

 Let us consider the following procedure for multiple dependent state (MDS) sampling 

plan: 
 

1) Draw a random sample of size n from a lot.  
 

2) Put n items on test and perform testing until r ( )n  failures are observed by 

recording ( )iX , the i-th failure time (i=1,…,r). 

 

3) Calculate the quantity 

   ( ) ( )
1

( ) .
r

m m
i r

i

v X n r X


                 (2.3)  

 

4) Accept the lot if 
m

av k L  and reject the lot if 
m

rv k L . If 
m m

r ak L v k L  , then 

accept the current lot provided that the preceding g  lots were accepted on the 

condition that 
m

av k L  but reject the lot, otherwise.  
 

 In the above plan, ak  and rk  are parameters related to the lot acceptance and 

rejection, respectively, whereas mL  is constant. We use the acceptance constant in the 

form of 
m

ak L  for the mathematical convenience when deriving the lot acceptance 

probability. Thus, the proposed MDS plan is characterized by three parameters, namely 

r , ak  and rk  when g is specified. The value of g can be chosen by considering the data 

availability. If a rk k , then the proposed plan is reduced to an ordinary variables single 

sampling plan. The sample size n  can be chosen from the parameter r  by considering 

the degree of censoring (Schneider, 1989) and the test time. In general, the test time 

decreases as the sample size increases. In a multiple deferred state sampling, the 

forthcoming g lots will be considered for acceptance of the current lot, so accept or reject 

decision is effectively postponed. But the mechanism is same as the proposed MDS 

sampling plan. 

 

3. DETERMINATION OF DESIGN PARAMETERS 
 

 The design parameters of the proposed sampling plan can be determined by the  

two-point approach as in Fertig and Mann (1980). In this approach, its operating 

characteristics (OC) curve passes through two points  1,1p   and  2 ,p  , where 1p  

is the acceptable reliability level (ARL), 2p  is the lot tolerance reliability level (LTRL), 
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  is the producer’s risk and   is the consumer’s risk. A producer wants that the 

probability of acceptance of a lot should be at least  1  when the fraction non-

conforming is at ARL and a consumer demands that this probability should not be greater 

than   when the fraction non-conforming is at LTRL.  
 

 Now, the OC function of the variables MDS sampling plan for a given lot quality p is 

obtained by 
 

         
g

m m m m
a r a aL p P v k L P k L v k L P v k L      

 
      (3.1) 

 

 Note that v  follows a Gamma distribution with parameters  , mr   and that the 

quantity 2 mv  follows a chi-square distribution with degree of freedom 2r (Jun et al. 

2006). So, (3.1) can be rewritten by 
 

            
1

2 2 2 2( ) 1 2 1 2 2 1 2
g

r a r a r r r aL p G k w G k w G k w G k w
     

  
 (3.2) 

 

where G  is the distribution function of a Chi-square random variable with degree of 

freedom  and w  is given by 
 

     ln 1
m

w L p                    (3.3) 
 

 We will determine the design parameters ( r , ak , rk ) by the two-point approach 

described earlier when g  is specified. Several values of g  were considered when 

constructing the tables. So, the following two inequalities should be considered: 
 

   1 1L p                     (3.4) 
 

   2L p                      (3.5) 

or 

            
1

2 1 2 1 2 1 2 11 2 1 2 2 1 2
g

r a r a r r r aG k w G k w G k w G k w
    

  
1   

                       (3.6) 
 

            
1

2 2 2 2 2 2 2 21 2 1 2 2 1 2
g

r a r a r r r aG k w G k w G k w G k w
     

  
 (3.7) 

 

 Values of parameters  , ,a rr k k  can be determined by a simple search in an Excel 

sheet for given values of  1 2, ,g p p . These design parameters for variables MDS plans 

are presented in Table 1 for g=1, 2, 3 according to different combinations of ARL  1p  

and LTRL  2p  when  =0.05 and  =0.10. The values of 2p  were chosen as 2 1p ,  

5 1p , 10 1p , 15 1p , 20 1p  and 30 1p  until reaching 0.5 at maximum.  
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Table 1 

Variables MDS sampling plans indexed by ARL and LTRL 

1p  

(ARL) 

2p  

(LTRL) 

g=1 g=2 g=3 

r  ak  rk  r  ak  rk  r  ak  rk  

0.001 0.002 11 8249 4570 11 7778 3699 12 8301 4700 

0.005 3 1107 777 3 1067 750 3 1063 712 

0.010 2 392 352 2 388 351 2 388 348 

0.015 1 184 26 1 157 14 2 258 257 

0.020 1 130 40 1 116 35 1 115 26 

0.030 1 81 48 1 77 47 1 76 45 

0.005 0.010 11 1635 959 11 1549 800 12 1653 988 

0.025 3 219 155 3 212 150 3 211 143 

0.050 2 77 70 2 76 70 2 76 69 

0.100 1 25 8 1 23 7 1 22 5 

0.150 1 15 9 1 15 9 1 15 9 

0.010 0.020 11 830 360 11 770 428 12 823 505 

0.050 3 108 77 3 105 75 3 104 72 

0.100 2 38 35 2 37 35 2 37 35 

0.200 1 12 4 1 11 3 1 11 1 

0.300 1 7 4 1 7 4 1 7 4 

0.050 0.100 11 153 107 11 149 45 12 158 114 

0.250 2 17 1 2 14 1 3 19 15 

0.500 2 7 6 2 6 5 2 6 5 

0.100 0.200 10 68 43 10 65 38 11 70 45 

0.500 2 7 1 2 6 2 2 6 1 

 

 It is seen that for a fixed value of ARL, the values of r and ak  decrease as LTRL 

increases, but there is no specific trends in values of rk . It is also observed that design 

parameters remain similar according to a different value of g  when LTRL>>ARL. It 

should be noted that the above table can be utilized independently of the shape parameter 

of a Weibull distribution.  

 

Example 1: 

 Suppose that a certain type of bearing is regarded as conforming if its lifetime is 

greater than 10 (thousand cycles). For the decision of a lot acceptance the manufacturer 

wants to use the MDS sampling plan with g =1. The lifetime of a bearing is known to 

follow a Weibull distribution with m =2. The ARL is selected as 0.01 at which the 

producer’s risk is 5 percent and the LTRL is selected as 0.05 at which the consumer’s 

risk is 10 percent. The design parameters for this example are obtained from Table 1 as 
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3r  , ak =108 and rk =77. The MDS sampling plan operates as follows. When the 

degree of censoring is chosen as 0.5, six bearings out of a lot will be put on test initially 

and three failures will be observed. Suppose now that three failures were observed at 

12.7, 19.5, and 25.2. The test is terminated at the last failure. The quantity v in (2.3) is 

calculated by 
 

         
2 2 2 2

12.7 19.5 25.2 3 25.2 3081.7v       
 

which is smaller than  
2

77 10 7700m
rk L   . So, the lot will be rejected. 

 

Example 2: 

 Consider Example 1 again. Suppose now that the same three failure times were 

observed if 15 bearings had been put on test (In reality, the failure times should be 

different according to the sample size initially put on test). Then, the quantity v in (2.3) is 

calculated by 
 

         
2 2 2 2

12.7 19.5 25.2 12 25.2 8797.06v       
 

which is larger than  
2

77 10 7700m
rk L    but smaller than  

2
108 10 10800m

ak L   . 

So, the current lot will be accepted if the preceding one lot has been accepted but rejected 

otherwise. 

 

4. COMPARISON OF PLANS 
 

 Under a failure censoring scheme, a plan requiring a smaller number of failures to be 

observed would be better if other conditions remain the same. So, it may be meaningful 

to compare with plans in terms of the number of failures to be observed. Table 2 

summarizes the number of failures to be observed under the MDS plan with different g  

and under the variables single sampling plan.  

 

  NCBA&E



Chapter-6: Quality Control and Acceptance Sampling 391 

Table 2 

Comparison of number of failures in each plan 

1p  2p  
MDS with  

g=1 

MDS with 

 g=2 

MDS with  

g=3 
Variables single 

sampling plan 

0.001 0.002 11 11 12 19 (12437) 

0.005 3 3 3 4 (1333) 

0.010 2 2 2 3 (530) 

0.015 1 1 2 2 (258) 

0.020 1 1 1 2 (193) 

0.030 1 1 1 2 (128) 

0.005 0.010 11 11 12 19 (2464) 

0.025 3 3 3 4 (264) 

0.050 2 2 2 3 (104) 

0.100 1 1 1 2 (37) 

0.150 1 1 1 2 (24) 

0.010 0.020 11 11 12 19 (1226) 

0.050 3 3 3 4 (131) 

0.100 2 2 2 2 (51) 

0.200 1 1 1 2 (18) 

0.300 1 1 1 2 (11) 

0.050 0.100 11 11 12 18 (225) 

0.250 2 2 3 4 (24) 

0.500 2 2 2 2 (6) 

0.100 0.200 10 10 11 17 (101) 

0.500 2 2 2 4 (10) 

(note) The number in parenthesis is the acceptance parameter of the variables  

single sampling plan. 

 

 It is seen that the number of failures for the MDS plan does not much vary according 

to the value of g  and that it is smaller than that for the variables single sampling plan. 

Obviously, the number of failures decreases as the value of 2p  increases. However, it 

seems that r does not depend on the value of 1p  as long as the ratio of 2 1/p p  remains 

the same. It is observed that r =1 when the ratio 2 1/ 20p p  . It is interesting to see that 

r  for the MDS plan with g =1 is same for that with g =2 and that ak  for the MDS plan 

with g =1 is smaller than ak  for the MDS plan with g =2. This may be interpreted as 

follows: the MDS plan with g =2 requires shorter failure times than the MDS plan with 

g =1 because the former considers one more preceding lot than the latter.  
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 It was found that the operating characteristics of the MDS plans with three values of 

g  considered here are quite similar to each other although the results were not included 

here. In this regard, the MDS plan with g =1 can be recommended for use in practice. It 

was also found that variables single sampling plans having the same r  do not meet the 

producer’s risk at the ARL or consumer’s risk at the LTRL. 

 

5. CONCLUDING REMARKS 
 

 A MDS sampling plan by variables was proposed for a failure-censored life testing 

when the lifetime of an item follows a Weibull distribution with known shape parameter. 

The design parameters were determined by the two-point approach considering the 

consumer’s and producer’s risk simultaneously, which are not dependent on the shape 

parameter as long as the ARL and the LTRL are specified. It was found that the MDS 

plans do not much differ by the number of preceding lots in terms of the number of 

failures to be observed and the operating characteristics. When compared with variables 

single sampling plans, the proposed MDS plan requires smaller number of failures to be 

observed.  
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ABSTRACT 
 

 In this paper, we propose a designing methodology to determine the parameters of a 

skip-lot sampling plan using two points on the operating characteristic curve. The plan 

parameters are determined so as to minimize the average sample number subject to 

satisfying simultaneously the producer’s and consumer’s risks at the acceptable and 

limiting quality levels respectively. Tables are constructed and the results are compared 

with the single sampling plans.  

 

KEY WORDS 
 

 Binomial sampling; Consumer’s risk; Producer’s risk; Single sampling; Skip-lot 

sampling. 

 

1. INTRODUCTION 
 

 Dodge (1955) introduced the concept of skip-lot sampling by applying the principles 

of continuous sampling plan CSP-1 (Dodge, 1943) to a series of lots or batches of 

material. This plan is designated as SkSP-1 plan and is specifically applicable for bulk 

materials or products produced in successive lots. Skip-lot sampling means that a fraction 

of the submitted lots is inspected for acceptance or rejection of the lot. The skip-lot 

sampling is very effective in reducing the cost and time of the inspection on products that 

has an excellent quality history. For more details about the skip-lot sampling one can 

refer Schilling (1982), ISO 2859-3 (2005), Balamurali et al. (2008). 
 

 There are situations in practice that each lot to be inspected is sampled according to a 

lot inspection plan which is called the reference plan. Based on this, Perry (1973) 

formalized the application of skip-lot sampling to the particular kind of situation. This 

plan is designated as SkSP-2 plan. But it is to be pointed out that in SkSP-1 plan, no 

reference plan concept is used. Perry (1973) has studied the properties of SkSP-2 plan 

with single sampling plan as the reference plan. He has also provided operating 

characteristics of SkSP-2 plan with some selected parameters.  
 

                                                 
*
Published in Pak. J. Statist. (2010), Vol. 26(4). 

NCBA&E

mailto:aslam_ravian@hotmail.com
mailto:chjun@postech.ac.kr


Chapter-6: Quality Control and Acceptance Sampling 394 

 Skip-lot sampling is used for sampling chemical and physical processes in order to 

bring about substantial savings on inspection of products, which normally conform to 

specification. This particular sampling plan is useful when the lots are small or where 

inspection is slow and costly.  SkSP-2 plan is considered as more reliable than the single 

sampling plan in that the required sample size to be inspected can be reduced. Another 

advantage of this plan is that we can obtain higher probability of acceptance at good 

quality levels than the single sampling plans. An SkSP-2 plan is operated as follows. 
 

Step 1: Start with normal inspection (inspecting every lot), using the reference plan. 
 

Step 2: When i  consecutive lots are accepted on normal inspection, switch to 

skipping inspection. During the skipping inspection, only a fraction f  of the 

lots are inspected. 
 

Step 3: When a lot is rejected on skipping inspection, immediately revert to the 

normal inspection. 
 

 As the fate of a lot under SkSP-2 plan depends on the basis of few items taken from 

the lot, there are two risks associated with it. If a good lot is rejected, then it is called the 

producer’s risk. On the other hand, the probability of accepting a bad lot is called the 

consumer’s risk. An SkSP-2 plan is considered to be a good plan if it minimizes the 

average sample number (ASN) at the same time minimizing or at least maintaining the 

risks at the corresponding quality levels.  
 

 In the literature, there have been no attempts to determining the design parameters of 

a skip-lot sampling plan including the reference plan. Thus the purpose of this paper is to 

find the parameters of an SkSP-2 plan using two-point approach by minimizing ASN and 

satisfying the producer’s and consumer’s risks. A simulation experiment is performed to 

find the plan parameters such that both the risks are satisfied. The design parameters of 

the single sampling plan are also determined by minimizing the ASN subject to satisfying 

producer’s and consumer’s risks. Tables are also constructed for the specified quality 

levels and results are compared with the single sampling plans in terms of ASN. The rest 

of the paper is organized as: the design methodology to determine the plan is given in 

Section 2. Some examples are given in Section 3. Concluding remarks are given in 

Section 4.  

 

2. DESIGNING METHODOLOGY 
 

 An SkSP-2 plan with the single sampling plan as the reference plan is characterized 

by four parameters namely , ,i f n  and c . This plan as the reference plan has the 

following parameters: 
 

n   – the sample size in a single sampling plan. 

c   – acceptance number in a single sampling plan. 

i   – clearance number. 

f  – fraction of lots inspected in the skipping inspection mode and in general 0 1f  .  
 

 It is to be noted that i  must be an integer and for the practical use of this plan, it 

would be better to have the value of i  between 1 and 10. We have to decide the 
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acceptance or rejection of the lot on the basis of results of inspection of a random sample 

of size n  drawn from the infinite lot. These two assumptions support the application of 

the binomial distribution to the operating characteristic values for the SkSP-2 plan. The 

lot acceptance probability from a single sampling plan or the reference plan under 

binomial model is given by  
 

  
0

(1 )
c

j n j

j

n
P p p

j





 
  

 
                (2.1) 

 

where p is the true quality level. 
 

 According to Perry (1973), the operating characteristics (OC) function of SkSP-2 plan 

is given by, 
 

  
(1 )

( )
(1 )

i

a i

fP f P
P p

f f P

 


 
               (2.2) 

 

where P  is the probability of acceptance under normal inspection. It is to be noted that 

when 1f  , the above OC function of the SkSP-2 plan reduced to the OC function of 

single sampling plan as given in (2.1). As we have stated earlier, there are two risks 

always associated with a sampling plan. The producer wants that the lot acceptance 

probability should be at least  1  for the producer’s risk α if the process fraction 

nonconforming is at the acceptable quality level (AQL) and the consumer wants the 

probability of acceptance less than the consumer’s risk of   if the process fraction 

nonconforming  is at the limiting quality level (LQL). 
 

 The two-point approach that uses two points on the OC curve is frequently adopted 

for designing a sampling plan to maintain both the producer’s and the consumer’s risks 

(See for example Balamurali et al., 2005). We have to determine the parameters of the 

SkSP-2 plan by satisfying these risks simultaneously while minimizing the ASN at the 

same time. Under AQL of 1p  and LQL of 2p , (2.1) can be written as  
 

  1 1 1
0

(1 )
c

j n j

j

n
P p p

i





 
  

 
               (2.3) 

 

  2 2 2
0

(1 )
c

j n j

j

n
P p p

i





 
  

 
               (2.4) 

 

 In the case of the single sampling plan, the parameters n  and c  are determined such 

that the following inequalities must be satisfied. 
 

  1 1
0

(1 ) 1
c

j n j

j

n
p p

j





 
   

 
               (2.5) 

 

  2 2
0

(1 )
c

j n j

j

n
p p

j





 
   

 
               (2.6) 
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 Similarly, under the conditions of AQL and LQL, the parameters of an SkSP-2 plan 

namely , ,  and i f n c  will be determined such that the following inequalities are satisfied. 
 

  1 1
1

1

(1 )
( ) 1

(1 )

i

a i

fP f P
P p

f f P

 
  

 
            (2.7) 

 

  2 2
2

2

(1 )
( )

(1 )

i

a i

fP f P
P p

f f P

 
  

 
             (2.8) 

 

where 1P  and 2P  are obtained by using (2.3) and (2.4) respectively. 
 

 The ASN of the SkSP-2 plan at the quality level of p is given by   
 

  ( )
(1 ) i

nf
ASN p

f f P


 
              (2.9) 

 

 When determining the plan parameters, the use of the ASN evaluated at the LQL is 

recommended because it is larger than the ASN at the AQL. 
 

The optimization procedure to finding the parameters is described below. 
 

Step 1: Find the design parameters  ,n c  for the single sampling plan satisfying 

(2.5) and (2.6) at the same time. 
 

Step 2: Use the combination of (n, c) obtained in Step 1 as guess values and find  

the design parameters ( , ,  and i f n c ) for the SkSP-2 plan by satisfying (2.7) 

and (2.8).  
 

Step 3: There may exist a number of combinations of design parameters  

( , ,  and i f n c ) in simulation process so pick up those values for which the 

ASN at LQL is minimum and i  is less than 10. 
 

 From the simulation experiment, it is to be pointed out that as the value of i  

increases, the ASN decreases. At some particular values of i , there would be no effect on 

the ASN. The design parameters for the SkSP-2 plan and for the single sampling plan are 

presented in Tables 1 and 2, respectively, when 0.05   and 0.1  . 
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Table 1 

SkSP-2 Plan for Given AQL and LQL 

AQL 

 1p  

LQL 

 2p  

Optimal Parameters 

i  f  n  c  ASN 1( )aP p % 2( )aP p

% 

0.001 

0.002 5 0.001 1985 1 1970 95.30 10.00 

0.005 5 0.120 777 1 776 95.02 9.99 

0.010 7 0.060 230 0 230 95.02 9.91 

0.015 5 0.200 153 0 152 95.04 9.91 

0.020 5 0.328 114 0 114 95.01 10.00 

0.030 3 0.629 76 0 76 95.02 9.93 

0.005 

0.010 5 0.001 396 1 393 95.35 9.98 

0.025 6 0.010 91 0 90 95.06 10.00 

0.050 5 0.096 45 0 45 95.01 9.95 

0.100 4 0.371 22 0 22 95.01 9.86 

0.150 4 0.622 15 0 15 95.00 8.74 

0.01 

0.020 3 0.002 238 1 225 95.71 9.70 

0.050 5 0.016 45 0 44.97 95.09 10.00 

0.100 4 0.122 22 0 21.99 95.01 9.91 

0.200 2 0.423 11 0 10.89 95.00 9.50 

0.300 2 0.708 7 0 6.98 95.00 8.49 

0.05 

0.100 5 0.001 39 1 38.80 95.48 9.23 

0.250 3 0.037 9 0 8.90 95.08 8.52 

0.500 2 0.196 4 0 3.94 95.02 7.73 

0.100 
0.200 4 0.003 19 1 18 95.06 9.75 

0.500 1 0.039 8 0 7 95.09 9.14 
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Table 2 

Single Sampling Plan for Specified AQL and LQL 

AQL 

 1p  

LQL 

 2p  

Optimal parameters 

n  c  

0.001 

0.002 12375 18 

0.005 1135 3 

0.010 531 2 

0.015 258 1 

0.020 194 1 

0.030 129 1 

0.005 

 

0.010 2478 18 

0.025 266 3 

0.050 105 2 

0.100 38 1 

0.150 25 1 

0.01 

0.020 1235 18 

0.050 132 3 

0.100 52 2 

0.200 18 1 

0.300 12 1 

0.05 

0.100 233 17 

0.250 25 3 

0.500 7 1 

0.100 
0.200 109 16 

0.500 12 3 

 

 From Table 1, it is clear that, as 2p  increases (or the quality degrades) for fixed 

values of 1p , the clearance number of sampling inspection, i , the acceptance number,  

c  and the ASN are decreased in general. We observed the same pattern for the single 

sampling plans also. For any combinations of  1 2,p p , the ASN of the SkSP-2 plan is 

smaller than the ASN of the single sampling plan. For example when 1 0.01p   and 

2 0.05p  , the SkSP-2 requires the ASN of 45 whereas the single sampling plan requires 

NCBA&E



Chapter-6: Quality Control and Acceptance Sampling 399 

the sample size of 132. Similar tables can be constructed for any others values of AQL 

and LQL. An Excel program is available with the authors upon request.    

 

Example 1:   
 Suppose one wants to determine parameters of an SkSP-2 plan from Table 1 

according to the conditions given that 1 0.01p  , 2 0.02p  , 0.05   and 0.10  . 

From this table, one can find the optimal parameters as 3i  , 0.002f  , 238n   and 

1c   corresponding to the above mentioned AQL and LQL values. ASN of this plan at 

LQL is 225 which is minimum. Based on these parameters, the SkSP-2 plan is operated 

as follows. The OC curve of this plan is shown in Fig. 1. 
 

Step 1: Start with normal inspection (inspecting every lot), using the single sampling 

plan (238, 1). 
 

Step 2: When 3 consecutive lots are accepted on normal inspection, switch to 

skipping inspection. During the skipping inspection, 1 lot out of every 500 

lots are inspected.  
 

Step 3: When a lot is rejected on skipping inspection, immediately revert to normal 

inspection.  

 

 
Fig. 1: OC Curves of the Single Sampling Reference Plan and SkSP-2 Plan 
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3. CONCLUDING REMARKS 
 

  In this paper, we have considered the problem of the optimal design of SkSP-2 plans 

based on two-point approach. Tables have been constructed for easy selection and 

application of these plans. Sampling plans presented here will have minimum ASN while 

satisfying the AQL and LQL conditions at the same time. It has been proved that SkSP-2 

plans are better than the single sampling plans in achieving the reduced sample size. The 

proposed approach can be applied to any variants of a skip-lot sampling plan to design a 

more economical plan.    
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ABSTRACT 
 

 In this paper, we propose a designing methodology to find the optimal parameters of 

skip-lot sampling plan of type V (SkSP-V) in terms of reducing the average sample 

number. The two-points on the operating characteristic curve approach is used to find the 

design parameters of the proposed plan and the reference plan as well. The tables are 

presented and the results are explained using an example. The advantages of the proposed 

plan over the reference plan is also discussed and proved that the SkSP-V is better than 

the reference sampling plan in terms of probability of acceptance, average sample 

number and average total inspection.  

 

KEY WORDS 
 

 Binomial sampling; Consumer’s risk; Producer’s risk; Single sampling; Skip-lot 

sampling. 

 

1. INTRODUCTION 
 

 Dodge (1955a) innovated the concept of continuous sampling and provided 

mathematical rationale and the rules of operation for the first continuous sampling plan 

(CSP) familiarly known as CSP-1. Continuous sampling plans can be applied for a 

product consisting of individual units and manufactured by an essentially continuous 

process. Later several modifications on continuous sampling plans were proposed and the 

resultant plans were designated as CSP-2, CSP-3, CSP-F, CSP-T, CSP-V etc. All these 

plans are available in the US military standard MIL-STD 1235C (1988). For more details 

about these continuous sampling plans one can refer Stephens (2001). 
 

 Dodge (1955b) later presented an extension of continuous sampling plans for 

individual units to a “skip-lot sampling plan (SkSP) that is applicable to bulk materials or 

products produced in successive batches or lots”, and the plan is designated as “SkSP-1”. 

One of the basic motivations for this extension is stated as “applied to chemical and 

physical analyses, SkSP-1 sampling plan provides a basis for reducing testing costs”.  

                                                 
*
Published in Pak. J. Statist. (2012), Vol. 28(1). 
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So, skip-lot sampling is used for sampling chemical and physical processes in order to 

bring about substantial savings on inspection of products, which normally conform to 

specification. This particular sampling plan is useful when the lots are small or where 

inspection is slow and costly. The operation of the SkSP-1 plan can be seen in Dodge 

(1955b). Burnett (1967) had presented a Markov chain model for deriving the operating 

characteristic (OC) function of SkSP-1 plan. Based on the objectives of skip-lot 

sampling, Perry (1973) formalized the application of skip-lot sampling to the situation in 

which each lot to be inspected is sampled according to a lot inspection plan, called the 

reference plan. This plan is designated as SkSP-2 plan. For detailed information about 

skip-lot sampling plans, one can refer Schilling (1982), ISO 2859-3 (2005) and 

Balamurali et al (2008). Recently, Aslam et al. (2010) proposed a designing methodology 

to determine the optimal parameter of a SkSP-2 plan. In this paper, we consider the  

skip-lot sampling plan of type SkSP-V and propose the designing methodology to 

determine the optimal parameters using single sampling plan as the reference plan as no 

such designing methodology is available in the literature . The designing methodology 

proposed in this paper will satisfy both producer and consumer’s risks simultaneously.  

 

2. SkSP-V SKIP LOT SAMPLING PLAN 
 

 The continuous sampling plan of type CSP-V is one of the single level continuous 

sampling plans in which reduced inspection can be achieved by using a smaller clearance 

interval when reducing the sampling frequency has no advantage upon demonstration of 

good product quality. Since the skip-lot concept is sound and useful and it is 

economically advantageous to the skip-lot approach in the design of sampling plans, 

Balamurali and Jun (2010) developed a new system of skip-lot sampling plan designated 

as SkSP-V based on the principles of CSP-V plan. The SkSP-V sampling plan is having a 

provision for reducing a normal inspection. They have also studied the properties of the 

SkSP-V plan with single sampling plan as the reference plan. According to Balamurali 

and Jun (2010) the operating procedure of the SkSP-V plan is stated as follows:  
 

(1) At the outset, start with normal inspection using the reference plan. During the 

normal inspection, lots are inspected one by one in the order of production or in 

the order of being submitted to inspection.  

(2) When i  consecutive lots are accepted on normal inspection, discontinue the 

normal inspection and switch to skipping inspection. 

(3) During skipping inspection, inspect only a fraction f  of the lots selected at 

random. Skipping inspection is continued until sampled lot is rejected. 

(4) When a lot is rejected on skipping inspection before k  consecutively sampled lots 

are accepted, revert to normal inspection as per (1) above. 

(5) When a lot is rejected after k  consecutive lots have been accepted revert to 

normal inspection with reduced clearance number x  as per (6) given below.  

(6) During normal inspection with clearance number x , lots are inspected one by one 

in the order of being submitted to inspection and continue the inspection until a lot 

is rejected or x  lots are accepted whichever occurs earlier.  

(7) When a lot is rejected, immediately revert to normal inspection with clearance 

number i  as per (1) given above. 
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(8) When x  lots are accepted, discontinue normal inspection and switch to skipping 

inspection as per (3) above. 

(9) Replace or correct all the non-conforming units found with conforming units in 

the rejected lots.  
 

 Associated with this plan are a reference plan and four parameters , ,  f i k  and  x .  

In general, 0 1f   and ,i k  and  x i  are positive integers and the plan is designated 

as SkSP-V  , , ,i f k x . The proposed plan is generalization of SkSP-2 plan. When 

k x i  , the present plan reduces to SkSP-2 sampling plan. It is also important to note 

that when 1f   the SkSP-V plan reduces to a reference sampling plan. 

 

3. DESIGNING OF SkSP-V PLAN 
 

 The probability of accepting a lot based on SkSP-V plan and other performance 

measures of the SkSP-V sampling plan were derived by Balamurali and Jun (2010) using 

a Markov chain model. To simplify the number of design parameters, it can be assumed 

that k x . According to Balamurali and Jun (2010), the probability of acceptance of the 

SkSP-V plan when k x  is given by 
 

   
   

   

1

2

1

1 1

i k i k

a i k k i

fP f P fP P P
P p

f P P f P





   


   
          (3.1) 

 

where P  is the acceptance probability based on single sampling plan and 1Q P  .  

The acceptance probability of a lot under binomial model for the single sampling plan is 

given by 
 

    
0

1
c n jj

j

n
P p p

j





 
  

 
                (3.2) 

 

 The two-points on the OC curve approach is considered as a reasonable approach 

because the lot acceptance probability obtained by one risk may not satisfy the other risk. 

Further, producer wants that the probability of acceptance should be larger than 1   

if the process fraction nonconforming is at the acceptable quality level (AQL) and the 

consumer demands that the lot acceptance probability should be less than   if  

the process fraction non-conforming is at the limiting quality level (LQL), see for 

example Balamurali et al. (2005). According to ANSI/ASQC standard A2 (1987) defines 

AQL as “the maximum percentage or proportion of variant units in a lot or batch that, for 

the purpose of acceptance sampling, can be considered as a process average”. Similarly 

LQL is defined as “the percentage or proportion of variant units in a batch or lot  

for which, for the purposes of acceptance sampling, the consumer wishes the probability 

of acceptance to be restricted to a specified low value”. Under the conditions of AQL 

 1p  and LQL  2p , equation (3.2) can be re-written as 
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               (3.3) 
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               (3.4) 

 

 Under the specified values AQL and LQL, we want to determine the design 

parameters of the SkSP-V sampling plan  , , , , ,i f k x n c  such that the producer’s and the 

consumer’s risks should be satisfied simultaneously.  
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          (3.6) 

 

 The values of 1P  and 2P  are determined from (3.3) and (3.4). There may exist 

multiple solutions, we alternatively determine these parameters to minimize the average 

sample number at the quality level 2p , which is analogous to minimizing the average 

sample number (ASN) in a usual single and double sampling plans. Obviously,  

a sampling plan having smaller ASN would be more desirable. According to Balamurali 

and Jun (2010) the ASN of the SkSP-V plan at LQL is given as  
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         (3.7) 

 

 The design parameters of the SkSP-V sampling plan are determined for various 

combinations of AQL and LQL. Therefore, we consider the following optimization 

problem to determine parameters of the SkSP-V plan. 
 

  Minimize  
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          1, 0, , , 1,0 1n c i k x f          (3.9) 
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 The design parameters values along with the OC values at the producer’s risks of 5% 

and the consumer’s risks of 10% are placed in Table 1. The design parameters of the 

single sampling plan can be obtained by a similar approach, that is shown in Table 2. 

From Table 1, we can see the various trends in design parameters. For the same value of 

1p , as we increase the value of 2p , we noted the decreasing trends in n , c  and 

increasing trend in f . We noted the same behavior in the design parameters of the single 

sampling plan.  

 

3.1 Example  
 

 Suppose one wants to determine parameters of an SkSP-V plan from Table 1 

according to the conditions given that 1 0.005p  , 2 0.025p  , 0.05   and 0.10  . 

From this table, one can find the optimal parameters as 91n  , 0c  , 6i  , 5k  , 

5x   and 0.01f   corresponding to the above mentioned AQL and LQL values. Based 

on these parameters, the SkSP-V plan is operated as follows.  

Step 1. Start with normal inspection (inspecting every lot) using the single sampling 

plan (91, 0).  

Step 2. When 6 consecutive lots are accepted on normal inspection, discontinue the 

normal inspection and switch to skipping inspection. 

Step 3.  During skipping inspection, inspect 1 lot out of every 100 lots selected at 

random. Skipping inspection is continued until sampled lot is rejected. 

Step 4.  When a lot is rejected on skipping inspection before 5 consecutively sampled 

lots are accepted, revert to normal inspection as per (1) above. 

Step 5. When a lot is rejected after 5 consecutive lots have been accepted revert to 

normal inspection with reduced clearance number 5 as per (6) given below.  

Step 6. During normal inspection with clearance number 5, all the four lots are 

inspected one by one in the order of being submitted to inspection and 

continue the inspection until a lot is rejected or 5 lots are accepted whichever 

occurs earlier.  

Step 7. When a lot is rejected, immediately revert to normal inspection with clearance 

number 5 as per (1) given above. 

Step 8. When 4 consecutive lots are accepted, discontinue normal inspection and 

switch to skipping inspection as per (3) above. 

Step 9. Replace or correct all the non-conforming units found with conforming units 

in the rejected lots.  
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Table 1 

Parameters of SkSP-V plan for specified AQL and LQL 

1p  2p  
Optimal Parameters 

i  k  f  n  c  ASN (1 )%  %  

0.001 

0.002 7 6 0.0002 1946 1 1946 95.42 10.00 

0.005 6 5 0.010 460 0 460.00 95.02 9.98 

0.010 4 3 0.119 230 0 229.98 95.00 9.97 

0.015 4 3 0.238 153 0 152.00 95.00 9.93 

0.020 5 4 0.338 114 0 114.00 95.00 10.00 

0.030 3 2 0.644 76 0 75.97 95.00 9.93 

0.005 

0.010 6 5 0.0005 390 1 390.00 95.09 9.96 

0.025 6 5 0.01 91 0 91.00 95.08 10.00 

0.050 6 5 0.080 45 0 45.00 95.00 9.95 

0.100 3 2 0.414 22 0 21.99 95.00 9.97 

0.150 2 1 0.671 15 0 14.96 95.00 9.08 

0.01 

0.020 5 4 0.001 198 1 198.00 95.32 9.84 

0.050 5 4 0.016 45 0 45.00 95.13 10.00 

0.100 2 1 0.168 25 0 21.89 95.02 9.50 

0.200 2 1 0.445 11 0 10.95 95.00 9.43 

0.300 2 1 0.720 7 0 6.98 95.00 8.48 

0.05 

0.100 5 4 0.001 39 1 39.00 95.48 9.23 

0.250 3 2 0.039 9 0 9.00 95.10 8.46 

0.500 2 1 0.218 4 0 3.99 95.01 7.55 

0.100 
0.200 4 3 0.0003 13 0 13.00 95.00 8.29 

0.500 3 2 0.048 4 0 4.00 95.08 6.70 
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Table 2 

Parameters of Single Sampling Plan for Specified AQL and LQL 

1p  2p  
Optimal Parameters 

n  c  

0.001 0.002 12375 18 

0.005 1135 3 

0.010 531 2 

0.015 258 1 

0.020 194 1 

0.030 129 1 

0.005 

 

0.010 2478 18 

0.025 266 3 

0.050 105 2 

0.100 38 1 

0.150 25 1 

0.01 0.020 1235 18 

0.050 132 3 

0.100 52 2 

0.200 18 1 

0.300 12 1 

0.05 0.100 233 17 

0.250 25 3 

0.500 7 1 

0.100 0.200 109 16 

0.500 12 3 

 

4. ADVANTAGES OF THE SKSP-V PLAN 
 

 In this section, we discuss the advantages of the SkSP-V sampling over the single 

sampling plan. For this purpose, we have calculated ASN values of SkSP-V plan and 

compared with the sample size required for a single sampling plan for different values  

of 1p  and 2p . Table 3 summarizes the results.  
 

 From this table, we can see that for the same values of AQL and LQL, the SkSP-V 

sampling plan provides much smaller sample size as compared to single sampling plan 

(or reference sampling plan). For an example, when 1p =0.001 and 2p =0.002, the 

required sample size 1946n   from Table 1 for SkSP-V plan and it is 12375 when we 

test the items using the single sampling plan. So, the SkSP-V sampling is more economic 

than the single sampling in saving the time, cost and the efforts for an experiment.  
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Table 3 

Comparison of Sample Size 

1p  2p  SkSP-V Plan Single Sampling Plan 

0.001 

0.002 1946 12375 

0.005 460 1135 

0.010 230 531 

0.015 153 258 

0.020 114 194 

0.030 76 129 

0.005 

 

0.010 390 2478 

0.025 91 266 

0.050 45 105 

0.100 22 38 

0.150 15 25 

0.01 

0.020 198 1235 

0.050 45 132 

0.100 25 52 

0.200 11 18 

0.300 7 12 

0.05 

0.100 39 233 

0.250 9 25 

0.500 4 7 

0.100 
0.200 13 109 

0.500 4 12 

 

 In order to show the better efficiency of the SkSP-V plan in terms of probability of 

acceptance, average sample number and average total inspection (ATI) three figures are 

provided. Figure 1 gives the OC curves of the SkSP-V plan with parameters 6i  , 3k  , 

3x  , 0.01f   along with single sampling plan with parameters 1000N  , 50n   and 

1c   as the reference plan. Figure 2 gives the ASN curves while Figure 3 shows the ATI 

curves of the above mentioned plans. From Figure 1, it can be observed that the SkSP-V 

plan increases the probability of acceptance in the region of principal interest, i.e. for 

good quality levels and maintains the consumer’s risk at poor quality levels compared 

with the single sampling plan. It implies that SkSP-V plan gives comparatively lesser 

producer’s risk while safeguarding the consumer’s interest than the single sampling plan. 

From Figures 2 and 3, it is easily observed that when the lot quality is good, reduction in 

ASN as well as ATI are achieved through the SkSP-V plan over the single sampling 

plans. When the lot quality deteriorates, the ASN and ATI of the SkSP-V plan converge 

with the single sampling plan.  
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Fig. 1: Operating Characteristic (OC) Curves of SkSP-V & Single Sampling Plans 

 

 
Fig. 2: Average Sample Number (ASN) Curves of SkSP-V & Single Sampling Plans 

 

 
Fig. 3: Average Total Inspection (ATI) Curves of SkSP-V & Single Sampling Plans 
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5. CONCLUDING REMARKS 
 

 In this paper, we have considered the problem of designing the SkSP-V sampling 

plan. The two points approach is used to find the design parameters of the SkSP-V plan, 

which is considering the producer’s and the consumer’s simultaneously. Tables for 

showing design parameters of both SkSP-V and single sampling plans have been 

presented and comparison has been made between two plans. The procedure was 

described to use the proposed methodology in practice. It has been proved that the 

proposed plan is better than the single sampling plan in terms of the sample size requires.  
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ABSTRACT 
 

 This paper proposes SkSP-V acceptance sampling plans having group sampling plan 

based on the time truncated life test as the reference plan. The plan is designed for the 

mean life when the lifetime of the submitted product follows the Weibull distribution or 

the generalized exponential distribution. The two points on the operating characteristics 

curve is used to find the plan parameters satisfying the consumer’s and the producer’s 

risks while minimizing the average sample number. Also, the advantage of the proposed 

plan over the single group sampling plan is discussed. The extensive tables are provided 

and examples are given to adopt the plan in practice.  
 

KEY WORDS 
 

 Skip-lot sampling; life tests; group sampling; producer and consumer risks; Weibull 

and generalized exponential distribution. 
 

1. INTRODUCTION 
 

 The skip-lot sampling schemes are widely used to reduce inspection cost when the 

quality of the lot is relatively good. In the skip-lot sampling operational procedure, only 

the fraction of a submitted lot is inspected for the acceptance or rejection decision. Dodge 

(1955) discussed the application of the SkSP-1 sampling plan to bulk material and 

products produced in successive lots. Perry (1973) discussed the application and 

advantages of the skip-lot sampling plan by using the single sampling plan as the 

reference plan. Parker and Kessler (1981) proposed the modified skip-lot sampling plan 

(MSkSP-1) and discussed its applications. For more detail about the applications of these 

types of skip-lot sampling plans, reader may refer to Bennett and Callejas (1980), Wilrich 

(1981), Schneider and Wilrich (1981), Schilling (1982), Cox (1982), Liebesman and 

Sperstein (1983), Liebesman (1987).ISO 2859-3 (2005) and Balamurali et al. (2007). 
 

 Recently, Balamurali and Jun (2011) proposed a new system of skip-lot sampling 

plans having a provision for reducing the normal inspection. This new plan is designated 

as the SkSP-V sampling plan. They discussed the properties of the new plan and provided 

                                                 
*
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some cost models for the optimal design of the SkSP-V plan. Aslam et al. (2012) 

determined the plan parameters of the SkSP-V plan based on two-point on the operating 

characteristic (OC) curve approach at the acceptable quality level (AQL) and the limiting 

quality level (LQL) and developed tables for the selection of parameters. 
 

 Group sampling plans are widely used when the experimenter has the facility to 

install more than one item in a single tester. A lot of the product is accepted if the total 

number of failures is less than the specified acceptance number before the end of 

specified termination time or no failure is recorded before the termination time. As 

mentioned by Jun et al. (2006), Aslam and Jun (2009), Aslam et al. (2009), and Aslam 

et al. (2011), group sampling plans are useful in reducing the cost of the experiment than 

the plan where we inspect/test the item one by one. 
 

 According to the best our knowledge, there is no study on the SkSP-V sampling plan 

by considering the group sampling plan as the reference plan. In this paper, we propose 

the SkSP-V sampling plan having the group sampling plan based on the truncated life test 

as the reference plan, designated as SkGSP-V plan and determine the optimal parameters 

of the proposed plan by considering the consumer’s and the producer’s risks at the same 

time while minimizing the average sample number. Further, the proposed plan is applied 

to Weibull and generalized exponential distributions. The rest of the paper is organized as 

follows: operating procedure of the proposed plan is given in Section 2. The design of the 

proposed plan is given in Section 3. In Section 4, the advantage of the proposed plan is 

discussed. Conclusion of the study is given in the last section.  

 

2. OPERATING PROCEDURE OF SkGSP-V PLAN 
 

 Balamurali and Jun (2011) originally proposed the SkSP-V sampling plan using the 

single sampling plan as the reference. The operating procedure of the proposed SkGSP-V 

sampling plan using the group sampling plan with group size r  can be given similarly as 

follows. 
 

(1) At the outset, start with the normal inspection using the group sampling plan as 

reference plan. During the normal inspection, lots are inspected one by one in the 

order of production or in the order of being submitted to inspection. From each lot 

under inspection, select a random sample of size n and allocate r  items to each of 

g  groups (or testers) so that n rg
 
and put them on test for the time duration of

0t . Accept the lot if the total number of failures from g  groups is smaller than or 

equal to the acceptance number c . Truncate the test and reject the lot as soon as 

the total number of failures from g  groups exceeds before the time 0t . 

(2) When i  consecutive lots are accepted on the normal inspection, discontinue the 

normal inspection and switch to the skipping inspection. 

(3) During the skipping inspection, inspect only a fraction f of the lots selected at 

random. Skipping inspection is continued until sampled lot using the group 

sampling plan as the reference plan is rejected. 

(4) When a lot is rejected on the skipping inspection before k  consecutively sampled 

lots are accepted, revert to the normal inspection as per (1) above. 
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(5) When a lot is rejected after k  consecutive lots have been accepted revert to the 

normal inspection with the reduced clearance number x  as per (6) given below.  

(6) During the normal inspection with clearance number x , lots are inspected one by 

one in the order of being submitted to inspection and continue the inspection until 

a lot is rejected or x  lots are accepted, whichever occurs earlier.  

(7) When a lot is rejected, immediately revert to the normal inspection with clearance 

number i  as per (1) given above. 

(8) When x  lots are accepted, discontinue the normal inspection and switch to the 

skipping inspection as per (3) above. 

(9) Replace or correct all the non-conforming units found with conforming units in 

the rejected lots.  
 

 The proposed plan is characterized by six parameters , , , ,g c i k x  and f  while the 

number of testers r , and the termination time 0t  and ratio of true median ratio and 

specified median ratio which plays an important role are regarded as specified 

parameters. The description of the parameters namely, , ,f i k  and x  involved in the 

SkSP-V sampling scheme can be found in Balamurali and Jun (2011). In general, 

      and  ,   and  (  ) are positive integers. It should be noted that the SkSP-V 

plan with group sampling plan as the reference plan is the generalization of several 

sampling plans. For example, when    , the proposed plan reduces to the original 

SkSP-V plan, when      , the proposed plan reduces to SkSP-2 sampling plan 

having the group sampling plan as the reference plan and when  =1, it reduces to the 

group sampling plan. 

 

3. DESIGN OF SkGSP-V PLAN 
 

 To reduce the number of parameters of the proposed plan, it is assumed that  

k x . According to Balamurali and Jun (2011), the OC function of the SkSP-V 

sampling plan when k x  given by 
 

  

1

2

(1 ) ( )
( )

(1 ) (1 )

i k i k

a i k k i

fP f P fP P P
P p

f P P f P





   


   
           (1) 

 

where P is the lot acceptance probability of the reference plan. The reference plan for the 

proposed plan is the group sampling plan, so P is given by [ see Aslam et al. (2011)]. 
 

   
0

1
c rg ii

i

rg
P p p

i





 
  

 
                (2) 

 

where p is the probability that an item fails by time 0t . 
 

 It is important to note that, all the acceptance schemes are based on statistical 

sampling methods. In these techniques items are picked up at random using the simple 

random sampling technique and put on the test. Statistical sampling may cause the fact 

that good item is selected from the lot and leads to acceptance the lot where the lot may 

also constitute the bad items. The chance of committing this error is called the 
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consumer’s risk. On the other hand, there is a chance of selecting only the bad items in 

the test and may lead to the rejection of the lot where there may be good items in the lot. 

This chance is called the producer’s risk. So, there is a need to propose the sampling plan 

that uses the fraction of items for the inspection using the group sampling plan as the 

reference plan and also minimizes the risks. Let  be the producer risk and   be the 

consumer’s risk. The plan parameters are determined such that the lot acceptance 

probability is less than the consumer’s risk β at LQL and larger than the producer’s 

confidence level     at AQLat the same time by minimizing the average sample 

number (ASN) at LQL. So, the selection of the plan parameters can be done such that the 

following two inequalities should be satisfied. 
 

    (      )                     (3) 
 

    (      )                    (4) 
 

 The ASN of the proposed plan is given [Balamurali and Jun (2011)] as 
 

     (  )  
       (  

      
  )

 (    
      

  ) (   )  
              (5) 

 

3.1 Proposed Plan under Weibull Distribution 
 

 Producers always want to enhance the quality level of the products so that the chance 

of the rejection of the product at the time of inspection can be minimized. The quality 

level is always determined through mean or median ratios. The plan parameters obtained 

by specifying the AQL and LQL do not provide the quality level of the product. So, there 

is a need to propose SkSP-V sampling plan under the time truncated life tests assuming 

that the lifetime of the product follows the Weibull distribution using the median life as 

the quality parameter. The cumulative distribution function (cdf) of the Weibull 

distribution is given by  
 

  ( ; , ) 1 exp( ( / ) )F t t       , 0t               (6) 
 

where   is scale parameter and   is shape parameter of the Weibull distribution. The q-th 

percentile of the Weibull distribution is given by 

  

1
1

ln
1

w
q


  

       

 

 

 Let        for a constant a, where    is specified median life and    be the true 

median life under the Weibull distribution. Then, the probability of failure of an item 

before experiment time    is obtained as 
 

          *  
 (    ⁄ )   (

 

   
)+           (7) 

 

 The plan parameters of the proposed plan when the lifetime of the product follows the 

Weibull distribution are determined and shown in Tables 1-3 for shape parameter 
(       ) respectively and for median ratio (    ⁄            ) and termination time 

ratio (         ). The ASN values at LQL as well as the probability of acceptance 

values at AQL of the selected plans are also reported in tables.  
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Table 1 

Optimal Parameters for the SkGSP-V Plan under the Weibull Distribution with γ=1 

      ⁄  

r=5 r=10 

a=0.5
 

a=1.0
 

a=0.5
 

a=1.0
 

g,c,i,k,f 
ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) 

0.25 

2 7,7,2,1,0.2 31.950 0.9548 4,7,2,1,0.15 18.188 0.9595 4,7,2,1,0.1 38.453 0.9517 2,7,2,1,0.15 18.188 0.9595 

4 3,2,2,1,0.15 13.490 0.9789 2,2,2,1,0.10 9.737 0.9730 2,2,2,1,0.10 19.703 0.9683 1,2,2,1,0.10 9.737 0.9730 

6 2,1,2,1,0.2 9.045 0.9766 1,1,2,1,0.35 4.685 0.9641 1,1,2,1,0.2 9.045 0.9766 1,1,2,1,0.10 9.989 0.9512 

8 2,1,2,1,0.2 9.045 0.9863 1,1,2,1,0.35 4.685 0.9788 1,1,2,1,0.2 9.045 0.9863 1,1,2,1,0.10 9.989 0.9739 

10 1,0,2,1,0.25 4.561 0.9531 1,0,2,1,0.10 4.956 0.9533 1,0,2,1,0.10 9.913 0.9533 1,1,2,1,0.10 9.989 0.9832 

0.10 

2 9,8,2,1,0.10 43.679 0.9563 5,8,2,1,0.10 24.362 0.9527 5,9,2,1,0.1 48.884 0.9601 3,10,2,1,0.10 29.355 0.9556 

4 4,2,2,1,0.10 19.703 0.9683 2,2,2,1,0.10 9.737 0.9730 2,2,2,1,0.10 19.703 0.9683 1,2,2,1,0.10 9.737 0.9730 

6 3,1,2,1,0.10 14.788 0.9729 2,1,2,1,0.10 9.989 0.9516 2,2,2,1,0.10 19.703 0.9889 1,1,2,1,0.10 9.989 0.9516 

8 3,1,2,1,0.10 14.788 0.9847 2,1,2,1,0.10 9.989 0.9739 2,1,2,1,0.10 19.985 0.9724 1,1,2,1,0.10 9.989 0.9739 

10 2,0,2,1,0.10 9.913 0.9533 1,0,2,1,0.10 4.956 0.9533 1,0,2,1,0.10 9.913 0.9533 1,1,2,1,0.10 9.989 0.9832 

0.05 

2 12,11,2,1,0.15 59.508 0.9504 8,13,2,1,0.10 39.867 0.9608 6,11,2,1,0.15 59.508 0.9504 4,13,2,1,0.10 39.867 0.9608 

4 4,2,2,1,0.15 19.812 0.9535 3,3,2,1,0.10 14.958 0.9726 2,2,2,1,0.15 19.812 0.9535 2,4,2,1,0.10 19.994 0.9732 

6 3,1,2,1,0.15 14.866 0.9600 2,1,2,1,0.10 9.989 0.9516 2,2,2,1,0.15 19.812 0.9835 1,1,2,1,0.10 9.989 0.9516 

8 3,1,2,1,0.15 14.866 0.9772 2,1,2,1,0.10 9.989 0.9739 2,1,2,1,0.10 19.985 0.9724 1,1,2,1,0.10 9.989 0.9739 

10 2,0,2,1,0.10 9.913 0.9533 1,0,2,1,0.10 4.956 0.9533 1,0,2,1,0.10 9.913 0.9533 1,1,2,1,0.10 9.989 0.9832 

0.01 

2 18,16,2,1,0.10 89.936 0.9618 10,16,2,1,0.10 49.974 0.9573 9,16,2,1,0.10 89.936 0.9618 5,16,2,1,0.10 49.974 0.9573 

4 8,4,2,1,0.10 39.996 0.9669 4,4,2,1,0.10 19.994 0.9732 4,4,2,1,0.10 39.996 0.9669 2,4,2,1,0.10 19.994 0.9732 

6 6,2,2,1,0.10 29.998 0.9667 3,2,2,1,0.10 14.998 0.9699 3,2,2,1,0.10 29.998 0.9667 2,3,2,1,0.10 19.999 0.9792 

8 4,1,2,1,0.10 19.985 0.9724 3,2,2,1,0.10 14.998 0.9858 2,1,2,1,0.10 19.985 0.9724 2,2,2,1,0.10 19.999 0.9683 

10 4,1,2,1,0.10 19.985 0.9823 3,1,2,1,0.10 14.999 0.9601 2,1,2,1,0.10 19.985 0.9823 2,2,2,1,0.10 19.999 0.9824 
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Table 2 

Optimal Parameters for the SkGSP-V Plan under the Weibull Distribution with γ=2 

      ⁄  

r=5 r=10 

a=0.5
 

a=1.0
 

a=0.5
 

a=1.0
 

g,c,i,k,f 
ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) 

0.25 

2 4,1,2,1,0.15 17.713 0.9593 2,2,2,1,0.10 9.737 0.9730 2,1,2,1,0.15 17.713 0.9593 1,2,2,1,0.10 9.737 0.9730 

4 2,0,2,1,0.25 9.122 0.9717 1,0,2,1,0.10 4.956 0.9746 1,0,2,1,0.25 9.122 0.9717 1,1,2,1,0.15 9.993 0.9897 

6 2,0,2,1,0.25 9.122 0.9879 1,0,2,1,0.10 4.956 0.9898 1,0,2,1,0.25 9.122 0.9878 1,0,2,1,0.10 9.999 0.9780 

8 2,0,2,1,0.40 9.541 0.9891 1,0,2,1,0.20 4.981 0.9889 1,0,2,1,0.40 9.541 0.9891 1,0,2,1,0.10 9.999 0.9885 

10 2,0,2,1,0.60 9.791 0.9896 1,0,2,1,0.30 4.989 0.9895 1,0,2,1,0.60 9.791 0.9896 1,0,2,1,0.15 9.999 0.9893 

0.10 

2 7,2,2,1,0.15 34.124 0.9652 2,2,2,1,0.10 9.737 0.9730 4,2,2,1,0.10 39.547 0.9659 1,2,2,1,0.10 9.737 0.9730 

4 3,0,2,1,0.20 14.674 0.9646 1,0,2,1,0.10 4.956 0.9746 2,0,2,1,0.10 19.826 0.9746 1,1,2,1,0.15 9.993 0.9897 

6 3,0,2,1,0.20 14.674 0.9851 1,0,2,1,0.10 4.956 0.9898 2,0,2,1,0.10 19.826 0.9898 1,0,2,1,0.10 9.999 0.9780 

8 3,0,2,1,0.25 14.754 0.9897 1,0,2,1,0.20 4.981 0.9889 2,0,2,1,0.20 19.922 0.9889 1,0,2,1,0.10 9.999 0.9885 

10 3,0,2,1,0.40 14.876 0.9896 1,0,2,1,0.30 4.989 0.9895 2,0,2,1,0.30 19.954 0.9895 1,0,2,1,0.15 9.999 0.9893 

0.05 

2 8,2,2,1,0.10 39.547 0.9659 3,3,2,1,0.10 14.958 0.9726 4,2,2,1,0.10 39.547 0.9659 2,4,2,1,0.10 19.994 0.9732 

4 4,0,2,1,0.10 19.826 0.9746 1,0,2,1,0.10 4.956 0.9746 2,0,2,1,0.10 19.826 0.9746 1,1,2,1,0.15 9.993 0.9897 

6 4,0,2,1,0.10 19.826 0.9898 1,0,2,1,0.10 4.956 0.9898 2,0,2,1,0.10 19.826 0.9898 1,0,2,1,0.10 9.999 0.9780 

8 4,0,2,1,0.20 19.922 0.9889 1,0,2,1,0.20 4.981 0.9889 2,0,2,1,0.20 19.922 0.9889 1,0,2,1,0.10 9.999 0.9885 

10 4,0,2,1,0.30 19.954 0.9895 1,0,2,1,0.30 4.989 0.9895 2,0,2,1,0.30 19.954 0.9895 1,0,2,1,0.150 9.999 0.9893 

0.01 

2 13,3,2,1,0.10 64.986 0.9523 4,4,2,1,0.10 19.994 0.9732 7,4,2,1,0.10 69.950 0.9779 2,4,2,1,0.10 19.994 0.9732 

4 6,0,2,1,0.10 29.992 0.9573 3,1,2,1,0.10 14.999 0.9847 3,0,2,1,0.10 29.992 0.9573 2,1,2,1,0.10 20.0 0.9724 

6 6,0,2,1,0.10 29.992 0.9842 2,0,2,1,0.10 9.999 0.9780 3,0,2,1,0.10 29.992 0.9842 1,0,2,1,0.10 9.999 0.9780 

8 6,0,2,1,0.15 29.995 0.9873 2,0,2,1,0.10 9.999 0.9885 3,0,2,1,0.15 29.995 0.9873 1,0,2,1,0.10 9.999 0.9885 

10 6,0,2,1,0.20 29.996 0.9894 2,0,2,1,0.15 9.999 0.9893 3,0,2,1,0.20 29.996 0.9894 1,0,2,1,0.15 9.999 0.9893 
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Table 3 

Optimal Parameters for the SkSP-V Plan under the Weibull Distribution with γ=3 

      ⁄  

r=5 r=10 

a=0.5
 

a=1.0
 

a=0.5
 

a=1.0
 

g,c,i,k,f 
ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) 

0.25 

2 5,0,2,1,0.10 22.329 0.9665 1,1,2,1,0.35 4.685 0.9787 3,0,2,1,0.10 28.572 0.9573 1,1,2,1,0.10 9.989 0.9739 

4 4,0,2,1,0.40 19.082 0.9891 1,0,2,1,0.20 4.981 0.9889 2,0,2,1,0.40 19.082 0.9891 1,0,2,1,0.10 9.999 0.9885 

6 6,0,2,1,0.85 29.971 0.9898 1,0,2,1,0.65 4.997 0.9896 3,0,2,1,0.85 29.971 0.9898 1,0,2,1,0.35 9.999 0.9887 

8 14,0,2,1,0.85 69.999 0.9899 2,0,2,1,0.75 9.999 0.9898 7,0,2,1,0.85 69.999 0.9899 1,0,2,1,0.75 9.999 0.9898 

10 27,0,8,7,0.85 135.0 0.9899 4,0,2,1,0.75 20.0 0.9896 14,0,2,1,0.85 140.0 0.9897 2,0,2,1,0.75 20.0 0.9896 

0.10 

2 10,1,2,1,0.15 48.543 0.9831 2,1,2,1,0.10 9.989 0.9739 5,1,2,1,0.15 48.543 0.9831 1,1,2,1,0.10 9.989 0.9739 

4 6,0,2,1,0.25 29.508 0.9897 1,0,2,1,0.20 4.981 0.9889 3,0,2,1,0.25 29.508 0.9897 1,0,2,1,0.10 9.999 0.9885 

6 6,0,2,1,0.85 29.971 0.9898 1,0,2,1,0.65 4.997 0.9896 3,0,2,1,0.85 29.971 0.9898 1,0,2,1,0.35 9.999 0.9887 

8 14,0,2,1,0.85 69.999 0.9899 2,0,2,1,0.75 9.999 0.9898 7,0,2,1,0.85 69.999 0.9899 1,0,2,1,0.75 9.999 0.9898 

10 27,0,8,7,0.85 135.0 0.9899 4,0,2,1,0.75 20.0 0.9896 14,0,2,1,0.85 140.0 0.9897 2,0,2,1,0.75 20.0 0.9896 

0.05 

2 12,1,2,1,0.10 59.325 0.9839 2,1,2,1,0.10 9.989 0.9739 6,1,2,1,0.10 59.325 0.9839 1,1,2,1,0.10 9.989 0.9739 

4 7,0,2,1,0.60 34.946 0.9717 1,0,2,1,0.20 4.981 0.9889 4,0,2,1,0.20 39.844 0.9889 1,0,2,1,0.10 9.999 0.9885 

6 7,0,2,1,0.75 34.973 0.9895 1,0,2,1,0.65 4.997 0.9896 4,0,2,1,0.65 39.979 0.9896 1,0,2,1,0.35 9.999 0.9887 

8 14,0,2,1,0.85 69.999 0.9899 2,0,2,1,0.75 9.999 0.9898 7,0,2,1,0.85 69.999 0.9899 1,0,2,1,0.75 9.999 0.9898 

10 27,0,8,7,0.85 135.0 0.9899 4,0,2,1,0.75 20.0 0.9896 14,0,2,1,0.85 140.0 0.9897 2,0,2,1,0.75 20.0 0.9896 

0.01 

2 16,1,2,1,0.10 79.953 0.9712 3,2,2,1,0.10 14.998 0.9858 8,1,2,1,0.10 79.953 0.9712 2,2,2,1,0.10 19.999 0.9683 

4 11,0,2,1,0.15 54.977 0.9884 2,0,2,1,0.10 9.999 0.9885 6,0,2,1,0.15 59.989 0.9873 1,0,2,1,0.10 9.999 0.9885 

6 11,0,2,1,0.50 54.996 0.9889 2,0,2,1,0.35 9.999 0.9887 6,0,2,1,0.45 59.998 0.9892 1,0,2,1,0.35 9.999 0.9887 

8 14,0,2,1,0.85 69.999 0.9899 2,0,2,1,0.75 9.999 0.9898 7,0,2,1,0.85 69.999 0.9899 1,0,2,1,0.75 9.999 0.9898 

10 27,0,8,7,0.85 135.0 0.9899 4,0,2,1,0.75 20.0 0.9896 14,0,2,1,0.85 140.0 0.9897 2,0,2,1,0.75 20.0 0.9896 
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3.2 Proposed Plan under Generalized Exponential Distribution 
  

 Gupta and Kundu (2009) originally developed the generalized exponential (GE) 

distribution with   as the shape parameter. The cdf of the GE distribution is given by 
 

   (     )  (     ( 
 

 
))
 

             (8) 

 

where δ is the shape parameter and λ is the scale parameter. The q-th percentile of GE 

distribution is given by 
 

   1/ln 1g q      

 

 Aslam et al. (2010) derived the equation of the probability of failure and is given by 

   1/ 01 exp ln(1 ) / ( / )g gp a q


      
 

          (9) 

 

 The optimal plan parameters of the proposed plan when the lifetime of the product 

follows the GE distribution can be determined for two values of the shape parameter 

(     ) and with other parameters are same as used in Tables 1-3. The plan parameters 

along with the probability of acceptance values and the ASN values for the GE 

distribution are reported in Tables 4-5. The probability of acceptance values are 

computed at AQL and at the same the ASN values are calculated at the LQL. 
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Table 4 

Optimal Parameters for the SkGSP-V Plan under the Generalized Exponential Distribution with δ=2 

      ⁄  

r=5 r=10 

a=0.5
 

a=1.0
 

a=0.5
 

a=1.0
 

g,c,i,k,f 
ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) 

0.25 

2 4,2,2,1,0.25 18.266 0.9526 2,3,2,1,0.25 9.167 0.9597 2,2,2,1,0.25 18.266 0.9526 1,3,2,1,0.25 9.167 0.9597 

4 2,0,2,1,0.10 9.257 0.9763 1,0,2,1,0.10 4.956 0.9503 1,0,2,1,0.10 9.257 0.9763 1,1,2,1,0.10 9.990 0.9817 

6 2,0,2,1,0.10 9.257 0.9899 1,0,2,1,0.10 4.956 0.9804 1,0,2,1,0.10 9.257 0.9899 1,0,2,1,0.10 9.999 0.9530 

8 2,0,2,1,0.20 9.655 0.9888 1,0,2,1,0.10 4.956 0.9892 1,0,2,1,0.20 9.655 0.9888 1,0,2,1,0.10 9.999 0.9763 

10 2,0,2,1,0.30 9.796 0.9892 1,0,2,1,0.15 4.972 0.9896 1,0,2,1,0.30 9.796 0.9892 1,0,2,1,0.10 9.999 0.9854 

0.10 

2 7,3,2,1,0.10 34.369 0.9687 3,4,2,1,0.10 14.539 0.9751 4,4,2,1,0.10 38.894 0.9827 2,5,2,1,0.10 19.923 0.9677 

4 3,0,2,1,0.10 14.888 0.9605 1,0,2,1,0.10 4.956 0.9503 2,1,2,1,0.20 19.751 0.9870 1,1,2,1,0.10 9.990 0.9817 

6 3,0,2,1,0.10 14.888 0.9844 1,0,2,1,0.10 4.956 0.9804 2,0,2,1,0.10 19.986 0.9783 1,0,2,1,0.10 9.999 0.9529 

8 2,0,2,1,0.60 9.941 0.9673 1,0,2,1,0.10 4.956 0.9892 1,0,2,1,0.60 9.941 0.9673 1,0,2,1,0.10 9.999 0.9763 

10 2,0,2,1,0.60 9.941 0.9787 1,0,2,1,0.15 4.972 0.9896 1,0,2,1,0.60 9.941 0.9787 1,0,2,1,0.10 9.999 0.9854 

0.05 

2 9,4,2,1,0.10 44.716 0.9730 4,5,2,1,0.10 19.923 0.9677 5,4,2,1,0.10 49.935 0.9592 2,5,2,1,0.10 19.923 0.9677 

4 3,0,2,1,0.10 14.888 0.9605 1,0,2,1,0.10 4.956 0.9503 3,1,2,1,0.10 29.985 0.9858 1,1,2,1,0.10 9.990 0.9817 

6 3,0,2,1,0.10 14.888 0.9844 1,0,2,1,0.10 4.956 0.9804 2,0,2,1,0.10 19.986 0.9783 1,0,2,1,0.10 9.999 0.9529 

8 3,0,2,1,0.15 14.929 0.9673 1,0,2,1,0.10 4.956 0.9892 2,0,2,1,0.10 19.986 0.9883 1,0,2,1,0.10 9.999 0.9763 

10 3,0,2,1,0.20 14.950 0.9891 1,0,2,1,0.15 4.972 0.9896 2,0,2,1,0.15 19.991 0.9890 1,0,2,1,0.10 9.999 0.9854 

0.01 

2 12,5,2,1,0.10 59.971 0.9657 5,6,2,1,0.10 24.988 0.9609 6,5,2,1,0.10 59.971 0.9657 3,7,2,1,0.10 29.998 0.9548 

4 6,1,2,1,0.10 29.985 0.9858 3,1,2,1,0.10 14.999 0.9560 3,1,2,1,0.10 29.985 0.9858 2,2,2,1,0.10 19.999 0.9803 

6 4,0,2,1,0.10 19.986 0.9783 2,0,2,1,0.10 9.999 0.9529 2,0,2,1,0.10 19.986 0.9783 1,0,2,1,0.10 9.999 0.9529 

8 4,0,2,1,0.10 19.986 0.9883 2,0,2,1,0.10 9.999 0.9763 2,0,2,1,0.10 19.986 0.9883 1,0,2,1,0.10 9.999 0.9763 

10 4,0,2,1,0.15 19.991 0.9890 2,0,2,1,0.10 9.999 0.9854 2,0,2,1,0.15 19.991 0.9890 1,0,2,1,0.10 9.999 0.9854 
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Table 5 

Optimal Parameters for the SkGSP-V Plan under the Generalized Exponential Distribution with δ=3 

      ⁄  

r=5 r=10 

a=0.5
 

a=1.0
 

a=0.5
 

a=1.0
 

g,c,i,k,f 
ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) g,c,i,k,f 

ASN 

at p2 
Pa(p1) 

0.25 

2 4,1,2,1,0.15 17.959 0.9728 2,2,2,1,0.10 9.737 0.9712 2,1,2,1,0.15 17.959 0.9728 1,2,2,1,0.10 9.737 0.9712 

4 2,0,2,1,0.25 9.188 0.9853 1,0,2,1,0.10 4.956 0.9801 1,0,2,1,0.25 9.188 0.9853 1,0,2,1,0.10 9.999 0.9521 

6 2,0,2,1,0.55 9.765 0.9897 1,0,2,1,0.20 4.981 0.9872 1,0,2,1,0.55 9.765 0.9897 1,0,2,1,0.10 9.999 0.9866 

8 3,0,2,1,0.85 14.987 0.9895 1,0,2,1,0.35 4.991 0.9899 2,0,2,1,0.65 19.991 0.9892 1,0,2,1,0.20 9.999 0.9882 

10 6,0,2,1,0.80 29.999 0.9895 1,0,2,1,0.65 4.997 0.9899 3,0,2,1,0.80 29.999 0.9895 1,0,2,1,0.35 9.999 0.9890 

0.10 

2 5,1,2,1,0.15 24.334 0.9574 2,2,2,1,0.10 9.737 0.9712 3,1,2,1,0.10 29.704 0.9569 1,2,2,1,0.10 9.737 0.9712 

4 3,0,2,1,0.15 14.594 0.9865 1,0,2,1,0.10 4.956 0.9801 2,0,2,1,0.10 19.852 0.9877 1,0,2,1,0.10 9.999 0.9521 

6 3,0,2,1,0.40 14.891 0.9887 1,0,2,1,0.20 4.981 0.9872 2,0,2,1,0.30 19.961 0.9887 1,0,2,1,0.10 9.999 0.9866 

8 3,0,2,1,0.85 14.987 0.9895 1,0,2,1,0.35 4.991 0.9899 2,0,2,1,0.65 19.991 0.9892 1,0,2,1,0.20 9.999 0.9882 

10 6,0,2,1,0.80 29.999 0.9895 1,0,2,1,0.65 4.997 0.9899 3,0,2,1,0.80 29.999 0.9895 1,0,2,1,0.35 9.999 0.9890 

0.05 

2 6,1,2,1,0.10 29.704 0.9569 3,3,2,1,0.10 14.958 0.9704 3,1,2,1,0.10 29.704 0.9569 2,4,2,1,0.10 19.994 0.9708 

4 4,0,2,1,0.10 19.852 0.9877 1,0,2,1,0.10 4.956 0.9801 2,0,2,1,0.10 19.852 0.9877 1,0,2,1,0.10 9.999 0.9521 

6 4,0,2,1,0.30 19.961 0.9886 1,0,2,1,0.20 4.981 0.9872 2,0,2,1,0.30 19.961 0.9886 1,0,2,1,0.10 9.999 0.9866 

8 4,0,2,1,0.65 19.991 0.9892 1,0,2,1,0.35 4.991 0.9899 2,0,2,1,0.65 19.991 0.9892 1,0,2,1,0.20 9.999 0.9882 

10 6,0,2,1,0.80 29.999 0.9895 1,0,2,1,0.65 4.997 0.9899 3,0,2,1,0.80 29.999 0.9895 1,0,2,1,0.35 9.999 0.9890 

0.01 

2 10,2,2,1,0.10 49.971 0.9637 4,4,2,1,0.10 19.994 0.9708 5,2,2,1,0.10 49.971 0.9637 2,4,2,1,0.10 19.994 0.9708 

4 6,0,2,1,0.10 29.994 0.9806 2,0,2,1,0.10 9.999 0.9521 3,0,2,1,0.10 29.994 0.9806 1,0,2,1,0.10 9.999 0.9521 

6 6,0,2,1,0.20 29.997 0.9885 2,0,2,1,0.10 9.999 0.9866 3,0,2,1,0.20 29.997 0.9885 1,0,2,1,0.10 9.999 0.9866 

8 6,0,2,1,0.45 29.999 0.9889 2,0,2,1,0.20 9.999 0.9882 3,0,2,1,0.45 29.999 0.9889 1,0,2,1,0.20 9.999 0.9882 

10 6,0,2,1,0.80 29.999 0.9895 2,0,2,1,0.35 9.999 0.9890 3,0,2,1,0.80 29.999 0.9895 1,0,2,1,0.35 9.999 0.9890 
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4. COMPARISONS OF PLANS 
 

 In order to show the efficiency of the proposed plan compared with the single group 

sampling plan when the lifetime of the product follows the Weibull distribution and GE 

distribution, we determine the sample size for reference plan by using          , 

       and shape parameter 2 and placed in Table 6.  

 

Table 6 

Comparison of Plans in sample size when         ,        

Median Ratio 
Proposed Plan 

(ASN) 

Weibullwith γ=2 

( ) 
GE with δ=2 

( ) 

2 18.266 40 35 

4 9.257 20 15 

6 9.257 10 15 

8 9.655 10 10 

10 9.796 10 10 

 

 From Table 6, we can see that for the entire median ratio, the proposed SkGSP-V 

sampling plan provides the lesser ASN than the single group sampling plan under both 

the Weibull distribution and GE distribution. This shows that the SkGSP-V sampling 

plan is more economical than the single group sampling plan. 

 

5. APPLICATION OF PROPOSED PLAN 
 

 This section discusses the applications of the proposed plan under both Weibull and 

GE distributions. 

 

5.1 Weibull Distribution 
  

 Suppose that a manufacturer of the energy saver bulbs would like to adopt an 

SkGSP-V plan to decide whether to accept or reject the lot of submitted products. The 

minimum mean life required for the product is 0  8000 hrs. Thus a lot should be 

accepted if there is enough evidence that the true mean life of a product exceeds 8000 

hrs. The producer’s risk is opted as 5%   when the true mean life is 16000 and the 

consumer’s risk is chosen as  =0.25when the true mean life is 8000. Now 
0/ 2w   . A 

time truncated life test using the capacity of 5 items at a tester is conducted. The test time 

duration is limited by 4000 hrs. That is 0.5a  . The life time the product is assumed to 

follow a Weibull distribution. The failure data of 10 products are obtained from previous 

lots as 507, 720, 892, 949, 1031, 1175, 1206, 1428, 1538, 1983[Aslam 

et al. (2011)]. The maximum likelihood estimator of the shape parameter is obtained as 

ˆ 2.87  and we assume that γ=3. So for the specified requirements such as 5r  , 3  , 

0.5a  , 
0/ 2w   , 5%   and 10%  , the optimal parameters of the SkGSP-V 

plan are determined from Table 3 as 5g  , 0c  , 2i  , 1k   and 0.1f  . 
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5.2 Generalized Exponential Distribution 
  

 Suppose that an experimenter wants to implement the group sampling plan with 

5r   to make a decision about acceptance or rejection of the submitted products. The 

specified median life of the product is 0 1000   and the test duration is 1000 hrs. The 

producer’s risk is 5% at 0/ 2g   and the consumer’s risk is 10%  . We consider the 

data provided by Wood (1996) which represents the failure time of software in hours. 

The failure time represents the time from the starting of the execution of the software 

until the software is failed. The data are 519, 968, 1430, 1893, 2490, 3058, 3625, 4422 

and 5218. Aslam et al. (2010) have shown that the generalized exponential distribution is 

a good fit to the abovementioned data. The maximum likelihood estimator of the 

parameters δ and λ are 2.65 and 0.6547 respectively. Now let us assume that ˆ 3  . For 

specified 5r  , 1a  , the optimal parameters of the proposed plan can be determined 

from Table 5 as 2g  , 2c  , 2i  , 1k   and 0.1f  . For this obtained plan 

parameters, the SkGSP-V plan is operated as follows.  

(1) At the outset, start with normal inspection using the group sampling plan with 

parameters (2, 2) as the reference plan. During the normal inspection, lots are 

inspected one by one in the order of production or in the order of being submitted 

to inspection. From each lot under inspection, select a random sample of size 

10n   and allocate 5 items to each of 2 groups (or testers) and put them on test 

for the time duration of 1000 hrs. Accept the lot if the total number of failures 

from 2 groups is smaller than or equal to 2. Truncate the test and reject the lot as 

soon as the total number of failures reaches 2 by the time 1000 hrs. 

(2) When 2 consecutive lots are accepted on normal inspection, discontinue the 

normal inspection and switch to skipping inspection. 

(3) During skipping inspection, inspect only a fraction      of the lots selected at 

random. Skipping inspection is continued until sampled lot (using single group 

sampling plan as the reference plan) is rejected. 

(4) When a lot is rejected on skipping inspection before 1 sampled lot is accepted, 

revert to normal inspection as per (1) above. 

(5) When a lot is rejected after 1 lot has been accepted revert to normal inspection 

with reduced clearance number 1 as per (6) given below.  

(6) During normal inspection with clearance number 1, lots are inspected one by one 

in the order of being submitted to inspection and continue the inspection until a lot 

is rejected or 1 lot is accepted whichever occurs earlier.  

(7) When a lot is rejected, immediately revert to normal inspection with clearance 

number 2 as per (1) given above. 

(8) When 1 lot is accepted, discontinue normal inspection and switch to skipping 

inspection as per (3) above. 

(9) Replace or correct all the non-conforming units found with conforming units in 

the rejected lots.  
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6. CONCLUSIONS 
 

 In this paper, we have proposed an SkSP-V sampling plan with group sampling plan 

as the reference plan and the new plan is designated as SkGSP-V. Tables have also been 

constructed for the easy selection of the optimal plan parameters when the lifetime of the 

product follows the Weibull distribution and GE distribution. The proposed plan 

performs better than the reference plan in terms of sample size. The tables given in the 

paper can be used to select the plan parameters of SkGSP-V plan for testing of electronic 

products. The proposed plan can be extended by using two stage group sampling plan as 

the reference plan as future research.  
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ABSTRACT 
 

 In this paper, repetitive types of group acceptance sampling plans are proposed when 

the lifetime of the product follows the Weibull distribution or the generalized exponential 

distribution. Quality characteristics are considered in terms of percentile lifetimes. Plan 

parameters are found by satisfying the producer’s risk and consumer’s risk at the same 

time while minimizing the average sample number. Extensive tables are given for 

practical use. Two examples are given to illustrate the proposed plan in real world. 

 

KEY WORDS 
 

 Repetitive acceptance sampling plan; the Weibull distribution; the generalized 

exponential distribution; group sampling plan. 

 

1. INTRODUCTION 
 

 With the availability of latest machinery to manufacture the products, various quality 

activities are required in industries. Quality assurance is to guarantee the high quality of the 

products during the manufacturing the products. Quality management systems are 

organizational efforts including policies, plans and supporting infrastructure for quality 

management. Hazard analysis and critical control points have been used in food industry to 

minimize the dangers. Six sigma techniques are used to reduce the causes of defects. Even 

control charts are also available to help the producer and consumer to maintain the quality 

of products according to specifications. The methods described above are not helpful to 

producers when he want to inspect every incoming part to ensure quality. Producers want to 

avoid the heavy losses in time, cost and reputation in market. At this stage, when the final 

products are ready, only the acceptance sampling tools help the producer to ensure the 

quality of the product and maintain the competitiveness in the market. 
 

 Producers normally manufacture the product under the same environment and 

machinery, so the quantity of products built up under the same conditions is known as a 

lot of the product. For inspection of the product a random sample is selected from this lot. 

As the decision is made on the basis of a random sample selected from the lot, there is a 

chance that a bad lot is accepted or a good lot is rejected. These probabilities are known 

as type-1 error (producer’s risk) and type-2 error (consumer’s risk), respectively. More 

                                                 
*
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efficient sampling plans not only reduce the cost of the inspection but provide the 

protection to consumer and producer by minimizing these risks. It is very true that many 

plans are available in the literature including single sampling plans, double sampling 

plans and sequential plans but there is still need to study plans which can reduce the 

sample size further for the inspection purposes. A repetitive sampling plan is proposed by 

Sherman (1965), who argued that this plan provides the optimal sample size as compared 

to single sampling plan and its operation is similar to the sequential sampling plans. 

Later, Balamurali and Jun (2006) developed the variable repetitive plans for the normal 

distribution. They verified the Sherman’s argument of efficiency.  
 

 As mentioned earlier, the main purpose of an acceptance sampling plan is to provide the 

optimal parameters such as sample size to save the cost and time of the experiment. In 

single plans, a single item is installed to a single tester, which requires the much time, 

efforts and increased cost of the experiment. On the other hand, group plans are 

implemented when the experimenter has the facility to put multiple items in a single tester. 

So, these plans can save the cost and time of the experiment than the ordinary sampling 

plans. Group acceptance sampling plans have been proposed by Aslam and Jun (2009), 

Aslam et al. (2010). Lio et al. (2010) proposed the ordinary acceptance sampling plan using 

the Burr type XII percentiles. Recently, Aslam et al. (2011) proposed the improved single 

and two stages group plans for the Weibull distribution. Other applications of group 

sampling plans can be seen in Aslam et al. (2012) and Aslam et al. (2013). 
 

 The Weibull distribution is widely used in the area of acceptance sampling plans and 

reliability analysis. Recently, Aslam and Jun (2009) proposed the group acceptance 

sampling plans using the Weibull distribution. Also, the generalized exponential 

distribution is a possible alternative of the Weibull and gamma distributions. Gupta and 

Kundu (1999) originally derived the generalized exponential distribution with two 

parameters. More recently, Aslam et al. (2010) developed the ordinary acceptance 

sampling plans using the generalized exponential distributions. Aslam et al. (2011) 

proposed the two group plans using the generalized exponential distribution. Properties of 

the generalized exponential distribution can be seen in Gupta and Kundu (2007). 
 

 According to author’s best knowledge, no attempt has been made to study improved 

group sampling plans using the repetitive scheme for the time truncated experiment for 

assuring the percentile life as quality parameter. According to Lio et al. (2010) sampling 

plans based on the population mean may not catch the specific percentile of product 

lifetime required for engineering design considerations. When the quality of interest is a 

low percentile, a sampling plan based on the mean could accept the lot having the low 

percentile below the pre-specified standard required by the customer. In this paper, we 

will propose a repetitive group sampling plan for the Weibull and the generalized 

exponential distributions using the percentiles life as quality parameter. In summary, the 

main objective of this paper is two-fold: one is to improve a group sampling plan by 

incorporating the repetitive scheme and the other is to develop a sampling plan for 

assuring the percentile life. The rest of the paper is set as: The design of the proposed 

plan under the two distributions is given in Section 2. Some examples are given in 

Section 3. In the last section, concluding remarks are given. 
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2. THE REPETITIVE TYPE OF GROUP ACCEPTANCE  

SAMPLING PLANS 
 

 To design the proposed plan we will use the percentile life including the median as 

the quality parameter. According to Gupta (1962), for the skewed distribution the median 

represents a better quality parameter than the mean. Let   be the quality parameter of 

interest (such as p-th percentile life) of a certain product. We want to formulate the null 

and alternative hypotheses       
  and       

 . Here    is the specified value. 

The submitted lot of products is considered to be good if null hypothesis is accepted on 

the basis of information obtained from the sample selected from the lot and rejected if the 

sample information does not support it. These hypotheses can be tested using the 

following proposed plan: 
 

Step 1 Take a random sample of size n  from a lot and distribute   items to   groups 

so that       and put them on life test for a fixed experiment time 0t . 

Step 2 Accept the lot if the total number of failures from all groups,  , is smaller 

than or equal to   . Truncate the experiment and reject the lot as soon as the 

number of failures exceeds   . 

Step 3 If the total number of failures from all groups is between    and    

( 1 2c D c  ), then go to Step-1 and repeat the experiment. 
 

 There are three parameters of the above mentioned plan namely,  ,    and   . Here,  

  is the prespecified value, which depends on the type of testers. The experiment time 0t  
is also specified in terms of the multiple of the target percentile life. The proposed plan is 

the extension of some existing acceptance sampling plans. This plan reduces to the 

attribute repetitive sampling plan considered by Sherman (1965) if     and it reduces 

to the group acceptance sampling plan if      .  
 

 Let   be the cumulative distribution function (cdf) of the underlying distribution. 

Then the probability that an item fails before the end of the experiment time    is given 

by 

     (  )                  (1) 
 

 For a particular distribution such as Weibull or generalized exponential distribution,  

p can be expressed by the quality characteristic of interest like p-th percentile in our case. 

The experiment duration will be expressed by the multiple of the specified percentile 

value. 
 

 The operating characteristics function for the repetitive group plan given by Sherman 

(1965) is as 
 

    ( )  
  

     
                     (2) 

 

 In Eq. (2),    is the probability of lot acceptance based on a single sample and    is 

the probability of lot rejection on the basis of a single sample. These probabilities are 

given as 
 

     ∑ (
  
 
)   

  
   (    )                 (3a) 
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       ∑ (
  
 
)   

  
   (    )               (3b) 

 

 As mentioned above, three parameters are involved in the proposed plan. To find 

these three parameters we will consider two points on operating characteristics (OC) 

curve. We will specify the producer’s and consumer’s risks such that lot acceptance 

probabilities at these two points equal to these specified risks. 
 

 Producer desires that the lot acceptance probability should be larger than his 

confidence level     and consumer’s demands that lot acceptance probability should 

be less than or equal to his risk  . Let the acceptable quality level (AQL) be    and the 

limiting quality level (LQL) be   , which are the specified values of failure probability of 

an item corresponding to producer’s and consumer’s risks, respectively.  
 

 It is important to note that we may have several combinations which satisfy the above 

mentioned conditions. So, we should select the combination of the plan parameters which 

leads to the smallest average sample number (ASN) among all the existing plan 

parameters. We expect that the ASN at the LQL is larger than the ASN at the AQL, so it 

would be reasonable to minimize the ASN at the LQL. The ASN for our proposed 

repetitive type of group acceptance sampling plan is given by 
 

  
2 1

0 0

1 (1 ) (1 )
c c

i rg i i rg i

i i

rg
ASN

rg rg
p p p p

i i

 

 


   

      
   

 

      (4) 

 

 Then, for specified values of AQL and LQL, the design parameters (g,      ) of the 

proposed plan can be found using the following optimization problem. 
 

Minimize ASN 
 

 Subject to 
 

    (  )                      (5a) 
 

    (  )                     (5b) 
 

                         (5c) 

 

2.1 Proposed Plan under the Weibull Distribution  
 

 Suppose that life time of a submitted product follows the Weibull distribution with 

the following cumulative distribution function (cdf).  
 

    1 exp( ( / ) )F t t     , 0t               (6) 
 

where  is the known shape parameter and   is the unknown scale parameter. If the 

shape parameters are unknown it can be estimated from the previous failure time data. It 

is important to note that the cdf of the Weibull distribution depends on   only through

/t  .The p-th percentile of the Weibull distribution is given by 
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   p
   (  (

 

   
))

  ⁄

               (7) 

 

 The failure probability in Eq. (1) for the Weibull distribution is obtained by 
 

    01 exp /Wp t


                  (8) 

 

 It is more convenient to express the experiment time    as the multiple of specified 

percentile life 0  and to express   in terms of 0 . Here      
  is the experiment 

time. So, the failure probability in Eq. (8) becomes  
 

          *  
 (  

   ⁄ )
  
  (

 

   
)+          (9) 

 

 Consumer wants the percentile life of the submitted product to be longer than the 

specified life 0 . So, the consumer’s risk may be evaluated at 0W
p   . As acceptance 

sampling plans asserts pressure on producer to enhance the quality level of his product, 

producer wants the plan which not only provides him the protection from rejecting good 

lots but also tell him the probability of acceptance at various quality levels. So we will 

use various percentile ratios (that is, 0/W
p  ) when considering the producer’s risk. 

 

 Tables 1-3 are constructed under the Weibull distributions with  =2 for 10%, 20% 

and 50% percentiles. Many combinations are considered: two cases for the group size 

(r=5, 10), two cases for the termination ratio (a=0.5, 1.0) and two cases for the 

consumer’s risk (  =0.25, 0.10). Also, three cases of the percentile ratio are considered 

(
0/W

p  =2, 4, 6). We chose the ratio like this just for convenience. Any value of 

parameter ratio can be selected to find the plan parameters of the proposed plan. Ratio=1 

means that the true percentile life is just same as the target percentile life to be assured. 

So, for lower ratio cases the acceptance conditions (acceptance numbers and sample size) 

become larger. An EXCEL program is available from the authors upon request. The 

producer’s risk is fixed as 0.05.  

 

Table 1: Proposed plans under the Weibull (  =2) for 10% percentiles 

  0/W
p   

5r   10r   

0.5a   1.0a   0.5a   1.0a   

 1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN  

0.25 

2 0,2,17 174.5 1,2,6 38.8 0,2,9 176.6 2,3,5 58.0 

4 0,1,14 99.4 0,1,4 27.4 0,1,7 99.4 0,1,2 27.4 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

0.10 

2 1,3,34 239.4 1,3,9 62.2 1,3,17 239.4 2,4,6 76.7 

4 0,1,20 123.7 0,1,5 31.2 0,1,10 123.7 0,1,3 34.9 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

(note) (↑) shows the same values of plan parameters apply as in the above cell. 
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Table 2: Proposed plans for the Weibull (  =2) for percentiles 20% 

  0/W
p   

5r   10r   

0.5a   1.0a   0.5a   1.0a   

 1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN  

0.25 

2 0,2,8 83.7 0,2,2 23.3 0,2,4 83.7 0,2,1 23.3 

4 0,1,7 48.9 0,1,2 13.7 0,1,4 53.1 0,1,1 13.7 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

0.10 

2 1,3,16 114.1 0,3,3 38.8 1,3,8 114.1 1,4,3 39.7 

4 0,1,10 60.7 0,1,3 17.3 0,1,5 60.7 0,1,2 21.2 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

(note) (↑) shows the same values of plan parameters apply as in the above cell. 

 

Table 3: Proposed plans for the Weibull (  =2) for percentiles 50% 

  0/W
p   

5r   10r   

0.5a   1.0a   0.5a   1.0a   

 1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN  

0.25 

2 0,2,3 29.4 0,3,1 22.9 0,3,2 46.7 2,5,1 23.2 

4 0,1,3 19.0 0,1,1 5.9 0,1,2 22.7 1,2,1 10.5 

6 ↑ ↑ ↑ ↑ ↑ ↑ 0,1,1 ↑ 

0.10 

2 0,3,4 46.7 1,5,2 25.8 0,3,2 46.7 1,5,1 25.8 

4 0,1,3 19.0 0,1,1 5.9 0,1,2 22.7 1,2,1 10.5 

6 ↑ ↑ ↑ ↑ ↑ ↑ 0,1,1 ↑ 

(note) (↑) shows the same values of plan parameters apply as in the above cell. 

 

 From these tables we can observe the following trends: as the percentile changes from 

10% to 50% while other conditions remain the same, the number of groups reduces. For 

example, when  =0.25, 0/W
p  =2,  =0.5 and  =5, the number of groups required 

reduces from 17 to 8 as the percentile changes from 10% to 20%.  
 

 Similarly, Tables 4-6 are constructed under the Weibull distributions with  =3 for 

10%, 20% and 50% percentiles. 

 

Table 4: Proposed plans for the Weibull (  =3) for percentiles 10% 

  0/W
p   

5r   10r   

0.5a   1.0a   0.5a   1.0a   

 1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN  

0.25 

2 0,1,27 193.5 0,1,4 27.4 0,1,14 198.2 0,1,2 27.4 

4 ↑ 193.5 ↑ 27.4 ↑ ↑ ↑ ↑ 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

0.10 

2 0,2,43 362.1 1,2,8 46.6 0,2,22 363.3 1,2,4 46.6 

4 0,1,39 243.2 0,1,5 31.2 0,1,20 247.0 0,1,3 34.9 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

(note) (↑) shows the same values of plan parameters apply as in the above cell. 
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Table 5: Proposed plans for the Weibull (  =3) for percentiles 20% 

  0/W
p   

5r   10r   

0.5a   1.0a   0.5a   1.0a   

 1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN  

0.25 

2 0,1,13 92.9 0,1,2 13.7 0,1,7 97.4 0,1,1 13.7 

4 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

0.10 

2 0,2,21 172.8 1,2,4 23.2 1,2,15 173.7 1,2,2 23.2 

4 0,1,19 117.3 0,1,3 17.3 0,1,10 121.0 0,1,2 21.2 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

(note) (↑) shows the same values of plan parameters apply as in the above cell. 

 

Table 6: Proposed plans for the Weibull (  =3) for percentiles 50% 

  0/W
p   

5r   10r   

0.5a   1.0a   0.5a   1.0a   

 1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN  

0.25 

2 0,1,5 33.8 0,2,1 9.4 1,2,4 50.0 1,2,3 11.3 

4 ↑ 33.8 0,1,1 5.9 0,1,3 37.6 0,1,1 10.1 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

0.10 

2 0,2,7 57.1 0,2,1 9.4 1,2,5 57.6 1,2,3 11.3 

4 0,1,6 37.6 0,1,1 5.9 0,1,3 37.6 0,1,1 10.1 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

(note) (↑) shows the same values of plan parameters apply as in the above cell. 
 

 From these tables, it can be seen that as the shape parameter increases from 2 to 3, the 
number of groups as well as the ASN increase when all other values remain the same. It 
is also observed that as the termination ratio increases from 0.5 to 1.0, we noted the 
decreasing trend in number of groups and ASN. It is also observed that as the percentile 
ratio increases from 2 to 10, the number of groups and the ASN decrease. It is also noted 
that when the percentile ratio is larger than two for all cases of consumer’s risk and 

termination ratios,   =0 and   =1. 
 

2.2 Under the Generalized Exponential Distribution 
 The cdf of the generalized exponential distribution is given by 
 

   ( ; , ) 1 exp( / )F t t


                    (10) 
 

where   is the known shape parameter and   is the scale parameter of the generalized 

exponential distribution. Note that the p-th percentile of the generalized exponential 
distribution is given by 
 

   1/ln 1G
p p                     (11) 

 

 Again, it is more convenient to express the experiment time    as the multiple of the 

specified percentile life 0  and to express   in terms of 0 . So, the probability of 

failure   in the generalized exponential distribution is given as 
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      1/ 01 exp ln 1 / /G
G pp a p


     

  
          (12) 

 

 Tables 7-9 are constructed under the generalized exponential distribution with  =2 

for 10%, 20% and 50% percentiles. The table setting is just same as for the Weibull 
distributions.  

 

Table 7: Proposed plans for the GED (  =2) for percentiles 10%  

  0/W
p   

5r   10r   

0.5a   1.0a   0.5a   1.0a   

 1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN  

0.25 

2 0,2,15 152.1 1,3,7 59.2 2,3,15 180.6 1,3,4 60.9 

4 0,1,12 85.6 0,1,4 27.4 0,1,6 85.6 0,1,2 27.4 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

0.10 

2 1,3,29 206.9 2,4,12 76.7 0,3,11 241.8 2,4,6 76.7 

4 0,1,17 106.0 0,1,5 31.2 0,1,9 109.7 0,1,3 34.9 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

(note) (↑) shows the same values of plan parameters apply as in the above cell. 

 

Table 8: Proposed plans for the GED (  =2) for percentiles 20% 

  0/W
p   

5r   10r   

0.5a   1.0a   0.5a   1.0a   

 1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN  

0.25 

2 2,3,13 79.6 0,2,2 23.3 2,3,7 83.6 0,2,1 23.3 

4 0,1,6 41.3 0,1,2 13.7 0,1,3 41.3 0,1,1 13.7 

6 ↑ 41.3 ↑ 13.7 ↑ 41.3 ↑ 13.7 

0.10 

2 0,3,13 110.4 0,3,3 38.8 0,3,5 110.4 0,4,2 52.4 

4 0,1,8 49.1 0,1,3 17.3 0,1,4 49.1 1,2,2 23.2 

6 ↑ 49.1 ↑ 17.3 ↑ 49.1 0,1,2 21.2 

(note) (↑) shows the same values of plan parameters apply as in the above cell. 

 

Table 9: Proposed plans for the GED (  =2) for percentiles 50% 

  0/W
p   

5r   10r   

0.5a   1.0a   0.5a   1.0a   

 1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN  

0.25 

2 0,3,3 35.7 0,3,1 22.9 0,4,2 47.0 2,6,1 44.1 

4 0,1,2 13.3 0,2,1 9.4 0,1,1 13.3 2,3,1 11.3 

6 ↑ ↑ 0,1,1 5.9 ↑ ↑ 1,2,1 10.5 

0.10 

2 0,3,3 35.7 1,6,2 54.8 0,4,2 47.0 1,6,1 54.8 

4 0,1,3 17.0 0,2,1 9.4 1,2,2 22.7 1,2,3 11.3 

6 ↑ ↑ 0,1,1 5.9 0,1,2 21.0 1,1,2 10.5 

(note) (↑) shows the same values of plan parameters apply as in the above cell. 
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 From these tables for the generalized exponential distribution with shape parameter 2 

we can observe that the number of groups reduces when the percentile changes from 10% 

to 50%.  
 

 Similarly, Tables 10-12 are constructed under the generalized exponential 

distributions with  =3 for 10%, 20% and 50% percentiles. 

 

Table 10: Proposed plans for the GED (  =3) for percentiles 10% 

  0/W
p   

5r   10r   

0.5a   1.0a   0.5a   1.0a   

 1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN  

0.25 

2 0,1,19 134.6 1,2,6 38.8 0,1,10 139.1 1,2,3 38.8 

4 ↑ 134.6 0,1,4 27.4 ↑ ↑ 0,1,2 27.4 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

0.10 

2 0,2,30 247.0 1,2,8 46.6 0,2,15 247.0 1,2,4 46.6 

4 0,1,27 167.1 0,1,5 31.2 0,1,14 170.9 0,1,3 34.9 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

(note) (↑) shows the same values of plan parameters apply as in the above cell. 

 

Table 11: Proposed plans for the GED (  =3) for percentiles 20% 

  0/W
p   

5r   10r   

0.5a   1.0a   0.5a   1.0a   

 1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN  

0.25 

2 0,1,8 57.1 1,2,3 19.5 0,1,4 57.1 0,2,1 23.3 

4 ↑ 57.1 0,1,2 13.7 ↑ 57.1 0,1,1 13.7 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

0.10 

2 1,2,18 104.8 1,3,5 31.5 1,2,9 104.8 0,3,2 33.3 

4 0,1,12 73.0 0,1,3 17.3 0,1,6 73.0 0,1,2 21.2 

6 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 

(note) (↑) shows the same values of plan parameters apply as in the above cell. 

 

Table 12: Proposed plans for the GED (  =3) for percentiles 50% 

  0/W
p   

5r   10r   

0.5a   1.0a   0.5a   1.0a   

 1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN   1 2, ,c c g  ASN  

0.25 

2 1,2,4 25.2 0,3,1 22.9 1,3,3 38.7 1,2,5 23.2 

4 0,1,3 18.8 0,1,1 5.9 0,1,2 22.5 1,2,1 10.5 

6 ↑ ↑ ↑ ↑ ↑ ↑ 0,1,1 10.1 

0.10 

2 1,3,6 38.7 1,5,2 25.8 1,3,3 38.7 1,5,1 25.8 

4 0,1,3 18.8 0,1,1 5.9 0,1,2 22.5 1,2,1 10.5 

6 ↑ ↑ ↑ ↑ ↑ ↑ 0,1,1 10.1 

(note) (↑) shows the same values of plan parameters apply as in the above cell. 
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 If the shape parameter changes from 2 to 3, we note increasing trend in the number of 

groups for the generalized distribution case. It is observed that there is a decreasing trend 

in the number of groups and ASN as the termination time increases or the percentile ratio 

increases by keeping all the other values at the constant level. It is also noted that the plan 

parameters are determined by    = 0 and    = 1 at a larger level of percentile ratio for all 

cases of consumer’s risk and termination time. It is interesting to note that the number of 

groups required decreases when the underlying distribution changes from the Weibull to 

generalized exponential distribution. 

 

3. ILLUSTRATIVE EXAMPLES 
 

 In this section, we will give some examples to use the proposed plans in industry.  
 

Example-1 

 Suppose that manufacturer wants to adopt the proposed group plan with     for 

assuring that the median life of the submitted products is at least 1000 hours when 

        and    0.05 at the median ratio = 4. He wants to run this experiment 500 

hours. The lifetime of the product is known to follow the Weibull distribution with 

unknown shape parameter. To estimate the shape parameter of the Weibull distribution 

we collected the failure data from 10 products of the previous lots as follows: 507, 720, 

892, 949, 1031, 1175, 1206, 1428, 1538, 2083. Then, the maximum likelihood estimate 

(MLE) of the shape parameter is obtained by  ̂ = 2.883 [Aslam et al. 2010]. So, let us 

assume that  ̂ = 3. 
 

 From Table 6, plan parameters in case of the proposed group sampling are   =0,  

  =1 and  =5. This plan is implemented as: select 25 items from the lot and  

make 5 groups. Accept the lot if no failure occurs before 500 hours and reject if the total 

numbers of failures from 5 groups is larger than 1.The procedure is repeated if the 

number of failures is 1. 
 

Example-2 

 Suppose that an experimenter wants to adopt the proposed sampling plan to decide 

about the acceptance or the rejection of the submitted lot of products. The specified 20% 

percentiles life of the product is 0  = 1000 hr and the test duration is 500 hours. The 

producer’s risk is   = 0.05 at 
0/G

p 
 
= 2 and the consumer’s risk is   = 0.25. We have 

the following values; 519, 968, 1430, 1893, 2490, 3058, 3625, 4422, 5218. Let us assume 

that product under inspection follows the generalized exponential distribution with   = 3 

[Aslam et al. 2010].  
 

 For all above specified values, suppose that experimenter wants to adopt the proposed 

group plan when there is facility to install 5 items in single group. From Table 11, plan 

parameters in case of group sampling are   = 0,   = 1 and   = 8. This plan is 

implemented as: select 40 items from the lot and put them on test for 500 hours accept 

the lot if no failure occurs before 500 hours. If the number of the failures exceeds 1, then 

reject the lot. Take another sample of size 40 and proceed the procedure again when the 

number of failures is 1.  
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4. CONCLUDING REMARKS 
 

 We proposed the repetitive type of attributes group sampling plans for the Weibull 

distribution and generalized exponential distribution. Extensive tables are provided for 

practical point of view. It is concluded that the proposed plan are useful to save the cost 

and time of the experiment than the single acceptance sampling plans. We compared the 

results of the Weibull distribution and generalized exponential distribution for various 

values of the shape parameter. The proposed plans can be used for inspection of 

electronic product such as the computer devices, mobile devises, automobiles devices and 

software. The present approach can be extended for some other lifetime distribution as a 

future research. Developing of attribute repetitive plans using the cost model is fruitful 

area for future research.  
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ABSTRACT 
 

 Only twenty countries have impact factor journals in ‘Statistics and Probability’. In 

this paper, we trace contributions of Pakistan Journal Statistics in publishing research 

papers in comparison to other countries. The analysis is based on Journals Citation 

Reports 2010 edition issued by the Thomson’s Institute of Scientific Information. The 

paper provides country and publishing group level comparisons of the impact factors of 

journals in this subject. Of 20 countries, only two Islamic countries i.e. Pakistan and 

Turkey have one journal each in the ‘Statistics and Probability’ literature. 

 

KEYWORDS 
 

 Journal Citation Reports, Impact Factor, Statistics and Probability, Pakistan. 

 

1. INTRODUCTION 
 

 Pakistan Journal of Statistics (PJS) is now an Impact Factor (IF) journal. The years of 

hard work and teamwork of the journal officials have finally received recognition from 

the Institute of Scientific Information (ISI), now owned by Thomson Reuter Corporation. 

This institute maintains citation data basis like Science Citation Index (CSI) and Social 

Science Citation Index (SSCI). ISI publishes several reports. Journal Citation Reports 

(JCR) publishes annually and is an internationally recognized document widely used for 

ranking of journals in various subject categories. The 2010 editions of JCR provide 

citation information for 10,804 journals indexed in Thomson’s SCI and SSCI. 
 

 The JCR database has been a regular source of generating information for analyzing 

various interesting issues. For example some authors describe submission in a particular 

journal from various parts of the world (Konradsen and Munk-Jørgensen 2007) and 

others evaluate contribution of different world regions in research production and quality 

in particular field (Bliziotis et al. 2005; Sorrentino et al,. 2000) or make cross field 

comparisons (Althouse et al,. 2009). Some other seems interested in studying the divide 

between First and Third world (Wishart and Davies 1998). The basic purpose of the 

paper is to highlight the contributions of Pakistan Journal of Statistics. It also describes 

the contributions of various countries and publishing houses in the subject category of 

‘Statistics and Probability’. The analyses have been based on JCR 2010. 
 

 Different methods and approaches are used for making comparisons among journals 

and countries. The critique in making comparisons of various methods and approaches in 

the usual biblometric academic debates is beyond the scope of this paper. Providing a 

                                                 
*
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simple description of the subject category ‘Statistics and Probability’ and enabling the 

statistical scientists to have an overview of the academic contributors in field, making 

readily available list of IF journals along with courtiers of origin and publishers are also 

aims of this study. 

 

2. IMPACT FACTOR BY COUNTRIES 
 

 A list of the country originating IF journals is presented in Table 1, Only 20 countries 

in the world have IF journals in the subject category of ‘Statistics and Probability’. There 

are 110 journals in this category (Appendix A, B). An overwhelming majority (102) of 

journals is in English language and the remaining eight journals are multi-language 

journals. PJS, Pakistan is one of the journals that have also entered in the list of journals 

having IF. There is only one other Islamic country i.e. Turkey in the list. Off the 110 IF 

journals, 90 (about 82 per cent) originates from only four countries namely USA, 

England, Netherland and Germany having 37, 27, 14 and 12 journals respectively. 

 

Table 1 

Country of Origin of the Journals and Language 

(JCR 2010-Statistics & Probability) 

S# 
Country 

of Origin 

Language Total 

English Multi-Language No. % 

1 Australia 1 0 1 0.91 

2 Belgium 2 0 2 1.82 

3 Canada 1 1 2 1.82 

4 Colombia 1 0 1 0.91 

5 England 24 3 27 24.55 

6 France 0 1 1 0.91 

7 Germany 12 0 12 10.91 

8 India 1 0 1 0.91 

9 Japan 1 0 1 0.91 

10 Netherlands 13 1 14 12.73 

11 Pakistan 1 0 1 0.91 

12 Portugal 1 0 1 0.91 

13 Russia 1 0 1 0.91 

14 Singapore 2 0 2 1.82 

15 South Korea 1 0 1 0.91 

16 Spain 2 0 2 1.82 

17 Sweden 1 0 1 0.91 

18 Taiwan 1 0 1 0.91 

19 Turkey 1 0 1 0.91 

20 USA 35 2 37 33.64 

 Total 102 8 110 100.00 
 

 Figure 1 shows the number of journals for various countries. The countries having 

only one journal are grouped together in ‘Other Countries’ category including ‘Islamic 

countries’ (i.e. Pakistan and Turkey). There are only 7 journals originating from the 
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countries of eastern hemisphere i.e. India, Japan, Pakistan, Russia, Singapore, South 

Korea and Taiwan. All the remaining journals originate from the western nations. As 

discussed above, in fact only 4 countries are dominant in this subject category. This 

would be interesting to make such a comparison in all subjects of Science and Social 

Sciences and see whether the position is similar to the subject of ‘Statistics and 

Probability’. In the last part of this study this comparison is also reported. 

 

 
Fig. 1: Number of Journals by Country of Origin  

 (JCR 2010-Statistics & Probability) 

 

3. ANALYSIS OF JOURNAL RANKING 
 

 There are several metrics to rank journals. This study is based on 3-year IF of 

journals, which is the most widely used metric for evaluating the impact of peer-reviewed 

journals. The metric is defined as ‘the ratio of citations in 1 calendar year to the number 

of citable items published in the previous 2 years (Bankhead 2010). Garfield (1955), the 

founder of ISI, proposed the bibliographic system for scientific literature. This ratio was 

then used to select the journals for inclusion in the SCI (Garfield, 1999). This 

bibliometric measure is a leading indicator of measuring journal influence on the 

academic literature. There has been strong criticism on the possible biases in calculating 

IF (see for example, Dong et al., 2005). Impact factor, as a valid indicator of measuring 

the quality of journals, has been regularly discussed (Campanario 2011; Gomez-Sancho 

& Mancebon-Torrubia, 2009; Rossner et al., 2008; and Yu et al. 2010). However, these 

issues are beyond the scope of this paper. 
 

 Figure 2 shows the comparison of various countries/regions of the world in terms of 

originating IF journal. The dominance of the 4 countries, with respect to journal IF, is 

very much evident. The mean IF of the journals originating from England, USA, 

Netherland and Germany are 1.28, 1.26, 0.88 and 0.66 respectively followed by Canada 

(0.65), Spain (0.65) and Japan (0.64). The means IF for the 10 countries grouped as 

‘Other Countries’ is 0.53. Mean IF for the Islamic Countries is only 0.28 i.e. the lowest 

among all other rations. Islamic countries (Pakistan and Turkey) have recently entered 

this list. The chances of reaching to the international audience have been very few for the 

journals originating from these countries. This may be one of the possibilities for this low 

IF. However, after a few years this would be more appropriate to analyze this point for a 
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more rational finding of this explanation. For the time being this may be inferred that the 

two journals originating from Islamic Countries are far less cited in ISI journals of the 

world. 

 

 
Fig. 2: Mean IF of Journals by Country of Origin  

 (JCR 2010-Statistics & Probability) 

 

 Publishing groups usually handle online availability, sales/marketing of the research 

papers of various journals to the international audience. Each publisher prefers to have a 

variety of journals on all important disciplines. Editing an academic journal is a 

concentrated and time-consuming job that an editor could not pay attention to 

professional handling of marketing of the journals. The publishing business like all other 

businesses has become very competitive, dynamically changing, creative and capital 

intensive. A journal published by leading publishing house is likely to increase the 

standardization, worth of the journal and reach to all parts of the world. 
 

 The cross-tabulation of the publishing group by country of origin of the journals in 

‘Statistics and Probability’ is presented in Table 2. There are twelve publishing groups 

that are publishing at least two IF journals in this discipline. The leading publishing 

groups in this regard are Wiley-Blackwell, Springer, Taylors and Francis, Elsevier, 

Institute of Mathematical Statistics, and American Statistical Association. 
 

 There may be several reasons for publishing groups to have publishing rights of large 

number of journals. However, this may not be related to the mean IF of all journals of 

that publisher. The top three publishers of ‘Statistics and Probability’ with highest mean 

IF are Oxford University Press (2.30), Institute of Mathematical Statistics (1.65), and 

American Statistical Association (1.50). This may be relevant to mention here that these 

are academic organizations dedicated to Statistics rather than publishing groups. The top 

four publishers in terms of the number of journals are Willey-Blackwell (20), Springer 

(20), Taylor and Francis (14) and Elsevier (7). These are mainly publishing groups and 

not statistical specific publishes. This may be interesting to note here that none of the 

publishers with highest number of journals is included in the top three publishers in term 

of mean IF. The complete comparative analysis is provided in Figure 3. There are 21 

Publishing houses which publish only one IF journal. These are converged under the 

heading ‘Other Publishers’. 
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Table 2 

Publishing Group and Country of Origin of the Journals 

(JCR 2010-Statistics & Probability) 

Publishing  

Group (IF) 

Country of Origin 

Total 
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1. American Statistical Association  
        

5 
 

5 

2. Applied Probability Trust 
  

2 
       

2 

3. Cambridge University Press 
        

3 
 

3 

4. Elsevier 
  

1 
  

7 
  

1 
 

9 

5. Institute of Mathematical 

Statistics         
6 1 7 

6. Oxford University Press 
  

2 
       

2 

7. Sage Publications Ltd 
  

2 
       

2 

8. Springer 1 
  

10 
 

4 
 

1 3 1 20 

9. Taylor & Francis 
  

5 1 
    

8 
 

14 

10. University of Washington 
        

2 
 

2 

11.  Wiley-Blackwell 
  

15 1 
 

1 
  

2 1 20 

12. World Scientific Publication 

Company      
1 2 

   
3 

Others (1 each) 1 2 
  

2 1 
 

1 7 7 21 

Total 2 2 27 12 2 14 2 2 37 10 110 

 

 
Fig. 3: Mean IF of Journals by Publishers 

 

 As discussed above that all IF journals in the discipline of ‘Statistics and Probability’ 

originates from only 20 countries. It would be interesting to compare the overall IF 

journals originating from these countries in other Sciences and Social Sciences Subjects 

NCBA&E



Chapter-7: Applications 442 

to that of ‘Statistics and Probability’. For subjects in Social Science, there are 2,731 IF 

journals originating from 52 countries. About 91% (2,494) of these journals originates 

from the 20 countries which originates IF journals in ‘Statistics and Probability’. For 

subjects in Science, there are 8,073 IF journals originating from 84 countries. About 83% 

(6,702) of these journals originates from the 20 countries. For both Social Sciences and 

Sciences, there are 10,804 IF journals. About 85% (9,196) of these journals originates 

from the 20 countries (Table 3). 

 

Table 3 

A Comparison of Contribution of the Twenty Countries in 

‘Statistics and Probability’ and other Subject (JCR 2010) 

Country 

of Origin 

Social 

Science 

Subjects 

Science 

Subjects 

(SS) 

All 

Subjects 

Statistics & 

Probability 

(SP) 
SP/SS 

Freq % Freq % Freq % Freq % 

Australia 85 3.1 132 1.6 217 2.0 1 0.9 0.76 

Belgium 8 0.3 21 0.3 29 0.3 2 1.8 9.52 

Canada 26 1.0 94 1.2 120 1.1 2 1.8 2.13 

Colombia 6 0.2 15 0.2 21 0.2 1 0.9 6.67 

England 720 26.4 1,570 19.4 2,290 21.2 27 24.6 1.72 

France 25 0.9 189 2.3 214 2.0 1 0.9 0.53 

Germany 110 4.0 545 6.8 655 6.1 12 10.9 2.20 

India 5 0.2 94 1.2 99 0.9 1 0.9 1.06 

Japan 8 0.3 207 2.6 215 2.0 1 0.9 0.48 

Netherlands 175 6.4 655 8.1 830 7.7 14 12.7 2.14 

Pakistan 0 0.0 11 0.1 11 0.1 1 0.9 9.09 

Portugal 2 0.1 5 0.1 7 0.1 1 0.9 20.00 

Russia 6 0.2 147 1.8 153 1.4 1 0.9 0.68 

Singapore 5 0.2 51 0.6 56 0.5 2 1.8 3.92 

South Korea 12 0.4 75 0.9 87 0.8 1 0.9 1.33 

Spain 52 1.9 73 0.9 125 1.2 2 1.8 2.74 

Sweden 5 0.2 14 0.2 19 0.2 1 0.9 7.14 

Taiwan 3 0.1 31 0.4 34 0.3 1 0.9 3.23 

Turkey 12 0.4 49 0.6 61 0.6 1 0.9 2.04 

USA 1,229 45.0 2,724 33.7 3,953 36.6 37 33.6 1.36 

Sub-Total 2,494 91.3 6,702 83.0 9,196 85.1 110 100 1.64 

Other Countries 237 8.7 1,371 17.0 1,608 14.9 - - - 

Total 2,731 100 8,073 100 10,804 100 110 100 1.02 
 

 The total IF journals in ‘Statistics and Probability’ are about 1.0 percent of IF journals 

in all subjects of Social Sciences and Sciences (Table 3). The four countries (England, 

Germany, Netherland and USA) producing highest number of IF journals in ‘Statistics 

and Probability’, are also producing highest number of IF journals in other subjects. The 

percentage of IF journals in ‘Statistics and Probability’ to the IF journals in Science 

Subject for England, Germany, Netherland and USA are 1.72, 2.20, 2.14, and 1.36 

respectively. Pakistan is contributing one journal out of the total 11 IF journals. 
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Therefore, the percentage of IF journal in ‘Statistics and Probability’ originating from 

Pakistan (9.09 %). This parentage is relatively better than the overall trend. This is due to 

the sole effort of PJS that can be regarded as an achievement. This does not mean that 

PJS has achieved its destination. A lot more organized effort is needed to take this journal 

to a much higher position and gain more respect among the statistical scientists. 
 

 According to JCR 2010, PJS is one of the eleven IF journals originating from 

Pakistan. The remaining 10 journals are related to subjects like Biology, Chemistry, 

Medical and Agriculture (Appendix C). In the local context of Pakistan, these subjects 

more popularly known as pre-medical group. Thus Pakistan seems to be academically 

made a mark in this group of subjects. PJS is clearly a distinct subject from this group. 

This might have been relatively difficult for PJS to produce an IF journal other than 

academically established subjects. 

 

4. CONCLUSIONS 
 

 Before, concluding remarks, this would be realistic to frankly reveal the limitations of 

this study. More discussions on the results might have been expected. The paper is too 

short for such a worldwide comparison, which actually requires more exhaustive 

comparisons. However, confined by our scope i.e. to highlight contributions of PJS, this 

has been done intentionally. The results about some of the countries showing a low 

number of journals but high ratios should be cautiously compared with other countries. 

This may lead to distorted interpretations. The values of 9.09 for Pakistan and 20.2 for 

Portugal (Table 3) are not readily comparable to the values of nations which cover a large 

number of subject categories. The result may signal a specialization, or a distinctive 

competence in the field by the county. However, futures studies should include the 

number of all subject categories per nation for more realistic comparisons among various 

countries of the world. The use of a concentration measure, like Gini Index, with respect 

to how the journals are distributed over countries/publishing house may also be 

considered. 
 

 In the end this may be proposed that, Islamic countries have to make a lot of effort to 

make their academic importance felt in the academic world. Producing a high quality 

work is required. The Islamic countries have to start collaborative researches with the 

academically advanced nations. This will also improve their chances of participating in 

fundamental research so difficult to be successfully carried out in these countries due to 

shortage of trained personals. This type of research often receives high citations. 

Research organizations and universities should pool resources to access the digital 

research data indispensably needed for a sound review of literature without which the 

production of citable documents is out of question. This needs greater cooperation to 

collaborate and co-ordinate the purchase, housing of and subscription to international 

literature. PJS may particularly attempt to make international availability of the journal 

possible through collaborating with leading publishing houses of the top statistical 

association on one hand and help out other journals of the Islamic countries struggling for 

even the first impact factor. Only these kinds of positivism by the journals like PJS 

having a low IF will work for continuous improvement in its IF. Negative approaches like 

unnecessary self citations and manipulation of the editorial policies to improve IF should 

be avoided. 
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APPENDIX A 

 

List of Impact Factor Journals in Subject Category 

‘Statistics and Probability’ (JCR 2010) 

S# Full Name of Journals 
3-Year 

IF 
Country 

1 Advances in Applied Probability 0.72 England 

2 Advances in Data Analysis and Classification 0.58 Germany 

3 American Statistician 0.98 USA 

4 Annals de L Institute Henri Poincare-Probabilites Et Statistiques 0.76 France 

5 Annals of Applied Probability 1.12 USA 

6 Annals of Applied Statistics 1.75 USA 

7 Annals of Probability 1.47 USA 

8 Annals of Statistics 2.94 USA 

9 Annals of the Institute of Statistical Mathematics 0.97 Japan 

10 Applied Stochastic Models in Business and Industry 0.83 England 

11 AStA-Advances in Statistical Analysis 0.69 Germany 

12 Astin Bulletin 0.71 Belgium 

13 Australian and New Zealand Journal of Statistics 0.62 Australia 

14 Bayesian Analysis 1.21 USA 

15 Bernoulli 1.00 Netherlands 

16 Biometrical Journal 1.44 Germany 

17 Biometrics 1.76 USA 

18 Biometrika 1.83 England 

19 Biostatistics 2.77 England 

20 British Journal of Mathematical and Statistical Psychology 1.42 England 

21 Canadian Journal of Statistics-Revue Canadienne de Statistique 0.69 USA 

22 Chemometrics and Intelligent Laboratory Systems 2.22 Netherlands 

23 Combinatorics Probability and Computing 0.99 USA 

24 Communications in Statistics-Simulation and Computation 0.34 USA 

25 Communications in Statistics-Theory and Methods 0.35 USA 

26 Computational Statistics 0.50 Germany 

27 Computational Statistics and Data Analysis 1.09 Netherlands 

28 Econometric Reviews 1.09 USA 

29 Econometric Theory 1.02 USA 

30 Econometrica 3.19 England 

31 Econometrics Journal 0.69 England 

32 Electronic Communications in Probability 0.56 USA 

33 Electronic Journal of Probability 0.95 USA 

34 Electronic Journal of Statistics 1.03 USA 

35 Environmental and Ecological Statistics 1.65 Netherlands 

36 Environmetrics 0.75 England 

37 Extremes 1.05 USA 

38 Finance and Stochastics 1.33 Germany 

39 Fuzzy Sets and Systems 1.88 Netherlands 
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S# Full Name of Journals 
3-Year 

IF 
Country 

40 Hacettepe Journal of Mathematics and Statistics 0.39 Turkey 

41 
IEEE-ACM Transactions on Computational Biology and 

Bioinformatics 
1.66 USA 

42 
Infinite Dimensional Analysis Quantum Probability and Related 

Topics 
0.57 Singapore 

43 Insurance Mathematics and Economics 1.18 Netherlands 

44 International Journal of Agricultural and Statistical Sciences 0.04 India 

45 International Journal of Game Theory 0.59 Germany 

46 International Statistics Review 0.86 England 

47 Journal of Agricultural Biological and Environmental Statistics 0.72 USA 

48 Journal of Applied Probability 0.77 England 

49 Journal of Applied Statistics 0.31 England 

50 Journal of Biopharmaceutical Statistics 1.07 USA 

51 Journal of Business and Economic Statistics 1.69 USA 

52 Journal of Chemometrics 1.38 England 

53 Journal of Computational and Graphical Statistics 1.21 USA 

54 Journal of Computational Biology 1.60 USA 

55 Journal of Multivariate Analysis 1.01 USA 

56 Journal of Nonparametric Statistics 0.46 England 

57 Journal of Official Statistics 0.49 Sweden 

58 Journal of Quality Technology 1.38 USA 

59 Journal of Statistical Computation and Simulation 0.47 England 

60 Journal of Statistical Planning and Inference 0.69 Netherlands 

61 Journal of Statistical Software 2.65 USA 

62 Journal of the American Statistical Association 2.06 USA 

63 Journal of the Korean Statistical Society 0.33 South Korea 

64 
Journal of the Royal Statistical Society Series A-Statistics in 

Society 
2.57 England 

65 
Journal of the Royal Statistical Society Series B-Statistical 

Methodology 
3.50 England 

66 
Journal of the Royal Statistical Society Series C-Applied 

Statistics 
0.65 England 

67 Journal of Theoretical Probability 0.60 Belgium 

68 Journal of Time Series Analysis 0.68 England 

69 Lifetime Data Analysis 0.87 Netherlands 

70 Mathematical Population Studies 0.59 USA 

71 Methodology and Computing in Applied Probability 0.77 USA 

72 Metrika 0.58 Germany 

73 Multivariate Behavioral Research 1.29 USA 

74 Open Systems and Information Dynamics 1.57 Netherlands 

75 Oxford Bulletin of Economics and Statistics 1.18 England 

76 Pakistan Journal of Statistics 0.16 Pakistan 

77 Pharmaceutical Statistics 1.63 England 
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S# Full Name of Journals 
3-Year 

IF 
Country 

78 Probabilistic Engineering Mechanics 1.25 England 

79 Probability in the Engineering and Informational Sciences 0.97 USA 

80 Probability Theory and Related Fields 1.59 Germany 

81 Quality and Quantity 0.69 Netherlands 

82 Revista Colombiana de Estadistica 0.06 Colombia 

83 REVSTAT-Statistical Journal 0.73 Portugal 

84 Scandinavian Actuarial Journal 0.61 England 

85 Scandinavian Journal of Statistics 0.84 England 

86 SORT-Statistics and Operations Research Transactions 0.25 Spain 

87 Stata Journal 2.00 USA 

88 Statistica Neerlandica 0.32 Netherlands 

89 Statistica Sincia 0.96 Taiwan 

90 Statistical Applications in Genetics and Molecular Biology 1.84 USA 

91 Statistical Methods and Applications 0.37 Germany 

92 Statistical Methods in Medical Research 1.77 England 

93 Statistical Modeling 0.71 England 

94 Statistical Papers 0.60 Germany 

95 Statistical Science 2.48 USA 

96 Statistics 0.52 Germany 

97 Statistics and Computing 1.85 Netherlands 

98 Statistics and Probability Letters 0.44 Netherlands 

99 Statistics in Medicine 2.33 England 

100 Stochastic Analysis and Applications 0.42 USA 

101 Stochastic Environmental Research and Risk Assessment 1.78 Germany 

102 Stochastic Models 0.45 USA 

103 Stochastic Processes and their Applications 0.95 Netherlands 

104 Stochastics and Dynamics 0.71 Singapore 

105 
Stochastics-An International Journal of Probability and 

Stochastic Processes 
0.37 England 

106 Survey Methodology 0.55 Canada 

107 Technometrics 1.56 USA 

108 Test 1.04 Spain 

109 Theory of Probability and Its Applications 0.32 Russia 

110 Utilitas Mathematica 0.74 Canada 
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APPENDIX B 

Ranking of the Impact Factor Journals of the World 

as per 2010 JCR Science Edition 

Rank Full Name of Journals IF 

1 Journal of the Royal Statistical Society Series B-Statistical Methodology 3.50 

2 Econometrica 3.19 

3 Annals of Statistics 2.94 

4 Biostatistics 2.77 

5 Journal of Statistical Software 2.65 

6 Journal of the Royal Statistical Society Series A-Statistics in Society 2.57 

7 Statistical Science 2.48 

8 Statistics in Medicine 2.33 

9 Chemometrics and Intelligent Laboratory Systems 2.22 

10 Journal of the American Statistical Association 2.06 

11 Stata Journal 2.00 

12 Fuzzy Sets and Systems 1.88 

13 Statistics and Computing 1.85 

14 Statistical Applications in Genetics and Molecular Biology 1.84 

15 Biometrika 1.83 

16 Stochastic Environmental Research and Risk Assessment 1.78 

17 Statistical Methods in Medical Research 1.77 

18 Biometrics 1.76 

19 Annals of Applied Statistics 1.75 

20 Journal of Business and Economic Statistics 1.69 

21 IEEE-ACM Transactions on Computational Biology and Bioinformatics 1.66 

22 Environmental and Ecological Statistics 1.65 

23 Pharmaceutical Statistics 1.63 

24 Journal of Computational Biology 1.60 

25 Probability Theory and Related Fields 1.59 

26 Open Systems and Information Dynamics 1.57 

27 Technometrics 1.56 

28 Annals of Probability 1.47 

29 Biometrical Journal 1.44 

30 British Journal of Mathematical and Statistical Psychology 1.42 

31 Journal of Chemometrics 1.38 

32 Journal of Quality Technology 1.38 

33 Finance and Stochastics 1.33 

34 Multivariate Behavioral Research 1.29 

35 Probabilistic Engineering Mechanics 1.25 

36 Bayesian Analysis 1.21 

37 Journal of Computational and Graphical Statistics 1.21 

38 Oxford Bulletin of Economics and Statistics 1.18 

39 Insurance Mathematics and Economics 1.18 

40 Annals of Applied Probability 1.12 

41 Computational Statistics and Data Analysis 1.09 
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Rank Full Name of Journals IF 

42 Econometric Reviews 1.09 

43 Journal of Biopharmaceutical Statistics 1.07 

44 Extremes 1.05 

45 Test 1.04 

46 Electronic Journal of Statistics 1.03 

47 Econometric Theory 1.02 

48 Journal of Multivariate Analysis 1.01 

49 Bernoulli 1.00 

50 Combinatorics Probability and Computing 0.99 

51 American Statistician 0.98 

52 Probability in the Engineering and Informational Sciences 0.97 

53 Annals of the Institute of Statistical Mathematics 0.97 

54 Statistica Sincia 0.96 

55 Stochastic Processes and their Applications 0.95 

56 Electronic Journal of Probability 0.95 

57 Lifetime Data Analysis 0.87 

58 International Statistics Review 0.86 

59 Scandinavian Journal of Statistics 0.84 

60 Applied Stochastic Models in Business and Industry 0.83 

61 Methodology and Computing in Applied Probability 0.77 

62 Journal of Applied Probability 0.77 

63 Annals de L Institute Henri Poincare-Probabilites Et Statistiques 0.76 

64 Environmetrics 0.75 

65 Utilitas Mathematica 0.74 

66 REVSTAT-Statistical Journal 0.73 

67 Journal of Agricultural Biological and Environmental Statistics 0.72 

68 Advances in Applied Probability 0.72 

69 Statistical Modeling 0.71 

70 Stochastics and Dynamics 0.71 

71 Astin Bulletin 0.71 

72 Econometrics Journal 0.69 

73 Journal of Statistical Planning and Inference 0.69 

74 Canadian Journal of Statistics-Revue Canadienne de Statistique 0.69 

75 Quality and Quantity 0.69 

76 AStA-Advances in Statistical Analysis 0.69 

77 Journal of Time Series Analysis 0.68 

78 Journal of the Royal Statistical Society Series C-Applied Statistics 0.65 

79 Australian and New Zealand Journal of Statistics 0.62 

80 Scandinavian Actuarial Journal 0.61 

81 Journal of Theoretical Probability 0.60 

82 Statistical Papers 0.60 

83 International Journal of Game Theory 0.59 

84 Mathematical Population Studies 0.59 

85 Metrika 0.58 
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Rank Full Name of Journals IF 

86 Advances in Data Analysis and Classification 0.58 

87 Infinite Dimensional Analysis Quantum Probability and Related Topics 0.57 

88 Electronic Communications in Probability 0.56 

89 Survey Methodology 0.55 

90 Statistics 0.52 

91 Computational Statistics 0.50 

92 Journal of Official Statistics 0.49 

93 Journal of Statistical Computation and Simulation 0.47 

94 Journal of Nonparametric Statistics 0.46 

95 Stochastic Models 0.45 

96 Statistics and Probability Letters 0.44 

97 Stochastic Analysis and Applications 0.42 

98 Hacettepe Journal of Mathematics and Statistics 0.39 

99 Stochastics-An International Journal of Probability and Stochastic Processes 0.37 

100 Statistical Methods and Applications 0.37 

101 Communications in Statistics-Theory and Methods 0.35 

102 Communications in Statistics-Simulation and Computation 0.34 

103 Journal of the Korean Statistical Society 0.33 

104 Statistica Neerlandica 0.32 

105 Theory of Probability and Its Applications 0.32 

106 Journal of Applied Statistics 0.31 

107 SORT-Statistics and Operations Research Transactions 0.25 

108 Pakistan Journal of Statistics 0.16 

109 Revista Colombiana de Estadistica 0.06 

110 International Journal of Agricultural and Statistical Sciences 0.04 

 
 

APPENDIX C 

Ranking of the Impact Factor Journals of Pakistan 

as per 2010 JCR Science Edition 

Rank Name of Journal 
3-Year  

IF 

1 Pakistan Journal of Botany 0.947 

2 Pakistan Journal of Pharmaceutical Sciences 0.728 

3 Pakistan Veterinary Journal 0.707 

4 JCPSP-Journal of the College of Physicians and Surgeons Pakistan 0.342 

5 Journal of Animal and Veterinary Advances 0.292 

6 Journal of Animal and Plant Sciences 0.250 

7 Asian Journal of Animal and Veterinary Advances 0.235 

8 Journal of the Chemical Society of Pakistan 0.194 

9 Pakistan Journal of Medical Sciences 0.166 

10 Pakistan Journal of Statistics 0.156 

11 Pakistan Journal of Zoology 0.145 
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ABSTRACT 
 

 This brief communications aims at sharing the list of impact factor journals of 

‘Statistics & Probability’ as per the Journal Citation Report 2011 released by Institute of 

Scientific Information. This would update the academia and practitioner on their 

information about the ranking of the journals. The study makes country and regions wise 

comparisons of the changes in no of journals and their mean impact factors reported in 

the previous and current reports. 

 

KEYWORDS 
 

 Journal Citation Reports, Impact Factor, Statistics and Probability, Pakistan. 

 

 Institute of Scientific Information (ISI) announced the first impact factor (IF) of 

Pakistan Journal of Statistics (PJS) in the Journal Citation Report (JCR) 2010. At that 

event, PJS traced its contributions in comparison with the other courtiers (Qadeer& 

Ahmad, 2012), the study includes a complete list of 110 IF journals for the subject 

category of ‘Statistics & Probability’. The academic audience of PJS appreciated that 

information very much. Many of them proposed that the list of IF journals may be 

updated every year.  
 

 Now after the release of JCR (2011) this is high time to update the list. The  

list of 3-year IF journals of in the subject category ‘Statistics & Probability’ in  

the Science Citation Index is now being presented here (Appendix A). As per this  

report there are 116 IF journals as against 110 in the previous list. Therefore, 6 more 

journals qualified to enter the list. Two of these new entrants (Quality & Quantity  

& Statistics in Biopharmaceutical Research) originate from USA; 1 each from Germany 

(ALEA-Latin American Journal of Probability), Brazil (Brazilian Journal of Probability 

and Statistics), France (ESAIM-Probability and Statistics) and Taiwan (Quality 

Engineering). 

  

                                                 
*
Published in Pak. J. Statist. (2013), Vol. 29(2). 
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Table 1 

Impact Factor Change by Country of Origin: JCR 2010 VS 2011  

Country  

of Origin 

Impact Factor Change  

(no of journals) Total 
Mean IF 

Lower Same Higher New 2010 2011 Change 

England 12 1 14 0 27 1.278 1.300 0.022 

Germany 9 0 3 1 13 0.880 0.758 (0.122) 

Netherlands 6 0 8 0 14 1.171 1.097 (0.074) 

USA 20 0 17 2 39 1.263 1.275 0.013 

Others (17) 8 1 11 3 23 0.548 0.490 (0.059) 

Total 55 2 53 6 116 1.083 1.046 (0.037) 

 

 There are 21 countries now that have at least one IF Journal, please recall as per JCR 

2010, there were 20 countries. The change in the number of IF of the journals for the four 

major countries is summarized in Table 1. As 6 journals are new, therefore the 

comparison of IF of 110 journals can be made. Off the 110, the IF of 55 journals is 

relatively lower in JCR 2011 than JCR 2010, 53 journals have higher IF and the 

remaining 2 journals have IF in the two reports. The mean IF change of the journals from 

England and USA is positive, this change in mean IF of Netherland, Germany and 17 

other countries is negative. This may also be noted from Table 1 that the mean IF change 

of all the journals in this subject category is in negative direction.  

 

Table 2 

Impact Factor Change by Regions of the World: JCR 2010 VS 2011 

Country  

of Origin 

Impact Factor Change  

(No. of Journals) Total 
Mean IF 

Lower Same Higher New 2010 2011 Change 

Asia 3 0 5 1 9 0.514 0.524 0.010 

Australia 1 0 0 0 1 0.618 0.436 (0.182) 

Europe 30 1 30 2 63 1.088 1.032 (0.055) 

N. America 21 0 18 2 41 1.231 1.239 0.008 

S. America 0 1 0 1 2 0.056 0.158 0.102 

Total 55 2 53 6 116 1.083 1.046 (0.037) 

 

 The change in the number of IF of the journals for the five regions of the world 

originating IF journals in the subject category of ‘Statistics & Probability’ has been 

summarized in Table 2. The mean IF change of the journals from Asia, N. America and 

S. America is positive. This change in mean IF of Australia and Europe is negative.  
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Table 3 

Impact Factor Journals of Pakistan 

S# Name of Journal Subject Category 
2010 2011 

3-Year IF 

1 
Asian Journal of Animal and Veterinary 
Advances 

Veterinary Sciences 0.24 0.87 

2 
International Journal of Agriculture and 
Biology 

Agriculture, Multidisciplinary - 0.94 

3 International Journal of Pharmacology  Pharmacology & Pharmacy  - 1.50 

4 Journal of Animal and Plant Sciences Agriculture, Multidisciplinary 0.25 0.59 

5 
Journal of Animal and Veterinary 
Advances 

Veterinary Sciences 0.29 0.39 

6 
Journal of the Chemical Society of 
Pakistan 

Chemistry, Multidisciplinary 0.19 1.38 

7 
JCPSP-Journal of the College of 
Physicians and Surgeons Pakistan 

Medicine, General & Internal  0.34 0.34 

8 Pakistan Journal of Botany Plant Sciences 0.95 0.91 

9 Pakistan Journal of Medical Sciences Medicine, General & Internal  0.17 0.16 

10 
Pakistan Journal of Pharmaceutical 
Sciences 

Pharmacology & Pharmacy  0.73 1.10 

11 Pakistan Journal of Statistics Statistics and Probability 0.16 0.29 

12 Pakistan Journal of Zoology Zoology 0.15 0.34 

13 Pakistan Veterinary Journal Veterinary Sciences 0.71 1.26 
 

 According to JCR 2011, there are 13 IF journals of Pakistan (Table 3) as against 11 IF 

journals as per JCR 2010. The mean IF change of all the journals from Pakistan is 

positive except for the two journals for which the change is in negative direction by a 

very small number. These journals fall in eight subject categories in the Science Citation 

Index. For a realistic comparison, the details of the number of journals and the mean IFs 

for these subject categories are presented in Table 4. 
 

Table 4 

Mean IF of Selected Subject Categories 

S # Subject Category Journals Mean IF 2011 

1 Agriculture, Multidisciplinary 57 0.78 

2 Chemistry, Multidisciplinary 154 3.00 

3 Medicine, General & Internal  155 2.53 

4 Pharmacology & Pharmacy  261 5.71 

5 Plant Sciences 190 1.96 

6 Statistics and Probability 116 1.05 

7 Veterinary Sciences 145 0.94 

8 Zoology 146 1.30 
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 From Table 5, this may be noted that making comparison among various subjects is 

not a realistic yard stick in ranking of the journals. For example there are 261 journals in 

the subject category ‘Pharmacology & Pharmacy’ is 5.71, whereas such there are only 4 

journals in ‘Statistics and Probability’ that has an IF more than 3. Therefore, we should 

be cautious in making comparison among the journals falling in different subject 

categorizers. A more realistic approach would be to compare the IF of a journal with the 

mean IF journal of its own subject category. Future research may further analyze this 

point. 
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APPENDIX A 

 

List of Impact Factor Journals in the Subject Category ‘Statistics and Probability’ 

S# Name of Journal 

3-Years 

Impact Factor Country 

2010 2011 

1 Advances in Applied Probability* 0.72 0.68 England 

2 Advances in Data Analysis and Classification 0.58 0.56 Germany 

3 
ALEA-Latin American Journal of Probability and 

Mathematical Statistics 
- 0.38 Germany 

4 American Statistician 0.98 0.96 USA 

5 
Annals de L Institute Henri Poincare-Probabilites Et 

Statistiques* 
0.76 0.90 France 

6 Annals of Applied Probability 1.12 1.09 USA 

7 Annals of Applied Statistics 1.75 1.58 USA 

8 Annals of Probability 1.47 1.79 USA 

9 Annals of Statistics 2.94 3.03 USA 

10 Annals of The Institute of Statistical Mathematics 0.97 0.86 Japan 

11 Applied Stochastic Models in Business and Industry 0.83 0.69 England 

12 AStA-Advances in Statistical Analysis 0.69 0.44 Germany 

13 Astin Bulletin 0.71 0.49 Belgium 

14 Australian & New Zealand Journal of Statistics 0.62 0.44 Australia 

15 Bayesian Analysis 1.21 1.65 USA 

16 Bernoulli 1.00 1.05 Netherlands 

17 Biometrical Journal 1.44 1.25 Germany 

18 Biometrics* 1.76 1.83 USA 

19 Biometrika 1.83 1.91 England 

20 Biostatistics 2.77 2.15 England 

21 Brazilian Journal of Probability and Statistics - 0.26 Brazil 

22 
British Journal of Mathematical & Statistical 

Psychology 
1.42 1.31 England 

23 
Canadian Journal of Statistics-Revue Canadienne de 

Statistique* 
0.69 0.67 USA 

24 Chemometrics and Intelligent Laboratory Systems 2.22 1.92 Netherlands 

25 Combinatorics Probability & Computing 0.99 0.78 USA 

26 
Communications in Statistics-Simulation and 

Computation 
0.34 0.39 USA 

27 Communications in Statistics-Theory and Methods 0.35 0.27 USA 

28 Computational Statistics 0.50 0.28 Germany 
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S# Name of Journal 

3-Years 

Impact Factor Country 

2010 2011 

29 Computational Statistics & Data Analysis 1.09 1.03 Netherlands 

30 Econometric Reviews 1.09 0.78 USA 

31 Econometric Theory 1.02 0.86 USA 

32 Econometrica 3.19 2.98 England 

33 Econometrics Journal 0.69 0.87 England 

34 Electronic Communications in Probability 0.56 0.53 USA 

35 Electronic Journal of Probability 0.95 0.71 USA 

36 Electronic Journal of Statistics 1.03 1.15 USA 

37 Environmental and Ecological Statistics 1.65 1.31 Netherlands 

38 Environmetrics 0.75 1.06 England 

39 ESAIM-Probability and Statistics - 0.27 France 

40 Extremes 1.05 1.26 USA 

41 Finance and Stochastics 1.33 1.20 Germany 

42 Fuzzy Sets and Systems 1.88 1.76 Netherlands 

43 Hacettepe Journal of Mathematics and Statistics 0.39 0.35 Turkey 

44 
IEEE-ACM Transactions on Computational Biology 

and Bioinformatics 
1.66 1.54 USA 

45 
Infinite Dimensional Analysis Quantum Probability 

and Related Topics 
0.57 0.70 Singapore 

46 Insurance Mathematics & Economics* 1.18 1.29 Netherlands 

47 
International Journal of Agricultural and Statistical 

Sciences 
0.04 0.01 India 

48 International Journal of Game Theory 0.59 0.30 Germany 

49 International Statistics Review* 0.86 0.54 England 

50 
Journal of Agricultural Biological and Environmental 

Statistics 
0.72 1.21 USA 

51 Journal of American Statistical Association 2.06 1.99 USA 

52 Journal of Applied Probability* 0.77 0.63 England 

53 Journal of Applied Statistics 0.31 0.41 England 

54 Journal of Biopharmaceutical Statistics 1.07 1.34 USA 

55 Journal of Business & Economic Statistics 1.69 1.78 USA 

56 Journal of Chemometrics 1.38 1.95 England 

57 Journal of Computational and Graphical Statistics 1.21 1.06 USA 

58 Journal of Computational Biology 1.60 1.55 USA 

59 Journal of Multivariate Analysis 1.01 0.88 USA 
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S# Name of Journal 

3-Years 

Impact Factor Country 

2010 2011 

60 Journal of Nonparametric Statistics 0.46 0.46 England 

61 Journal of Official Statistics 0.49 0.33 Sweden 

62 Journal of Quality Technology 1.38 1.56 USA 

63 Journal of Statistical Computation and Simulation 0.47 0.50 England 

64 Journal of Statistical Planning and Inference 0.69 0.72 Netherlands 

65 Journal of Statistical Software 2.65 4.01 USA 

66 Journal of the Korean Statistical Society 0.33 0.47 
South 

Korea 

67 
Journal of the Royal Statistical Society Series B-

Statistical Methodology 
3.50 3.65 England 

68 
Journal of the Royal Statistical Society Series A-

Statistics in Society 
2.57 2.11 England 

69 
Journal of the Royal Statistical Society Series C-

Applied Statistics 
0.65 0.83 England 

70 Journal of Theoretical Probability 0.60 0.68 Belgium 

71 Journal of Time Series Analysis 0.68 0.76 England 

72 Lifetime Data Analysis 0.87 0.92 Netherlands 

73 Mathematical Population Studies 0.59 0.24 USA 

74 Methodology and Computing in Applied Probability 0.77 0.75 USA 

75 Metrika 0.58 0.67 Germany 

76 Multivariate Behavioral Research 1.29 1.41 USA 

77 Open Systems & Information Dynamics 1.57 1.17 Netherlands 

78 Oxford Bulletin of Economics and Statistics 1.18 1.00 England 

79 Pakistan Journal of Statistics 0.16 0.29 Pakistan 

80 Pharmaceutical Statistics 1.63 2.07 England 

81 Probabilistic Engineering Mechanics 1.25 1.25 England 

82 
Probability in The Engineering and Informational 

Sciences 
0.97 0.64 USA 

83 Probability Theory and Related Fields 1.59 1.53 Germany 

84 Quality & Quantity 0.69 0.77 Netherlands 

85 Quality Engineering - 0.75 USA 

86 Quality Technology and Quantitative Management - 0.28 Taiwan 

87 RevistaColombiana de Estadistica 0.06 0.06 Colombia 

88 REVSTAT-Statistical Journal 0.73 0.13 Portugal 

89 Scandinavian Actuarial Journal 0.61 0.50 England 
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S# Name of Journal 

3-Years 

Impact Factor Country 

2010 2011 

90 Scandinavian Journal of Statistics 0.84 1.12 England 

91 
SORT-Statistics and Operations Research 

Transactions 
0.25 0.43 Spain 

92 Stata Journal 2.00 2.22 USA 

93 StatisticaNeerlandica 0.32 0.50 Netherlands 

94 StatisticaSincia 0.96 1.02 Taiwan 

95 
Statistical Applications in Genetics and Molecular 

Biology 
1.84 1.52 USA 

96 Statistical Methods and Applications 0.37 0.41 Germany 

97 Statistical Methods in Medical Research 1.77 2.44 England 

98 Statistical Modeling 0.71 0.90 England 

99 Statistical Papers 0.60 0.59 Germany 

100 Statistical Science 2.48 3.04 USA 

101 Statistics 0.52 0.72 Germany 

102 Statistics & Probability Letters 0.44 0.50 Netherlands 

103 Statistics and Computing 1.85 1.43 Netherlands 

104 Statistics in Biopharmaceutical Research - 0.54 USA 

105 Statistics in Medicine 2.33 1.88 England 

106 Stochastic Analysis and Applications 0.42 0.46 USA 

107 
Stochastic Environmental Research and Risk 

Assessment 
1.78 1.52 Germany 

108 Stochastic Models 0.45 0.67 USA 

109 Stochastic Processes and their Applications 0.95 1.01 Netherlands 

110 Stochastics and Dynamics 0.71 0.75 Singapore 

111 
Stochastics-An International Journal of Probability 

and Stochastic Processes 
0.37 0.48 England 

112 Survey Methodology 0.55 0.93 Canada 

113 Technometrics 1.56 1.25 USA 

114 Tests 1.04 1.13 Spain 

115 Theory of Probability And Its Applications 0.32 0.40 Russia 

116 Utilitas Mathematica* 0.74 0.14 Canada 

* A Multi-Language Journal (all other journals are in English Language)  
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ABSTRACT 
 

 Despite wide recognition of the importance of relationship between HR professionals 

and line managers (HR-line relationship) in strategic HRM literature, no measurement 

construct is available that could grasp the complicated concept. We introduce a variable, 

HR-line relationship quality and propose a measurement construct for the variable. The 

first dimension of the variable covers the traditional elements - often measured in 

psychology and marketing. The second and third dimension covers HR specific elements 

based on the attitudes of HR professionals towards the line managers and vice versa. The 

proposed construct is validated through an empirical survey from a sample of HRM 

specialists and line managers. The paper concludes that HR-line relationship quality can 

be measured from a 34 item construct.  This construct can be used to quantify HR-line 

relationship quality, which would be helpful to understand and manage the relationship 

for the success of strategic HRM. 

 

KEY WORDS 
 

 HR-Line Relationship Quality; Line Managers; Devolvement; SHRM; Measurement 

Construct. 

 

1. INTRODUCTION 
 

 The importance of HR-line relationship has been widely recognized in strategic HRM 

literature (Qadeer et al., 2011a). However, the concept needs to be translated into 

measurement construct. Theoretically, the concept has passed the exploratory stages. 

However, description of the concept particularly involving empirical work has rarely 

been attempted in HRM literature. For developing a construct that could grasp the 

concept of HR-line relationship, identification of its dimensions and elements is required. 

This paper attempts to bridge this gap by developing a construct for measuring the quality 

of HR-line relationship and then fine tuning the construct through an empirical survey. 

There is a strong justification for carrying out this study, because, keeping an eye on the 

development of new HRM constructs is ‘expected to remain the core concept in HRM 

research’ (Dorenbosch & Veldhoven, 2006). 
 

                                                 
*
Published in Pak. J. Statist. (2013), Vol. 29(2). 

NCBA&E

mailto:drqadeer@ncbae.edu.pk
mailto:zahidatariq_77@yahoo.com


Chapter-7: Applications 

 

460 

 The study introduces a variable HR-line relationship quality (HLRQ) that represents 

the quality of relationship between HR professionals and line managers in an 

organization. Before moving further, some questions needs to be answered here. What is 

the operational meaning of HR-line relationship? Why it has become important in HRM? 

What may be the possible dimensions and elements of HLRQ? Why HR specific attitudes 

needs to be included in the measurement construct. 
 

 The first two issues are brief in nature and are discussed in this section. The third and 

fourth questions are covered in the next section. The answers to all these questions would 

help us identify the dimensions of the proposed construct for measuring HLRQ. For 

validation of the proposed construct an empirical survey has been conducted form HRM 

professionals and line managers. 
 

 HRM is different from personnel management in many ways. One of the major 

difference between the two is that line manager plays a key role in HRM in coordinating 

resources, which is not the case under personnel management (Legge, 1989). Similarly, 

the transition from traditional HRM towards strategic HRM brings many changes. In 

order to keep the initiative of strategic HRM fast, proactive and integrated rather than 

slow, reactive and fragmented as in case of HRM, one of the main changes is that, much 

of the HRM responsibility devolves down to line mangers rather than to HR specialists 

(Truss and Gratton, 1994; Mello, 2007). ‘The relationship that exists between HR 

professionals and line managers in management of employees of an organization is 

referred to as HR-line Relationship’ (Qadeer et al., 2011a). 
 

 HR-line relationship has been become important in strategic HRM.  Qadeer et al. 

(2011a) discusses many reasons - like the evolutionary trends in the field of HRM; the 

transition towards SHRM; devolvement (line involvement in HRM); successful 

implementation of HRM; an obvious requirement for fulfillment of other concepts in 

HRM and in general management – that contributes in enhancing the importance of HR-

line relationship. 
 

 The nature of relationship between HR managers and line managers –along with other 

contextual variables- are very much dependent upon the attitudes and behaviors of the 

two groups towards each other. Therefore, some HR specific attitudes of both the parties 

also need to be involved in measuring the quality of relationship between HR 

professionals and line managers. Relationship quality often measured in marketing and 

psychology does not include HR specific attitudes. Thus a comprehensive concept is 

required that not only include the traditional elements of relationship quality, but also HR 

specific elements that covers the attitudes of both HR managers and line managers. The 

measurement construct of HLRQ, therefore, should not only include the traditional 

elements for measuring relationship quality but also include HRM specific elements that 

are relevant in understanding the relations between HR specialists and line managers. The 

next section focuses on the identification of the dimensions of HLRQ, this would help us 

propose a construct for measuring this variable. 
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2.  LITERATURE REVIEW 
 

Dimensions of HR-line relationship quality 
 Many expressions are available in literature for describing the nature of relationship 

between HRM professional and line managers, for example consensual, conflictual, 

collaborative, partnership, trade-off. However, these prefix lacks measurability aspect. 

The concept of HLRQ represents the strength of the relationship which ultimately 

depends upon the a) relationships quality and b) positive attitudes of HR managers and 

line managers towards each other with reference to their perceived role and HRM 

performance. 
 

 The strength of relationship can be measured on the basis of previous research in 

psychology, marketing and general management research. For example, relationship 

quality has been measured in research pertaining to leader-member relations (Scandura & 

Graen, 1984), supervisor-worker relations (Game, 2008), and information inquirer-

information source relations (Tan & Zhao 2003). In addition, interpersonal relations 

(Anderson & Williams 1996; Lewicki et al., 1998; Mcknight et al., 1998; Settoon & 

Mossholde 2002; Murphy et al., 2003) and friendship research (Morrey & Kito 2009) 

also involve this variable. In marketing literature relationship quality is measured for 

better management of firm-customer relationship (De Wolf et al., 2001; Forrester & 

Maute 2001; Beatson et al., 2008), exporters-importers relation (Ural, 2007), buyers-

sellers relation (Chang 2005; Naude et al., 2007), manufacturer-retailer relation (Kim  

et al., 2004), and inter-firm relations (Arino et al., 2001; Johnson et al., 2004). It is also 

the case with, inter-functional relation (Prinslloo et al., 2007) and owner- managers and 

supervisors relationship (Chell & Tracey, 2005).  
 

 The traditional elements of relationship quality are satisfaction, trust, commitment, 

operational relations, role clarity, stability and security (Arino et al., 2001; De Wolf et al., 

2001; Forrester and Maute 2001; Johnson et al., 2004; Kim et al., 2004; Chell and 

Tracey, 2005; Beatson et al., 2008; Game, 2008). The measures for different sub-

dimensions of relationship quality are available and can be used with some modification 

in the construct for measuring the first dimension i.e. ‘relationship quality’ of HLRQ. 
 

 However, for the second dimension (i.e. positive attitudes of HR managers and line 

managers towards each other with reference to their role in HRM), further sub-

dimensions needs to be identified on the basis of the attitudes and behaviors of both HR 

professional and line managers towards each other and HRM. Renwick (2000) concludes 

that HR and line managers exercise their power, expertise and strategic positions to 

engage in both conflictual and consensual relations, and are emerged in a dialogue on 

reconfiguring HR work between them. 

 

Attitudes of HR professionals towards line managers 
 Hyman and Cunningham (1996) observe that HR specialists are ‘sceptical’, point 

deficiencies and have ‘serious doubts’ about abilities of line managers in HRM. They 

frequently state that line managers try to avoid these tasks. There are complaints from HR 

specialists that line managers either do not take advantage of preparatory training and 

development opportunities or acquire general management skills rather than specialist 

employee relations responsibilities. Papalexandris and Panayotopoulou (2005) find that 
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HR managers fear that their influence in the organization may reduce; fear of 

replacement; and there are difficulties for them to train line managers to HRM work 

properly. 
 

 In the absence of HR professionals taking the initiative, an HR-line partnership is 

unlikely to develop, as line managers are generally reluctant to ask HR professionals for 

help (Bond & Wise 2003). Lack of HR focus of line managers makes it difficult for HR 

professionals to collaborate with them. The belief that line managers do not give HRM 

work the ‘priority’ because they consider it amongst their other tasks and view HR work 

as an ‘illegitimate’ part of their job (McGovern et al., 1997).  However, there are 

evidences that line managers are keen and serious, relatively happy in some HR work and 

are considerate of employee needs and wishes (Renwick, 2003). The attitudes of HR 

professionals about the HR focus of the line managers may shape their HR specific 

attitudes. 
 

 Negative interpersonal affect renders task competence virtually irrelevant in a 

person’s choice of a partner for task interactions but that positive interpersonal affect 

increases a person’s reliance on competence as a criterion for choosing task partners, 

facilitating access to organizational resources relevant to the task (Casciaro & Lobo, 

2008). The efforts to improve multiple competencies of HR professionals or line 

managers would not be effective until the two have a high quality relationship. HR 

professionals’ attitude of co-ordination towards line managers improves the chances of 

high quality relationship. HR specialists may feel that line managers pursue objectives 

which are often incompatible with HR department (Chimhanzi, 2004), act in isolation in 

making HR related decisions (Ulrich, 1997) and are reluctant to approach them for help 

(Kulik & Perry, 2008). This means that there is poor co-ordination between the two. 

Similarly, HR professionals’ feeling that line managers dislike monitoring from HR 

(Larson & Brewster, 2003) and often argue over HR duties (Renwick, 2003) also shows 

lack of co-ordination. 
 

 Lawler III and Mohrman (2003) find that the use of joint HR-line teams to develop 

HR systems and policies strongly relates to HR being a strategic partner. Joint line/HR 

task teams improve business understanding of HR professionals and combine their 

expertise with the expertise of the line. In this way, knowledge barriers on both the sides 

minimize. If HR professionals take line managers as their team partner then they are 

likely to believe that the line managers are involved in a supportive relationship and 

working ‘as a team’ with HR (Renwick, 2000; 2003). In such a situation HR’s 

perceptions of their unit’s reputation among line managers is likely to be high. Good 

team partners should have a positive image of each other. 

 

Attitudes of line towards HRM and HR professionals 
 Line managers can serve as the central bridging mechanism reconciling the pressures 

of external control and the requirement for internal motivation to sustain performance 

(Harney & Jordan, 2008). Exploring line management behavior is a promising avenue for 

more extensive research in the field of HRM. On the basis of line managers’ HR 

experience in doing HR work, Renwick (2003) finds that they see HR as positive helpers 

in HR work; are taking this responsibility and accountability; are already managing large 

employees. It may be argued here that recognition of the contribution of HR professionals 

NCBA&E



Chapter-7: Applications 

 

463 

by the line managers helps improve their relationship. Extensive participation between 

HR and line managers can create mutual benefit for both as they jointly contribute to 

solve business problems (Gennard & Kelly, 1997). The value-adding contribution of HR 

is through business partnership roles by providing strategic advice to line (Galang, 1999; 

Gennard & Kelly, 1997; McConville & Holden, 1999). When in the opinion of line, HR 

professionals are behaving exactly as per their expectations (Teo & Rodwell, 2007), co-

operating well to get the job done (Patterson et al., 2005) and offering the necessary 

support and advice to tackle HR issues (Renwick, 2003); there is a recognition of HR 

contribution and better mutual relations. 
 

 On the other hand, line managers may feel that HR managers do not understand the 

real business of the organization and only serve to create a distraction rather than add 

value to the bottom-line (Gubbins et al., 2006). Line managers do not want be distracted 

particularly when they regard themselves competent in hard HRM- 'common-sense 

backed by experience' (Hyman & Cunningham, 1996). They fail to understand the 

importance of some basic HR activities. For example, Siddique (2004) finds that line 

managers consider job analysis to be unnecessary paperwork and employees present it as 

a discrete performance evaluation mechanism that management might use as a 

justification to get rid of certain employees. These views are clearly detrimental to 

developing a close partnership between line managers, HR professionals and employees. 

Bond and McCracken (2005) find that except for extraordinary situations there is a little 

reference from line managers to HR specialists while making decisions about employee 

requests for time-off at short notice. Even in absence of these perceptions line managers 

may believe that HR is fearful of losing influence if they do the HR work (Papalexandris 

& Panayotopoulou, 2005).  
 

 The team partner dimensions discussed in the attitudes of HR professionals is also 

relevant in the discussions of attitudes of line managers. Mitsuhashi et al. (2000) finds 

that line managers do not perceive HR to be a strategic partner. 
 

 On the basis of this review, we propose that the second dimension of HLRQ is positive-

ness of the perceptions of HR professional towards line managers and vice versa. The 

positive feelings of HR managers about their line counterpart possesses HR focus, have co-

ordination and working as their team partner may improve the quality of their relationship. 

Same would be the result of the positive feeling of line managers that HR professionals are 

making contribution, working as a team partner and not creating distraction. In order to 

develop a measurement construct HR-line relationship quality and ascertain the impact of 

the above identified factors on it an empirical survey has been conducted. 

 

3. METHODS AND MEASURES 
 

Variables 

 The main variable of the study is HR-line relationship quality (HLRQ). This variable 

has three dimensions a) relationship quality, b) positive-ness of HR towards line and c) 

positive-ness of line towards HR. The fist dimension covers four sub-dimensions namely 

satisfaction, trust, commitment, and operational relations. The second dimension 

represents positive behavior or impression of HR professionals towards line managers. 

This dimension covers three sub-dimensions namely HR focus, co-ordination and team 
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partner.  The third dimension represents positive behavior or impression of line managers 

towards HRM and HR professionals is named as positive-ness of line towards HR. This 

dimension further covers three sub-dimensions namely contribution, distraction and team 

partner. This means that the sub-dimension of team partner is common for the two types 

of positive-ness. 

 

Measurements 

 For measuring HLRQ, a construct of 38 items is proposed. The present study adopts 16 

items from the existing research (Arino et al., 2001; De Wolf et al., 2001; Chimhanzi, 2004; 

Johnson et al., 2004; Kim et al., 2004; Chell and Tracey, 2005; and Beatson et al., 2008) to 

measure relationship quality. In order to harmonize these items, suitable changes in 

wording, order and style seems logical. Starting with a common statement, both HR 

professionals and line managers rate their relations with their respective counterparts on 

numeric scale of 1-7, for the two ends, strongly disagree - strongly agree respectively. 
 

 Positive-ness of HR towards line measures through 15 items rated by HR 

professionals on the 1-7 numeric scale. These items (4-adopted and 11-fresh) are 

outcome of review of the prevailing research (McGovern et al., 1997; Ulrich, 1997; 

Renwick, 2000, 2003; Larson & Brewster, 2003; Chimhanzi, 2004; Watson et al., 2007; 

and Kulik & Perry, 2008). 
 

 Positive-ness of line towards HR measures through 12 items rated by line managers 

on 1-7 numeric scale. These items (3-adopted and 9-fresh) are also outcome of review of 

the prevailing research (Gennard & Kelly, 1997; Ulrich, 1997; Renwick, 2000, 2003; 

Chimhanzi, 2004; Papalexandris & Panayotopoulou, 2005; Patterson et al., 2005; 

Gubbins et al., 2006; Teo & Rodwell, 2007; and Kulik & Perry, 2008).  
 

 In nutshell, 21 are common for HR professionals and line managers; 10 are to be 

responded by HR professionals only and 7 by line managers only. The responses of HR 

professionals and line managers are combined to quantify HLRQ. Table 1 present the 

summary.  

 

Table 1 

 Measures of HR-line Relationship Quality 

Dimensions Sub-dimensions 
No of 
items 

Remarks 

Relationship 
Quality 

Satisfaction 3 13 adopted measures 
with very minor 

changes and 3 new 
measures 

Trust 3 

Commitment 3 

Operational relations 7 

Positive-ness 
of HR towards 

line 

HR Focus 5 

4 adopted and  
18 new measures 
(5 are common) 

Coordination 5 

Team Partner 5 

Positive-ness 
of Line 

towards HR 

Contribution 4 

Distraction 3 

Team Partner 5 

Total Measures for HR-line relationship quality 38 
17 adopted and  

21 new measures 
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 The sample and Data Collection 

 Any effort to measure HR-line relationship quality is relevant in those organizations 

which have formal HR departments. This criterion was applied to fifty-four higher 

education institutes of Punjab-the largest province of Pakistan to select the sample of 8 

universities that have a formal HR department. Head of academic departments (HODs) 

are the line managers because they are associated with the achievement of the primary 

purpose of universities. Therefore, the term line managers have been replaced with HODs 

in this survey. 
 

      A sample of 32 managers – 14 HR professionals and 18 HODs completed the 

questionnaire. Two HR professional for each of the eight university including HR head 

respond in this survey. HR head is indispensable to be part of this survey due to two 

reasons. First, technically, she/he is the head of HRM and measurement of the HLRQ 

requires his/her vital input. Second, the size of HR departments is small in the 

universities; HR heads are dealing with HODs most of the time and are fully aware about 

HRM of the organization. 

 

Table 2 

Number of Academic Departments and Employees 

Name of  

University  

Academic 

Departments 

Number of Employees 

Faculty Others Total 

U1 9 120 156 276 

U2 6 124 200 324 

U3 8 062 260 322 

U4 5 041 100 141 

U5 6 150 540 690 

U6 10 289 823 1112 

U7 7 080 60 140 

U8 13 110 370 480 

Total 64 976 2509 3485 

 

 On the other hand, two HODs are randomly selected out of the 64 HODs, except U6 

and U8 for which three HODs are selected randomly; this is due to relatively large 

number of academic departments in the two universities as compared to the other 

universities. For secrecy, universities have been renamed as U1, U2 and so on up-to U8. 

Table 2 presents the summary of information about the number of academic departments 

and number of employees in the eight universities. 
 

 The cross-sectional survey uses two instruments for the two types of respondents i.e. 

for HR professionals and HoDs. The questionnaires have been reviewed several times. It 

has been vetted or filled from experienced individuals of universities, experts of 
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questionnaire making and fellow researchers. After distribution of the questionnaires to 

HR professionals and to HoDs follow up were made directly by the authors and through 

officials of HR departments nominated by the university, co-coordinators and volunteer 

teachers.  

 

4. ANALYSIS AND INTERPRETATIONS 
 

 The response rate for HR professionals is 87.5 % and that of HODs is 66.7 %. Over 

all there are 78 % male respondents in the survey. The percentage of females representing 

HR professionals is 36 % and the percentage of females representing HODs is only 11 %. 

The mean working experience of HODs (7.17 years) is about twice of those of the HR 

Professionals (3.39 years). In this sample HODs are experienced individuals, highly 

qualified in their discipline, whereas HR professionals are relatively less qualified and 

less experienced. 
 

 Keeping in view the purpose of the survey i.e. to validate the proposed construct for 

measurement of HLRQ, items that show a low factor loading have to be eliminated for 

fine tuning of a construct. Factor analysis (principal component analysis with varimax 

rotation) is performed on all multiple scale items to determine item retention (Coyle-

Shapiro et al., 2004). The examination of the factor loadings for each of the construct 

reveals that single factor emerges for most of the constructs. For the unidimensionality of 

each construct, this study includes appropriate items that loaded at least 0.70 on their 

respective component. De Wolf et al., (2001) also use similar method with the item 

inclusion loading level of 0.65. The minimum eigen value is 1 in all the factor analysis. 
 

 Out of 16 proposed items, there is an elimination of 1 item for the sub-dimension 

operational relations (Table 3). The factor loadings of each of items for the sub-

dimensions satisfaction, trust and commitment are in the acceptable range. Out of the 22 

items there is an elimination of 1 item of HR-focus and 2 items of co-ordination have 

acceptable loadings. The factor loading for team partner, contribution and distraction 

shows acceptable loadings. Therefore, 34 items now retains in the measurement construct 

for HLRQ.  

 

Reliability Analysis 

 The reliability of an instrument is its ability to give nearly identical results in repeated 

measurement under identical conditions. This study is conducted on multi-point numeric 

scales, so the Chronnbach’s Alpha is used which is a suitable test for testing reliability of 

the measure. The minimum acceptable Alpha in social science is 0.70 (Hair et al., 1998). 

The reliability for all the scales after eliminating the items is within the acceptable range. 

The Alpha value for satisfaction, trust, commitment, operational relations, HR focus,  

co-ordination, team partner, contribution and distraction are 0.95, 0.89, 0.82, 0.94, 0.83, 

0.75, 0.88, 0.90 and 0.73 respectively. 

 

  

NCBA&E



Chapter-7: Applications 

 

467 

Table 3 

Factor Loadings for Sub-dimensions HR-line Relationship Quality 

Dimensions 
Sub- 

Dimension 
Principal Components Analysis 

Factor 

Loading 

Relationship 

Quality 

Satisfaction 

satisfaction with the relationship 0.963 

happy with the efforts they are making in this 

relationship 
0.963 

satisfied with their method of support 0.943 

Trust 

have trustworthy impression 0.932 

trust all kinds of information being provided 0.899 

While making decisions they consider our welfare 

as well as their own 
0.892 

Commitment 

committed to develop a quality relationship with 

us 
0.919 

feel a strong attachment 0.915 

willing "to go the extra mile" to maintain good 

relations  
0.737 

Operational 

Relations 

are quick to respond for operational adjustments 0.782 

Their behavior always matches with our original 

expectations 
0.903 

Mutual conflicts are resolved amicably and fairly 0.866 

Our relations are stable 0.819 

feel secure in maintaining the relations 0.934 

These relationships is quite steady 0.893 

want changes in terms of our working relationship (0.489)* 

Positive-

ness 

of  HR  

towards 

Line 

HR Focus 

are keen to take part in doing HR work 0.776 

are serious in doing HR work 0.777 

feel secure in knowing that HR experts can be 

called on if needed 
0.818 

give HR work the priority it needs 0.881 

view work belonging to HR as an illegitimate part 

of their job 
0.623* 

Co-

ordination 

pursue objectives which are often incompatible 0.835 

act in isolation in making HR related decisions 0.864 

dislike monitoring from HR professionals 0.776 

often argue over (who or when to complete) HR 

duties 
0.605* 

are reluctant to approach HR for help 0.622* 

Team 

Partner 

are involved in a supportive relationships 0.830 

are working "as a team" with HR 0.871 

have a positive impression of the HR staff 0.851 

view HR as a business partner 0.873 

see HR staff as rigid and inflexible 0.713 
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Dimensions 
Sub- 

Dimension 
Principal Components Analysis 

Factor 

Loading 

Positive-

ness 

of Line  

towards HR 

Contribution 

contribute to solve business problems 0.875 

are behaving exactly as per my expectations 0.914 

co-operate well to get the job done 0.925 

offer the necessary support and advice to tackle 

HR issues 
0.778 

Distraction 

fear of reduced influence if HR work is done by 

me 
0.716 

only serve to create a distraction rather than add 

value 
0.907 

do not understand the real business of the 

organization 
0.805 

Team 

Partner 

involved in a supportive relationships 0.830 

working "as a team" with HR 0.871 

positive towards solving problems 0.851 

behave like a business partner 0.873 

are rigid and inflexible 0.713 

* Items eliminated 

 

CONCLUSION 
 

 Data has been collected from multiple sources which is always better than a single 

informant approach. Keeping in view the unique nature of higher education sector, it is 

not fully justified to generalize the results for the other sectors of Pakistan. Greater 

numbers of respondents and survey in diversified sectors would have further strengthened 

this research. Given these limitations, it may be concluded that HR-line relationship 

quality may be measured from 34 items for the three dimensions: a) relationship quality, 

b) positive-ness of HR towards line and c) positive-ness of line towards HR. Twenty of 

the items are common for both HR professionals and line managers. These items measure 

four sub-dimensions (i.e. satisfaction, trust, commitment and operational relations) of 

relationship quality and one common sub-dimension (team partner) for positive-ness of 

both HR professional and line managers. Seven of the items are for HR professionals that 

measure two sub-dimensions (i.e. HR focus and co-ordination) of their positive-ness 

towards line managers. Moreover, 7 items are for line managers that measure two sub-

dimensions (i.e. contribution and distraction) of their positive-ness towards HR.  
 

  According to Qadeer et al. (2011b) the nature of ownership (public or private) of a 

university does not make significant difference on the HRM patterns of Pakistan. And 

HRM in universities are more influenced by the culture of the country. Therefore, the 

above mentioned construct may also be used in any other university as well.      
 

 The paper contributes theoretically and empirically by further developing the concept 

HR-line relationship quality, positive-ness of HR towards line managers and positive-

ness of line towards HR (Qadeer et al., 2011a). It identifies various dimensions and sub-

dimensions of all these variables. It proposes items as first step and collects data through 

an empirical survey for fine-tuning of the constructs as the second step. Future research 
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should test the construct for HLRQ in diversified sectors. The measurement and 

validation of generic construct HR-line relationship quality require inclusion of many HR 

professionals and line managers from various types of organizations. On the contrary, the 

diagnosis of HR-line relationship quality in a particular organization to improve the 

quality of relationship requires in depth analysis of that particular organization. 

Therefore, conducting case studies may also be helpful in future.  
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